The present invention relates to a plasma display apparatus. More particularly, the present invention proposes a three-electrode AC (alternate current) type surface discharge plasma display apparatus with a new structure.
The plasma display apparatus (PDP apparatus) has been put to practical use as a flat display and is highly regarded as a thin high-luminance display. Among several types of the PDP apparatus, an AC type PDP, in which the light emission display is performed by applying a voltage waveform alternately to two sustain electrodes to keep on causing a discharge to occur, is mostly used. A discharge is completed 1μ second to a few μ seconds after the application of a pulse. Ions, which are positive charges generated by a discharge, accumulate on the surface of the insulating layer on an electrode to which a negative voltage is being applied, and electrons, which are negative charges, accumulate on the surface of the insulating layer on an electrode to which a positive voltage is being applied.
Therefore, after wall charges are first formed on a cell to be displayed by selectively causing a discharge to occur with a pulse (write pulse) of a high voltage (write voltage), if a pulse (sustain pulse or sustain discharge pulse) of a voltage lower (sustain voltage or sustain discharge voltage) than before and of the opposite polarity is applied, a threshold value of discharge voltage is exceeded and a discharge is caused to occur in the cell to be displayed because the voltage due to the wall charges accumulated thereon is overlapped and a large voltage develops across the discharge space. (A discharge is not caused to occur in a cell not to be displayed, to which a write pulse has not been applied, even if a sustain pulse is applied.) In other words, a cell, in which wall charges have been formed once by a write discharge, has a characteristic that a discharge is kept on by continuing to apply a sustain pulse, the polarity of which being alternately reversed. This is called the memory effect. Generally, an AC type PDP apparatus performs a display by utilizing this memory effect.
The AC type PDP apparatuses include the two-electrode type, in which a selection discharge (address discharge) and a sustain discharge are caused to occur by two electrodes, and the three-electrode type, in which an address discharge is caused to occur by utilizing a third electrode. The color PDP apparatus that performs a gray level display excites the phosphor formed in a discharge cell by the ultraviolet rays generated by a discharge, but the phosphor has a drawback of being susceptible to the impact of ions, which are positive charges generated by the discharge. Because the above-mentioned two-electrode type has a structure in which the phosphor is directly hit by ions, the life of the phosphor may be shortened. To avoid this, a color PDP apparatus generally employs the three-electrode structure that utilizes the surface discharge. The three-electrode type further includes two types: in one type a third electrode is formed on the same substrate on which a first and a second electrodes that perform the sustain discharge have been arranged, and in the other type the third electrode is arranged on another opposing substrate. On the other hand, when the three kinds of electrodes are formed on the same substrate, there are two types: in one type the third electrode is arranged over the two electrodes that perform the sustain discharge, and in the other type the third electrode is arranged thereunder. Still furthermore, there are two types: in one type the visible light emitted from the phosphor is viewed therethrough (transparent type), and in the other type that reflected by the phosphor is viewed (reflection type).
As shown in
The panel is composed of two glass substrates 21 and 29. On the first substrate 21, the plural first electrodes (X electrodes) 12 and the plural second electrodes (Y electrodes) 11, which correspond to the sustain electrodes and are arranged adjacently by turns, are formed and these electrodes are composed of transparent electrodes 22a and 22b and bus electrodes 23a and 23b. Because of the role to allow the light reflected by the phosphor to pass through, the transparent electrode is made of such as ITO (transparent film the main component of which is indium oxide). The bus electrode needs to be made of a material of a low resistance therefore is made of Cr (chromium) or Cu (copper), because it is necessary to avoid the reduction in voltage due to the electrical resistance. Moreover, the bus electrode is covered with a dielectric layer (glass) 24 and an MgO (magnesium oxide) film 25 is formed as a protection film on the discharge surface. On the other hand, on the second substrate 29 that opposes the first glass substrate 21, the plural third electrodes (address electrodes) 13 are formed in the direction perpendicular to that of the sustain electrodes (X, Y electrodes). The partition wall 14 is formed between the address electrodes and between the partition walls, phosphors 27 that have the light emission characteristics of red (R), green (G), and blue (B) are formed so as to cover the address electrode. The two glass substrates are assembled so that the ridge of the partition wall 14 and the MgO film 25 come into close contact with each other. The space between the phosphor 27 and the MgO film 25 is a discharge space 26.
The method to drive the above-mentioned three-electrode surface discharge AC type PDP apparatus is called the “Address/sustain discharge period separated type-write address method”. This drive method is briefly described below. In the first reset period, each display cell is set to a uniform state. In this reset period, all the display cells are set to a uniform state by applying a voltage sufficiently greater than the threshold voltage between the X electrode and the Y electrode to cause a discharge to occur, while a fixed voltage (0V, for example) is being applied to the address electrode, then neutralizing the charges generated by the discharge by making the potentials of the X electrode and the Y electrode equal to each other. In the next address discharge period, with a state in which a fixed voltage is being applied to the X electrode, a scan pulse of, for example, −150 V is applied sequentially to the Y electrode, a write pulse (of 50 V, for example) is applied to the address electrode of a cell to be made to emit light in synchronization with the application of each scan pulse, and no write pulse is applied (that is, 0 V is applied) to the address electrode of a cell not to be made to emit light. In this way, a discharge is caused to occur in a cell to be made to emit light and wall charges are formed on the surface of the dielectric on the X electrode and the Y electrode, but no wall charge is formed in a cell not to be made to emit light. In the next sustain discharge period, with a state in which a fixed voltage (0 V, for example) is being applied to the address electrode, a sustain pulse is applied alternately to the X electrode and every Y electrode. The sustain pulse has such a voltage (180 V, for example) that a sustain discharge is caused to occur in a cell to be made to emit light, in which the wall charges have been formed during the address discharge period, by overlapping the voltage due to the wall charges because the threshold voltage is exceeded, but no discharge is caused to occur in a cell not to be made to emit light in which no wall charge has been formed. As the occurrence of a sustain discharge forms the wall charges of the opposite polarity, a discharged is caused to occur if a sustain pulse of the opposite polarity is applied subsequently. In this way, a discharge is kept on, due to the memory effect, by applying a sustain pulse the opposite polarity of which is alternately changed. What contributes to the display is this sustain discharge and, the longer the sustain discharge period, the higher the light emission luminance is. By repeating the above-mentioned reset period, address discharge period, and sustain discharge period, the display is performed.
In the PDP apparatus, it is possible only to control the display cell whether to emit light or not, but the light emission intensity cannot be changed for each display cell. Therefore, when the gray level display is performed, one display frame is made to comprise plural subframes. Each subframe is composed of a reset period, an address discharge period, and a sustain discharge period, and the light emission intensity is varied by changing the length of the sustain discharge period. Then, a desired light emission luminance can be obtained by selecting the subframes to be made to emit light in one display frame for each display cell.
The PDP apparatus comprises a drive circuit to apply a voltage to each electrode of the panel described above, a frame memory to convert display data into a signal appropriate for the drive signal in the PDP apparatus, control circuits of each part, and so on, and, as these are widely known, a description is omitted here. Although various examples of modification to such as the panel structure and the drive method have been proposed, no description about these is provided here.
For the three-electrode surface discharge AC type PDP apparatus that has been known so far, various figures of the electrode to improve the discharge efficiency have been proposed, but it can be said, on the whole, that the X electrode and the Y electrode, which are the sustain electrodes, are designed so as to extend in the same direction.
For a gas discharge display apparatus such as the PDP apparatus that performs the image display, it is required to prevent a discharge in a display cell from affecting adjacent display cells to cause a discharge to occur in a cell not to be made to emit light, and to keep on causing a discharge to occur in a cell to be made to emit light, therefore, a structure in which display cells are separated is needed. In the above-mentioned three-electrode surface discharge AC type PDP apparatus, for example, the gap between the pairs of the x electrode 12 and the Y electrode 11 is vertically widened to prevent adjacent display cells from affecting each other and the wall partition 14 is provided to horizontally separate the display cells, as described above. Such a structure, however, has the following problems. One of them is that although the wall partition is separated horizontally, if there exists a flaw in the wall partition, a charge may flow to an adjacent cell, not to be made to emit light, through it, a discharge may be caused to occur in the cell not to be made to emit light by the charge as a trigger, and an erroneous display may be caused. Another problem is that the gap between the pairs of the X electrode 12 and the Y electrode 13 is vertically widened to prevent a discharge from being caused to occur, therefore, the vertical interval between the display cells needs to be also widened, and as a result the density of display cells cannot be increased.
Moreover, the panel structure of the above-mentioned three-electrode surface discharge AC type PDP apparatus has still another problem that since the sustain electrodes (X electrodes and the Y electrodes) are arranged in parallel, the panel volume becomes large and it is necessary to use a drive circuit of a higher performance accordingly, resulting in a larger power consumption and a higher cost.
The present invention will solve these problems and the objective is to realize a PDP apparatus that is able to prevent an erroneous display by defining the range of each display cell with a structure of an electrode and has a high density of display cells, and to reduce the power consumption and the cost.
As shown schematically, at the crossing portion on the first substrate 34, the common electrode X is provided under the scan electrode Y via a dielectric layer 35 and the scan electrode Y is arranged on the side near the address electrode A.
As described above, the voltage Vx is being applied to the common electrode X, an electric field is formed between the common electrode X and the scan electrode Y, and the generated positive charges and negative charges are accumulated on the dielectric layer 35 on the common electrode X and the scan electrode Y according to the electric field. This is shown in
As described above, in the plasma display apparatus of the present invention, as the scan electrode extends in the direction perpendicular to those of the common electrode and the address electrode, if a voltage is applied between the scan electrode and the common electrode or between the scan electrode and the address electrode, the electric field intensity becomes the strongest at the crossing portion and its vicinity and it decreases as the distance from the crossing portion increases. Therefore, when a discharge or a sustain discharge is caused to occur to select the lit state or the unlit state of each display cell by applying a voltage between the scan electrode and the common electrode or between the scan electrode and the address electrode, the discharge is limited to the crossing portion and its vicinity and is hardly propagated to adjacent display cells, therefore, an erroneous display can be avoided. Because of this, it will be possible to remove the partition wall used conventionally, and to realize a PDP apparatus, in which the density of display cells is high. Moreover, since the common electrode and the scan electrode, between which a discharge is caused to occur, are perpendicular to each other, the volume and power consumption can be made less compared to a conventional one in which they are parallel and at the same time the cost can also be reduced because it is possible to use a circuit with a lower drive performance.
When the scan electrode and the common electrode are provided on the first substrate, they are made to form plane layers the height of which are different from each other, and the dielectric layer is provided therebetween. In this case, since the volume of the crossing portion becomes large, it is designed so that the common electrode has a step that makes a roundabout way to avoid around the scan electrode and protrudes downward at the crossing portion, or the scan electrode has a step that makes a roundabout way to avoid the common electrode and protrudes upward at the crossing portion. If such a structure is employed, it will be possible to provide a scan electrode and a common electrode flush with each other, on the first substrate, except for the crossing portion.
It is possible to reduce the volume of the crossing portion by providing a structure of a dielectric on the crossing portion of the common electrode and forming the scan electrode thereon instead. Moreover, it is also preferable to provide the structure of a dielectric along the entire length of the scan electrode thereunder.
The address electrode can be exposed to the discharge space.
As described above, a discharge is caused to occur in a part a certain distance away from the crossing portion of the scan electrode Y, and the crossing portion only generates charges by a discharge between the crossing portion and the address electrode and is not required to accumulate wall charges. Therefore, part of the scan electrode can be exposed to the discharge space and this will lower the voltage needed to cause an address discharge to occur. It is not necessary for the whole part of the crossing portion of the scan electrode to be exposed, and it is preferable, for example, to provide plural pores that connect the discharge space and the scan electrode at the crossing portion of the scan electrode.
It is also preferable to provide a common auxiliary electrode and a scan auxiliary electrode that are connected to the common electrode and the scan electrode, respectively, and widen the common electrode and the scan electrode in the vicinity of the crossing portion in order to make the gap constant. In this case, if the surfaces of the common auxiliary electrode and the scan auxiliary electrode are made to have the same depth from the surface that comes into contact with the discharge space, the thickness of the dielectric layer between the common electrode provided downward and the surface can be reduced, and as a result, the sustain discharge voltage can be reduced.
According to the present invention, as the address discharge is limited to the crossing portion and the sustain discharge is limited in the vicinity of the crossing portion, it is possible to omit the partition wall that has been used conventionally, but it is also possible to provide the partition wall. When the partition wall is provided, it is preferable to provide on the surface of the second substrate so as to separate the address electrodes, as conventionally. This wall partition can also be used to define the interval between the first substrate and the second substrate. It is also preferable to make the partition lower and use it to distinguish between the phosphors or to provide a spacer in addition to such a low partition wall and use it to define the interval between the substrates by combining them.
If the pixel pitch of the display screen in the horizontal direction is to be made equal to that in the vertical direction, the arrangement pitch of the scan electrode needs to be made equal to those of the common electrode and the address electrode. In the color display, however, R (red), G (green), and B (blue) phosphors are formed in three adjacent display cells and a one-color pixel is composed of these three display cells. It is preferable that the one-color pixel has the same pixel pitch in the horizontal direction as that in the vertical direction. Therefore, if a scan pulse is applied to a group composed of the three adjacent scan electrodes, the lit state or the unlit state of the three adjacent display cells formed by the three adjacent scan electrodes can be selected simultaneously by one scan pulse. Since the one-color pixel is composed of 3×3, that is nine, display cells, the pixel pitch in the horizontal direction and that in the vertical direction become equal to each other.
It is also acceptable to make the arrangement pitch of the scan electrode three times those of the common electrode and the address electrode. In this case, a common auxiliary electrode and a scan auxiliary electrode, for example, which extend in the same direction of the common electrode and the address electrode are provided, because it is necessary to extend the light emission range (sustain discharge range) of each display cell in this direction.
Moreover, by arranging the three pixels R, G, and B at the vertexes of a grid, each grid unit of which is an equilateral triangle, the pixel pitch of the one-color pixel in the horizontal direction can be substantially made equal to that in the vertical direction. In order to realize such an arrangement, the scan electrode is made to turn in zigzag so that the crossing with the common electrode forms a vertex.
It is preferable to be able to adjust the luminance independently for each pixel of each color because each phosphor of R, G, and B differs in light emission efficiency. Therefore, by grouping the common electrode of each display cell by light emission color to enable to drive each group independently, and by setting independently the application period of the sustain pulse to be applied in the sustain discharge period for each group, the luminance and chromaticity can be adjusted for each color pixel.
The features and advantages of the invention will be more clearly understood from the following description taken in conjunction with the accompanying drawings, in which:
In the reset period, with a state in which 0V is being applied to the address electrode A, a pulse of voltage −Vq is applied to the common electrode X and at the same time a slope-shaped pulse, the voltage of which increases to Vw at a fixed rate, is applied to the scan electrode Y to cause an erase discharge to occur, then a pulse of voltage Vq is applied to the common electrode X and at the same time a slope-shaped pulse, the voltage of which decreases to a fixed negative voltage at a fixed rate, is applied to the scan electrode Y to cause a neutralize discharge to occur, thereby all the display cells are made to enter a uniform state. By applying such a slope-shaped pulse, the intensity of the erase discharge that lowers the contrast is lowered and all the display cells are made to enter a uniform state without fail.
Next, in the address discharge period, with a state in which a voltage Vx is being applied to the common electrode X, a scan pulse of voltage −Vy is applied sequentially to the scan electrode Y and a write pulse of voltage Va is applied to the address electrode A of a cell to be lit in synchronization with the application of the scan pulse. In this way, a discharge is caused to occur at the crossing portion of the address electrode A to which the voltage Va has been applied and the scan electrode Y, space charges are generated as shown in
In the next sustain discharge period, after a sustain pulse of voltage Vs is applied to the scan electrode Y, a sustain pulse is applied alternately to the common electrode X and the scan electrode Y in this order. In this way, a sustain discharge is caused to occur in the vicinity of the crossing portion of a cell to be made to emit light as described in
While the structure and the operation of the PDP apparatus in the embodiments of the present invention have been described as above, examples of the structure in the embodiments are described in detail below.
According to the present invention, the address discharge is limited to the crossing portion and the sustain discharge is limited in the vicinity of the crossing portion, therefore, it is possible to omit the partition wall used conventionally, but it is also possible to provide the partition wall because of its role as a spacer that defines the interval between the substrates.
In
In
When the common auxiliary electrode 43 and the scan auxiliary electrode 42 as described above are formed, the heights of them are made equal to those of the common electrode X and the scan electrode Y, respectively.
In the structure shown in
As shown in
Still furthermore, as shown in
The whole of the crossing portion of the scan electrode does not have to be exposed, and it is also acceptable that plural small pores 47 are provided in the crossing portion of the scan electrode Y so that part of the scan electrode Y is exposed to the discharge space 37, as shown in
As shown in
It is preferable for the color pixel to have the same pixel pitch in the horizontal direction and in the vertical direction. Therefore, if a scan pulse is applied, the three adjacent scan electrodes Y being classified into one group, the lit state or the unlit state of the three adjacent display cells formed by the three adjacent scan electrodes can be simultaneously selected by one scan pulse. In other words, the pixel of each color is composed of three display cells adjacent vertically and the shape is like a vertically extended rectangle (a rectangle the height of which is much greater than its width). Since a one-color pixel is composed of 3×3, that is nine, display cells, the color pixel pitch in the horizontal direction is the same as that in the vertical direction.
It is possible to make the color pixel pitch in the horizontal direction equal to that in the vertical direction even if the arrangement pitch of the scan electrode Y is made three times those of the common electrode X and the address electrode A. In the structure shown in
In these examples, the scan electrode Y extends linearly. In
In the embodiments described so far, the common electrodes X are commonly connected and it is assumed that the same drive voltage is applied. On the contrary, in
The light emission efficiency of each phosphor for R; G, and B is different and if the ratio is assumed to be 2:1.5:1, the ratio of the display luminance for each color will be the same when driven at the same sustain discharge frequency, and this is not preferable from the standpoint of color reproduction characteristic. If the structure as shown in
As described above, according to the present invention, it is possible to not only realize a PDP apparatus in which an erroneous display due to the propagation of discharge is not caused and the density of display cells is high, but also reduce power consumption and costs because the range of each display cell can be regulated by the structure of electrodes.
Number | Date | Country | Kind |
---|---|---|---|
2001-223443 | Jul 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3646384 | Lay | Feb 1972 | A |
3811061 | Nakayama et al. | May 1974 | A |
4164678 | Biazzo et al. | Aug 1979 | A |
6087779 | Sakamoto et al. | Jul 2000 | A |
6195070 | Shinoda et al. | Feb 2001 | B1 |
6195074 | Kim | Feb 2001 | B1 |
6388644 | De Zwart et al. | May 2002 | B1 |
6448947 | Nagai | Sep 2002 | B1 |
6456265 | Mikoshiba et al. | Sep 2002 | B1 |
6476562 | Yoo et al. | Nov 2002 | B1 |
6501445 | Kim | Dec 2002 | B1 |
6512499 | Abe | Jan 2003 | B1 |
6522314 | Tomio et al. | Feb 2003 | B1 |
6838824 | Shinoda et al. | Jan 2005 | B1 |
20020093291 | Kanazawa et al. | Jul 2002 | A1 |
20020149548 | Akiba | Oct 2002 | A1 |
20030080926 | Morimoto | May 2003 | A1 |
Number | Date | Country |
---|---|---|
5-101781 | Apr 1993 | JP |
11-288666 | Oct 1999 | JP |
2000-047632 | Feb 2000 | JP |
2000-341472 | Dec 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20030020673 A1 | Jan 2003 | US |