This application claims the benefit of Korean Patent Application No. 10-2009-0111963 filed on Nov. 19, 2009, the entire contents of which is incorporated herein by reference for all purposes as if fully set forth herein.
1. Field of the Invention
Embodiments of the invention relate to a plasma display device and a multi plasma display device.
2. Discussion of the Related Art
A plasma display apparatus includes a plasma display panel. The plasma display panel includes a phosphor layer inside discharge cells partitioned by barrier ribs and a plurality of electrodes.
When driving signals are applied to the electrodes of the plasma display panel, a discharge occurs inside the discharge cells. More specifically, when the discharge occurs in the discharge cells by applying the driving signals to the electrodes, a discharge gas filled in the discharge cells generates vacuum ultraviolet rays, which thereby cause phosphors between the barrier ribs to emit visible light. An image is displayed on the screen of the plasma display panel using the visible light.
In one aspect, there is a plasma display device comprising a front substrate, a rear substrate opposite the front substrate, an electrode between the front substrate and the rear substrate, a seal layer between the front substrate and the rear substrate, a driving board positioned in the rear of the rear substrate, and a flexible circuit board electrically connecting the driving board to the electrode, the flexible circuit board being electrically connected to a side surface of the electrode.
An adhesive layer including conductive particles may be positioned between the flexible circuit board and the side surface of the electrode. The adhesive layer may contact the front substrate, the rear substrate, and the seal layer.
In another aspect, there is a plasma display device comprising a front substrate, a rear substrate opposite the front substrate, an electrode between the front substrate and the rear substrate, a seal layer between the front substrate and the rear substrate, a driving board positioned in the rear of the rear substrate, and a flexible circuit board electrically connecting the driving board to the electrode, the flexible circuit board being electrically connected to a side surface of the rear substrate.
In another aspect, there is a plasma display device comprising a front substrate, a rear substrate opposite the front substrate, an electrode between the front substrate and the rear substrate, a seal layer between the front substrate and the rear substrate, a driving board positioned in the rear of the rear substrate, and a flexible circuit board electrically connecting the driving board to the electrode, wherein the flexible circuit board is attached to the adhesive layer, so that the flexible circuit board overlaps the front substrate, the rear substrate, and the seal layer using the adhesive layer.
The adhesive layer may include conductive particles.
A size of an overlapping portion between a side surface of the front substrate and the flexible circuit board may be less than a size of an overlapping portion between a side surface of the rear substrate and the flexible circuit board.
A side surface of the front substrate may include a first portion, in which the adhesive layer and the flexible circuit board are positioned, and a second portion, in which the adhesive layer is positioned and the flexible circuit board is not positioned. A size of the first portion may be greater than a size of the second portion.
The flexible circuit board may be electrically connected to a side surface of the electrode.
In another aspect, there is a plasma display device comprising a front substrate, a rear substrate opposite the front substrate, an electrode between the front substrate and the rear substrate, a seal layer between the front substrate and the rear substrate, a driving board positioned in the rear of the rear substrate, a flexible circuit board electrically connecting the driving board to the electrode, and an adhesive layer electrically connecting the electrode to the flexible circuit board, the adhesive layer contacting a front surface and a side surface of the front substrate and a side surface and a back surface of the rear substrate.
The adhesive layer may contact the seal layer. The adhesive layer may include conductive particles.
The adhesive layer may include a first portion contacting the front surface of the front substrate, a second portion contacting the back surface of the rear substrate, a third portion contacting the side surface of the front substrate, and a fourth portion contacting the side surface of the rear substrate. A width of the second portion may be greater than a width of the first portion. A width of the third portion and a width of the fourth portion may be greater than the width of the first portion.
The flexible circuit board may be attached to the second portion and is not attached to the first portion.
In another aspect, there is a multi plasma display device comprising a first panel, a second panel positioned adjacent to the first panel, and first and second flexible circuit boards positioned in a boundary portion between the first panel and the second panel, wherein the first panel includes a front substrate, a rear substrate opposite the front substrate, an electrode between the front substrate and the rear substrate, and a seal layer between the front substrate and the rear substrate, wherein the second panel includes a front substrate, a rear substrate opposite the front substrate, an electrode between the front substrate and the rear substrate, and a seal layer between the front substrate and the rear substrate, wherein the first flexible circuit board is attached to a side surface of the rear substrate of the first panel, and the second flexible circuit board is attached to a side surface of the rear substrate of the second panel.
The first flexible circuit board may be electrically connected to a side surface of the electrode of the first panel, and the second flexible circuit board may be electrically connected to a side surface of the electrode of the second panel.
The first flexible circuit board may electrically connect to a driving board positioned in the rear of the first panel to the electrode of the first panel, and the second flexible circuit board may electrically connects to a driving board positioned in the rear of the second panel to the electrode of the second panel.
A first adhesive layer including conductive particles may be positioned between the first flexible circuit board and a side surface of the electrode of the first panel, and a second adhesive layer including conductive particles may be positioned between the second flexible circuit board and a side surface of the electrode of the second panel.
In another aspect, there is a plasma display device comprising a front substrate, a rear substrate opposite the front substrate, an electrode between the front substrate and the rear substrate, a seal layer between the front substrate and the rear substrate, a driving board positioned in the rear of the rear substrate, an auxiliary electrode electrically connected to the electrode, the auxiliary electrode including a portion on a side surface of the seal layer, a flexible circuit board electrically connecting the driving board to the auxiliary electrode, and an adhesive layer between the auxiliary electrode and the flexible circuit board, the adhesive layer including a plurality of conductive balls.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail embodiments of the invention examples of which are illustrated in the accompanying drawings.
A plasma display panel may display an image in a frame including a plurality of subfields.
More specifically, as shown in
In
An upper dielectric layer 204 may be formed on the scan electrode 202 and the sustain electrode 203 to limit a discharge current of the scan electrode 202 and the sustain electrode 203 and to provide insulation between the scan electrode 202 and the sustain electrode 203.
A protective layer 205 may be formed on the upper dielectric layer 204 to facilitate discharge conditions. The protective layer 205 may be formed of a material having a high secondary electron emission coefficient, for example, magnesium oxide (MgO).
A lower dielectric layer 215 may be formed on the address electrode 213 to provide insulation between the address electrodes 213.
Barrier ribs 212 of a stripe type, a well type, a delta type, a honeycomb type, etc. may be formed on the lower dielectric layer 215 to partition discharge spaces (i.e., discharge cells). Hence, a first discharge cell emitting red light, a second discharge cell emitting blue light, and a third discharge cell emitting green light, etc. may be formed between the front substrate 201 and the rear substrate 211. Each of the barrier ribs 212 may include first and second barrier ribs each having a different height.
The address electrode 213 may cross the scan electrode 202 and the sustain electrode 203 in one discharge cell. Namely, each discharge cell is formed at a crossing of the scan electrode 202, the sustain electrode 203, and the address electrode 213.
Each of the discharge cells partitioned by the barrier ribs 212 may be filled with a predetermined discharge gas.
A phosphor layer 214 may be formed inside the discharge cells to emit visible light for an image display during an address discharge. For example, first, second, and third phosphor layers that respectively generate red, blue, and green light may be formed inside the discharge cells.
While the address electrode 213 may have a substantially constant width or thickness, a width or thickness of the address electrode 213 inside the discharge cell may be different from a width or thickness of the address electrode 213 outside the discharge cell. For example, a width or thickness of the address electrode 213 inside the discharge cell may be larger than a width or thickness of the address electrode 213 outside the discharge cell.
When a predetermined signal is supplied to at least one of the scan electrode 202, the sustain electrode 203, and the address electrode 213, a discharge may occur inside the discharge cell. The discharge may allow the discharge gas filled in the discharge cell to generate ultraviolet rays. The ultraviolet rays may be incident on phosphor particles of the phosphor layer 214, and then the phosphor particles may emit visible light. Hence, an image may be displayed on the screen of the plasma display panel 100.
A frame for achieving a gray scale of an image displayed on the plasma display panel is described with reference to
As shown in
For example, if an image with 256-gray level is to be displayed, as shown in
Furthermore, at least one of a plurality of subfields of a frame may further include a reset period for initialization. At least one of a plurality of subfields of a frame may not include a sustain period.
The number of sustain signals supplied during the sustain period may determine a gray level of each of the subfields. For example, in such a method of setting a gray level of a first subfield at 2° and a gray level of a second subfield at 21, the sustain period increases in a ratio of 2n (where, n=0, 1, 2, 3, 4, 5, 6, 7) in each of the subfields. Hence, various gray levels of an image may be achieved by controlling the number of sustain signals supplied during the sustain period of each subfield depending on a gray level of each subfield.
Although
At least one of a plurality of subfields of a frame may be a selective erase subfield, or at least one of the plurality of subfields of the frame may be a selective write subfield.
If a frame includes at least one selective erase subfield and at least one selective write subfield, it may be preferable that a first subfield or first and second subfields of a plurality of subfields of the frame is/are a selective write subfield and the other subfields are selective erase subfields.
In the selective erase subfield, a discharge cell to which a data signal is supplied during an address period is turned off during a sustain period following the address period. In other words, the selective erase subfield may include an address period, during which a discharge cell to be turned off is selected, and a sustain period during which a sustain discharge occurs in the discharge cell that is not selected during the address period.
In the selective write subfield, a discharge cell to which a data signal is supplied during an address period is turned on during a sustain period following the address period. In other words, the selective write subfield may include a reset period during which discharge cells are initialized, an address period during which a discharge cell to be turned on is selected, and a sustain period during which a sustain discharge occurs in the discharge cell selected during the address period.
A driving waveform for driving the plasma display panel is illustrated in
As shown in
More specifically, the ramp-up signal RU may be supplied to the scan electrode Y during a setup period of the reset period RP, and the ramp-down signal RD may be supplied to the scan electrode Y during a set-down period following the setup period SU. The ramp-up signal RU may generate a weak dark discharge (i.e., a setup discharge) inside the discharge cells. Hence, the wall charges may be uniformly distributed inside the discharge cells. The ramp-down signal RD subsequent to the ramp-up signal RU may generate a weak erase discharge (i.e., a set-down discharge) inside the discharge cells. Hence, the remaining wall charges may be uniformly distributed inside the discharge cells to the extent that an address discharge occurs stably.
During an address period AP following the reset period RP, a scan reference signal Ybias having a voltage greater than a minimum voltage of the ramp-down signal RD may be supplied to the scan electrode Y. In addition, a scan signal Sc falling from a voltage of the scan reference signal Ybias may be supplied to the scan electrode Y.
A pulse width of a scan signal supplied to the scan electrode during an address period of at least one subfield of a frame may be different from pulse widths of scan signals supplied during address periods of the other subfields of the frame. A pulse width of a scan signal in a subfield may be greater than a pulse width of a scan signal in a next subfield. For example, a pulse width of the scan signal may be gradually reduced in the order of 2.6 μs, 2.3 μs, 2.1 μs, 1.9 μs, etc. or may be reduced in the order of 2.6 μs, 2.3 μs, 2.3 μs, 2.1 μs, 1.9 μs, 1.9 μs, etc. in the successively arranged subfields.
As above, when the scan signal Sc is supplied to the scan electrode Y, a data signal Dt corresponding to the scan signal Sc may be supplied to the address electrode X. As a voltage difference between the scan signal Sc and the data signal Dt is added to a wall voltage obtained by the wall charges produced during the reset period RP, an address discharge may occur inside the discharge cell to which the data signal Dt is supplied. In addition, during the address period AP, a sustain reference signal Zbias may be supplied to the sustain electrode Z, so that the address discharge efficiently occurs between the scan electrode Y and the address electrode X.
During a sustain period SP following the address period AP, a sustain signal SUS may be supplied to at least one of the scan electrode Y or the sustain electrode Z. For example, the sustain signal SUS may be alternately supplied to the scan electrode Y and the sustain electrode Z. Further, the address electrode X may be electrically floated during the sustain period SP. As the wall voltage inside the discharge cell selected by performing the address discharge is added to a sustain voltage Vs of the sustain signal SUS, every time the sustain signal SUS is supplied, a sustain discharge, i.e., a display discharge may occur between the scan electrode Y and the sustain electrode Z.
As shown in
The plasma display panel, as described in
The driving board 410 may be positioned in the rear of the rear substrate 211 to supply driving signals to the electrodes 202 and 203 of the plasma display panel.
The flexible circuit board 420 may connect the driving board 410 to the electrodes 202 and 203. The flexible circuit board 420 has the flexibility capable of bending and may include a predetermined circuit pattern. Examples of the flexible circuit board 420 include a tape carrier package (TCP) and a flexible printed circuit (FPC).
One terminal of the flexible circuit board 420 may be connected to a connector 411 of the driving board 410, and the other terminal may be electrically connected to side surfaces of the electrodes 202 and 203. The flexible circuit board 420 may include a base 422 formed of resin or plastic and an electrode 421 on the base 422.
An adhesive layer 430 including a plurality of conductive particles 431 may be positioned between the flexible circuit board 420 and the side surfaces of the electrodes 202 and 203 to electrically connect the electrode 421 of the flexible circuit board 420 to the electrodes 202 and 203 of the plasma display panel using the conductive particles 431.
Lengths of the electrodes 202 and 203 may be reduced by electrically connecting the flexible circuit board 420 to the electrodes 202 and 203, and thus the size of a portion W1 of the plasma display panel on which an image is not displayed may be reduced. In other words, the size of a bezel of the plasma display panel on which an image is not displayed may be reduced.
Although the embodiment describes an example of using sheet type adhesive means, i.e., the adhesive layer 430, an adhesive including a plurality of conductive particles other than the sheet type adhesive means may be used in the embodiment. In the embodiment, the adhesive layer 430 has the properties of both the adhesive and the sheet type adhesive means.
Further, in
A method of manufacturing the plasma display device is described with reference to
As shown in (a) of
Subsequently, an exhaust tip (not shown) may be connected to the exhaust hole 200, and an exhaust pump (not shown) may be connected to the exhaust tip. The exhaust pump may exhaust an impurity gas remaining in a discharge space between the front substrate 201 and the rear substrate 211 to the outside and may inject a discharge gas, such as argon (Ar), neon (Ne), and xenon (Xe), into the discharge space. The discharge space between the front substrate 201 and the rear substrate 211 may be sealed through the above-described method.
Subsequently, as shown in (a) of
As a result, as shown in (b) of
In the cutting process for cutting the portion of each of the front substrate 201 and the rear substrate 211 shown in (a) of
Subsequently, as shown in (b) of
As shown in
On the other hand, in the plasma display device according to the embodiment of the invention shown in
As shown in (a) of
When the flexible circuit board 420 is attached to the side surface SS of the rear substrate 211, a space occupied by the flexible circuit board 420 may be reduced. Hence, the size of a plasma display device may be further reduced, and the flexible circuit board 420 may be fastened to a plasma display panel. The adhesive layer 430 may be attached to the surface of a seal layer 400 so as to further fasten the flexible circuit board 420 to the plasma display panel. In this case, the flexible circuit board 420 may be attached to an overlapping portion between the flexible circuit board 420 and the seal layer 400 and an overlapping portion between the flexible circuit board 420 and the side surface SS of the rear substrate 211 by the adhesive layer 430.
For example, as shown in (b) of
On the other hand, if the flexible circuit board 420 is attached to the side surface SS of the rear substrate 211 as shown in (a) of
Further, when the adhesive layer 430 is attached to the side surface SS of the rear substrate 211, a damage of the rear substrate 211 may be prevented.
For example, as shown in (a) of
On the other hand, as shown in (b) of
Alternatively, as shown in
A size of an overlapping portion L1 between the side surface SS of the front substrate 201 and the flexible circuit board 420 may be less than a size of an overlapping portion L2 between the side surface SS of the rear substrate 211 and the flexible circuit board 420. If the size of the portion L1 is equal to or greater than the size of the portion L2, the length of the flexible circuit board 420 may unnecessarily increase.
The flexible circuit board 420 may be electrically connected to the electrodes 202 and 203 to transfer driving signals supplied by a driving board 410 to the electrodes 202 and 203. Thus, the overlapping portion L1 between the side surface SS of the front substrate 201 and the flexible circuit board 420 may be a portion not contributing to the transfer of the driving signals.
Alternatively, as shown in
In
Alternatively, as shown in
Further, another component (for example, a structure (not shown) for grounding an EMI layer of a film filter positioned on the front surface FS of the front substrate 201) may be fastened to the plasma display panel using the adhesive layer 430.
In
If a width W10 of the first portion 1200 is excessively large, a portion on which an image is displayed may be covered by the adhesive layer 430. Thus, the width W10 of the first portion 1200 may be smaller than widths of the other portions. In other words, a width W20 of the second portion 1210 may be greater than the width W10 of the first portion 1200, and a width W30 of the third portion 1220 and a width W40 of the fourth portion 1230 may be greater than the width W10 of the first portion 1200.
Alternatively, as shown in
The adhesive layer 430 of single sheet form is used in the embodiment, but the adhesive layer 430 that is divided into several portions may be used.
For example, as shown in
The first adhesive layer 431 may include conductive particles and may electrically connect the electrodes 202 and 203 to the flexible circuit board 420. Because the second adhesive layer 432 does not electrically connect the electrodes 202 and 203 to the flexible circuit board 420, the second adhesive layer 432 may not include conductive particles. When the second adhesive layer 432 does not include the conductive particles, the manufacturing cost of the plasma display device may be reduced while improving the adhesive strength between the flexible circuit board 420 and the plasma display panel.
Alternatively, as shown in
As shown in
The first portion 1700 is positioned in a first area S1. Although it is not shown, the first area S1 may be positioned in the seal layer. The second portion 1710 may be positioned in a second area S2, and the second area S2 may be an area on which the image is displayed (i.e., a formation area of the discharge cells). In other words, the width T1 of a portion overlapping the seal layer of each of the electrodes 202 and 203 may be greater than the width T2 in the formation area of the discharge cells.
As above, when the width T1 of the first portion 1700 is greater than the width T2 of the second portion 1710 in each of the electrodes 202 and 203, as shown in
As shown in
After a portion of each of a front substrate 201 and a rear substrate 211 is cut along a predetermined cutting line CL1 as shown in (a) of
As above, in the plasma display device according to the embodiment, a possibility of a bad electrical connection between the electrodes 202 and 203 and the flexible circuit board 420 may decrease by forming the auxiliary electrode 1900 electrically connected to the electrodes 202 and 203 at the side of a plasma display panel and attaching the flexible circuit board 420 to the auxiliary electrode 1900.
Further, the auxiliary electrode 1900 may include a portion on a side surface of the rear substrate 211 while including the portion on the side surface of the seal layer 400.
Alternatively, as shown in
Alternatively, as shown in
Alternatively, as shown in
More specifically, the first auxiliary electrode 1910 may include a first portion having a width T10 and a second portion having a width T20 smaller than the width T10, and the second auxiliary electrode 1920 may include a first portion having a width T30 and a second portion having a width T40 smaller than the width T30.
The first portion of the first auxiliary electrode 1910 and the first portion of the second auxiliary electrode 1920 may be positioned to cross each other. Hence, a contact area between the first and second auxiliary electrodes 1910 and 1920 and the flexible circuit board 420 may increase while electrical short-circuit between the adjacent first and second auxiliary electrodes 1910 and 1920 is prevented. As a result, an electrical resistance may be reduced.
As shown in (a) of
Among the plurality of plasma display panels 100, 110, 120, and 130, a 1-1 driver 101 and a 1-2 driver 102 may supply driving signals to the first plasma display panel 100. The 1-1 driver 101 and the 1-2 driver 102 may be integrated into one driver. Further, a 2-1 driver 111 and a 2-2 driver 112 supply driving signals to the second plasma display panel 110. In other words, the plasma display panels 100, 110, 120, and 130 may be structured so that a different driver supplies a driving signal to each of the plasma display panels 100, 110, 120, and 130.
Seam portions 140 and 150 are formed between two adjacent plasma display panels of the plurality of plasma display panels 100, 110, 120, and 130. The seam portions 140 and 150 may be called regions between the two adjacent plasma display panels.
In the multi plasma display device 10, because an image is displayed on the plurality of plasma display panels 100, 110, 120, and 130 positioned adjacent to one another, the seam portions 140 and 150 may be formed between two adjacent plasma display panels.
As shown in (b) of
The first flexible circuit board 420A may be electrically connected to side surfaces of electrodes 202A and 203A of the first plasma display panel 100, and the second flexible circuit board 420B may be electrically connected to side surfaces of electrodes 202B and 203B of the second plasma display panel 110. Further, the first flexible circuit board 420A may electrically connect a driving board 410A positioned in the rear of the first plasma display panel 100 to the electrodes 202A and 203A, and the second flexible circuit board 420B may electrically connect a driving board 410B positioned in the rear of the second plasma display panel 110 to the electrodes 202B and 203B.
A first adhesive layer 430A including conductive particles may be positioned between the first flexible circuit board 420A and the side surfaces of the electrodes 202A and 203A, and a second adhesive layer 430B including conductive particles may be positioned between the second flexible circuit board 420B and the side surfaces of the electrodes 202B and 203B. The first adhesive layer 430A may commonly contact a front substrate 201A, the rear substrate 211A, and a seal layer 400A of the first plasma display panel 100, and the second adhesive layer 430B may commonly contact a front substrate 201B, the rear substrate 211B, and a seal layer 400B of the second plasma display panel 110.
In the multi plasma display device according to the embodiment of the invention, because the size of a portion on which an image is not displayed is reduced by attaching the flexible circuit board to the side surface of the rear substrate of each of the plurality of plasma display panels and electrically connecting the flexible circuit board to the side surfaces of the electrodes, the size of the first and second seam portions may be reduced. Hence, the image may be smoothly displayed on the adjacent plasma display panels. Thus, the quality of the image displayed by the multi plasma display device may be improved.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0111963 | Nov 2009 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20080018626 | Yang et al. | Jan 2008 | A1 |
20080101002 | Kim et al. | May 2008 | A1 |
20080106494 | Chung | May 2008 | A1 |
Number | Date | Country |
---|---|---|
1 919 265 | May 2008 | EP |
11-288750 | Oct 1999 | JP |
2004-086134 | Mar 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20110115364 A1 | May 2011 | US |