1. Field of the Invention
The present invention relates to a plasma display device using a plasma display panel.
2. Description of the Related Background Art
Currently, as a thin display device, an AC type (alternating discharge type) plasma display panel becomes commercially available. In the plasma display panel, two substrates, that is, a front glass substrate and a rear glass substrate are disposed with a predetermined space as faced to each other. On the inner surface (the surface facing the rear glass substrate) of the front glass substrate as a display surface, multiple row electrode pairs are formed as sustain electrode pairs, which are paired with each other and extended in parallel. On the rear glass substrate, multiple column electrodes are extended and formed as address electrodes as intersecting with the row electrode pairs, and are coated with a fluorescent material. When seen from the display surface side, a display cell corresponding to a pixel is formed at the intersection part of the row electrode pair with the column electrode. To the plasma display panel, gray scale addressing using a subfield method is implemented in order to obtain halftone display brightness as corresponding to input video signals.
In gray scale addressing based on the subfield method, a plurality of subfields are provided. In each of the subfields to which the number of times (or periods) to do light emission is assigned, display addressing is implemented to one field of video signals. Further, in each of the subfields, an address stage and a sustain stage are in turn implemented. In the address stage, in accordance with input video signals, selective discharge is selectively generated between the row electrode and the column electrode in each of the display cells to form a predetermined amount of wall electric charge (or remove it). In the sustain stage, only a display cell where a predetermined amount of wall electric charge is formed is repeatedly discharged, and a light emission state in association with that discharge is maintained. Furthermore, at least at the starting subfield, prior to the address stage, an initializing stage is implemented. In the initializing stage, in all the display cells, reset discharge is generated between the paired row electrodes to implement the initializing stage which initializes the amount of wall electric charge remaining in all the display cells.
In the sustain stage, in the case where many display cells are set in the lighting state and a sustain pulse is applied to generate discharge in many cells almost at the same time, a large amount of current is carried momentarily, and distortion occurs in the voltage waveform of the sustain pulse. Consequently, in accordance with a slight shift in a time point to start discharge, the voltage value being applied in discharge is varied in each of the display cells, variation occurs in discharge intensity, and thus display quality might be deteriorated.
It is an object of the present invention is to provide a plasma display device which can prevent variation in discharge intensity in each display cell to improve display quality.
A plasma display device according to the invention is a device for displaying an image on a plasma display panel in accordance with an input video signal, the plasma display panel having a plurality of row electrode pairs, a plurality of column electrodes intersecting with the plurality of row electrode pairs and forming display cells at the intersections, respectively, and a display period for one field of the input video signal is configured of a plurality of subfields each formed of an address period and a sustain period for the image display, the plasma display device comprising: an address portion which selectively generates address discharge in each of the display cells in accordance with pixel data based on the video signal in the address period; a sustain portion which applies a sustain pulse between row electrodes forming each of the row electrode pairs in the sustain period; and a reset portion which applies a reset pulse between the row electrodes forming the row electrode pair before the address period for at least one subfield in one field of a display period in order to generate reset discharge in all of the display cells, wherein the sustain portion includes: a first transition portion which makes resonance transition of a potential of a row electrode of each of the row electrode pairs from a first potential to a second potential; a clamp portion which clamps the potential of the row electrode to the second potential; and a second transition portion which makes resonance transition of the potential of the row electrode from the second potential to the first potential, and wherein a first step of making transition from the first potential to the second potential, a second step of clamping to the second potential, and a third step of making transition from the second potential to the first potential are sequentially implemented in order to generate the sustain pulse, and in the sustain period for each of the subfields, a time point to clamp to the second potential at least one sustain pulse belonging to a first group including a sustain pulse to be first applied is delayed comparing to a time point to clamp to the second potential a sustain pulse belonging to other groups.
Hereinafter, an embodiment according to the present invention will be described in detail with reference to the drawings.
As shown in
In the PDP 50, column electrodes D1 to Dm are extended and arranged in the longitudinal direction (vertical direction) of a two-dimensional display screen, and row electrodes X1 to Xn and row electrodes Y1 to Yn are extended and arranged in the lateral direction (the horizontal direction) thereof. The row electrodes X1 to Xn and row electrodes Y1 to Yn forms row electrodes pairs (Y1, X1), (Y2, X2), (Y3, X3), Ψ, (Yn, Xn) which are paired with those adjacent to each other serve as the first display line to the nth display line in the PDP 50. In each intersection part of the display lines with the column electrodes D1 to Dm (areas surrounded by dashed lies in
Each of the column electrodes D1 to Dm of the PDP 50 is connected to the column electrode drive circuit 55, each of the row electrodes X1 to Xn is connected to the X-row electrode drive circuit 51, and each of the row electrodes Y1 to Yn is connected to the Y-row electrode drive circuit 53.
As shown in
On the other hand, on a rear substrate 14 disposed in parallel with the front transparent substrate 10, each of the column electrodes D is formed as extended in the direction orthogonal to the row electrode pair (X, Y) at the position facing the transparent electrodes Xa and Ya in each row electrode pair (X, Y). On the rear substrate 14, a white column electrode protective layer 15 which covers the column electrode D is further formed. On the column electrode protective layer 15, partition 16 is formed. The partition 16 is formed in a ladder shape of a lateral wall 16A extended in the lateral direction of the two-dimensional display screen at the position corresponding to the bus electrodes Xb and Yb of each row electrode pair (X, Y), and of a vertical wall 16B extended in the longitudinal direction of the two-dimensional display screen at the middle between the column electrodes D adjacent to each other. In addition, the partition 16 in a ladder shape as shown in
Here, magnesium oxide crystals forming the magnesium oxide layer 13 contain monocrystals obtained by vapor phase oxidation of magnesium steam that is generated by heating magnesium, such as vapor phase magnesium oxide crystals that are excited by irradiating electron beams to do CL light emission having a peak within a wavelength range of 200 to 300 nm (particularly, near 235 nm within 230 to 250 nm). The vapor phase magnesium oxide crystals contain a magnesium monocrystal having a particle diameter of 2000 angstrom or greater with a polycrystal structure in which cubic crystals are fit into each other in a SEM photo image as shown in
The drive control circuit 56 supplies various control signals that drive the PDP 50 having the structure in accordance with the light emission addressing sequence adopting a subfield method (subframe method) as shown in
In the light emission addressing sequence shown in
In the reset stage R implemented prior to the address stage W only in the starting subfield SF1, the X-row electrode drive circuit 51 simultaneously applies a negative reset pulse RPX to the row electrodes X1 to Xn as shown in
In a panel on which the vapor phase magnesium oxide layer 13 is provided as a protective layer, since discharge probability is significantly high, weak reset discharge is stably generated. By combining a bump, particularly a T-shaped electrode in a broad tip end, reset discharge is localized near a discharge gap, and thus a possibility to generate sudden reset discharge such as discharge being generated in all the row electrodes is further suppressed. Therefore, discharge is hardly generated between the column electrode and the row electrode, and stable, weak reset discharge can be generated for a short time.
Furthermore, in the configuration that the vapor phase magnesium oxide layer 13 is provided, since the discharge probability is significantly improved, the application of a single reset pulse, that is, even a one-time reset discharge allows priming effect to be continued. Thus, the reset operation and the selective erasure operation can be further stabilized. Moreover, the number of times to do reset discharge is minimized to enhance contrast.
In addition, the effect of provision of the vapor phase magnesium oxide layer 13 will be described later.
Next, in the address stage W in each of the subfields SF1 to SF12, the Y-row electrode drive circuit 53 applies positive voltages to all the row electrodes Y1 to Yn, and sequentially applies a scanning pulse SP having a negative voltage to each of the row electrodes Y1 to Yn. While this is being done, the X-electrode drive circuit 51 changes the potentials of the electrodes X1 to Xn to 0 V. The column electrode drive circuit 55 converts each data bit in a pixel drive data bit group DB1 corresponding to the subfield SF1 to a pixel data pulse DP having a pulse voltage corresponding to its logic level. For example, the column electrode drive circuit 55 converts the pixel drive data bit of a logic level of 0 to the pixel data pulse DP of a positive high voltage, while converts the pixel drive data bit of a logic level of 1 to the pixel data pulse DP of a low voltage (0 volt). Then, it applies the pixel data pulse DP to the column electrodes D1 to Dm for each display line in synchronization with the application timing of a scanning pulse SP. More specifically, the column electrode drive circuit 55 first applies the pixel data pulse group DP1 formed of m pulses of the pixel data pulses DP corresponding to the first display line to the column electrodes D1 to Dm, and then applies the pixel data pulse group DP2 formed of m pulses of the pixel data pulses DP corresponding to the second display line to the column electrodes D1 to Dm. Between the column electrode D and the row electrode Y in the display cell PC to which the scanning pulse SP of the negative voltage and the pixel data pulse DP of the high voltage have been simultaneously applied, selective erasure discharge is generated to eliminate wall electric charge formed in the display cell PC. On the other hand, in the display cell PC to which the scanning pulse SP has been applied as well as the pixel data pulse DP of the low voltage (0 Volt), the selective erasure discharge as above is not generated. Therefore, the state to form wall electric charge is maintained in the display cell PC. More specifically, wall electric charge remains as it is when it exists in the display cell PC, whereas the state not to form wall electric charge is maintained when wall electric charge does not exist.
In this manner, in the address stage W based on the selective erasure addressing method, selective erasure addressing discharge is selectively generated in each of the display cells PC in accordance with each data bit in the pixel drive data bit group corresponding to the subfield, and then wall electric charge is removed. Thus, the display cell PC in which wall electric charge remains is set in the lighting state, and the display cell PC in which wall electric charge is removed is set in the unlighted state.
Subsequently, in the sustain stage I in each of the subfields, the X-row electrode drive circuit 51 and the Y-row electrode drive circuit 53 alternately, repeatedly apply positive sustain pulses IPX and IPY to the row electrodes X1 to Xn and Y1 to Yn. The number of times to apply the sustain pulses IPX and IPY depends on weighting brightness in each of the subfields. At each time that the sustain pulses IPX and IPY are applied, only the display cells PC in the lighting state do sustain discharge, the cells in which a predetermined amount of wall electric charge is formed, and the fluorescent material layer 17 emits light in association with this discharge to form an image on the panel surface.
As described above, the vapor phase magnesium monocrystals contained in the magnesium oxide layer 13 formed in each of the display cells PC are excited by irradiating electron beams to do CL light emission having a peak within a wavelength range of 200 to 300 nm (particularly, near 235 nm within 230 to 250 nm) as shown in
In this manner, when the magnesium oxide layer 13 is formed which contains the vapor phase magnesium oxide monocrystals that do CL light emission having a peak at 200 to 300 nm (particularly near 235 nm within 230 to 250 nm) by irradiating electron beams as shown in
Therefore, even though voltage transition of the reset pulse to be applied to the row electrode is made smooth to weaken reset discharge as shown in
Furthermore, since the increased discharge probability (shortened discharge delay) allows a long, continuous priming effect by reset discharge in the reset stage R, address discharge generated in the address stage W and sustain discharge generated in the sustain stage I are high speed. Therefore, the pulse widths of the pixel data pulse DP and the scanning pulse SP to be applied to the column electrode D and the row electrode Y in order to generate address discharge as shown in
Accordingly, by the amount of the shortened processing time for each of the address stage W and the sustain stage I, the number of subfields to be provided in one field (or one frame) display period can be increased, and the number of gray scales can be intended to increase.
In the X-row drive circuit 51, two power sources B1 and B2 are provided. The power source B1 outputs a voltage Vs (for example, 170 V), and the power source B2 outputs a voltage Vr (for example, 190 V). A positive terminal of the power source B1 is connected to a connection line 21 for the electrode Xj through a switching element S3, and a negative terminal thereof is grounded. Between the connection line 21 and the ground, a switching element S4 is connected, as well as a series circuit formed of a switching element S1, a diode D1 and a coil L1, and a series circuit formed of a coil L2, a diode D2 and a switching element S2 are connected to the ground side commonly through a condenser C1. In addition, the diode D1 has an anode on the condenser C1 side, and the diode D2 is connected as the condenser C1 side is a cathode. Furthermore, a positive terminal of the power source B2 is connected to the connection line 21 through a switching element S8 and a resistor R1, and a negative terminal of the power source B2 is grounded.
In the Y-row electrode drive circuit 53, four power sources B3 to B6 are provided. The power source B3 outputs a voltage Vs (for example, 170 V), the power source B4 outputs a voltage Vr (for example, 190 V), the power source B5 outputs a voltage Voff (for example, 140 V), and the power source B6 outputs a voltage Vh (for example, 160 V, Vh>Voff). A positive terminal of the power source B3 is connected to a connection line 22 for a switching element S15 through a switching element S13, and a negative terminal thereof is grounded. Between the connection line 22 and the ground, a switching element S14 is connected as well as a series circuit formed of a switching element S11, a diode D3 and a coil L3, and a series circuit formed of a coil L4, a diode D4 and a switching element S12 are connected to the ground side commonly through a condenser C2. In addition, the diode D3 has an anode on the condenser C2 side, and the diode D4 is connected as the condenser C2 side is a cathode.
The connection line 22 is connected to a connection line 23 for the negative terminal of the power source B6 through the switching element S15. Positive terminals of the power sources B4 and B5 are grounded, and negative terminals thereof are connected to the connection line 23 through a switching element S16 and a resistor R2. The negative terminal of the power source B5 is connected to the connection line 23 through a switching element S17.
The positive terminal of the power source B6 is connected to a connection line 24 for the electrode Yj through a switching element S21, and the negative terminal of the power source B6 connected to the connection line 23 is connected to the connection line 24 through a switching element S22. The diode D5 is connected in parallel to the switching element S21, and the diode D6 is connected in parallel to the switching element S22. The diode D5 has an anode on the connection line 24 side, and the diode D6 is connected as the connection line 24 side is a cathode.
The drive control circuit 56 controls turning on and off the switching elements S1 to S4, S8, S11 to S17, S21 and S22.
In addition, in the X-row electrode drive circuit 51, the power source B3, the switching elements S11 to S15, the coils L3 and L4, the diodes D3 and D4, and the condenser C2 configure a sustain driver part, the power source B4, the resistor R2, and the switching element S16 configure a reset driver part, and the remaining power sources B5 and B6, the switching elements S13, S17, S21, S22, and the diodes D5 and D6 configure a scan driver part.
Next, the operations of the X-row electrode drive circuit 51 and the Y-row electrode drive circuit 53 in this configuration will be described with reference to a time chart shown in
First, in the reset stage, the switching element S8 of the X-row electrode drive circuit 51 is turned on, and the switching elements S16 and S22 of the Y-row electrode drive circuit 53 are both turned on. The other switching elements are off. Turning on the switching elements S16 and S22 carries current from the positive terminal of the power source B4 to the electrode Yj through the switching element S16, the resistor R2 and the switching element S22, and turning on the switching element S8 carries current from the electrode Xj through the resistor R1, and the switching element S8 to the negative terminal of the power source B2. The potential of the electrode Xj is gradually decreased by the time constant of the condenser CO and the resistor R1, and is the reset pulse PRX, whereas the potential of the electrode Yj is gradually increased by the time constant of the condenser CO and the resistor R2, and is the reset pulse PRY. The reset pulse PRX finally becomes a voltage −Vr, and the reset pulse PRY finally becomes a voltage Vr. The reset pulse PRX is applied to all the electrodes X1 to Xn at the same time, and the reset pulse PRY is generated for each of the electrodes Y1 to Yn and is applied to all the electrodes Y1 to Yn.
The simultaneous application of the reset pulses RPX and RPY, all the display cells of the PDP 1 are discharge excited to generate charged particles, and after terminating the discharge, a predetermined amount of wall electric charge is evenly formed on the dielectric layer of all the display cells.
After the levels of the reset pulses RPX and RPY are saturated, the switching elements S8 and S16 are turned off before the reset stage is ended. Furthermore, the switching elements S4, S14 and S15 are turned on at this time, and the electrodes Xj and Yj are both grounded. Thus, the reset pulses RPX and RPY go out.
Subsequently, when the address stage is started, the switching elements S14, S15 and S22 are turned off, the switching element S17 is turned on, and the switching element S21 is turned on at the same time. Thus, since the power source B6 is serially connected to the power source B5, the potential of the positive terminal of the power source B6 is Vh-Voff. The positive potential is applied to the electrode Yj through the switching element S21.
In the address stage, the column electrode drive circuit 55 converts pixel data for each pixel based on the video signal to the pixel data pulses DP1 to DPn having a voltage value corresponding to its logic level, and sequentially applies them to the column electrodes D1 to Dm for each one display line. As shown in
The Y-row electrode drive circuit 53 sequentially applies the scanning pulse SP of the negative voltage to the row electrodes Y1 to Yn in synchronization with the timing of each of the pixel data pulse groups DP1 to DPn.
In synchronization with the application of the pixel data pulse DPj from the column electrode drive circuit 55, the switching element S21 is turned off, and the switching element S22 is tuned on. Thus, the negative potential −Voff of the negative terminal of the power source B5 is applied to the electrode Yj as the scanning pulse SP through the switching element S17 and the switching element S22. Then, in synchronization with the stop of the application of the pixel data pulse DPj from the column electrode drive circuit 55, the switching element S21 is turned on, the switching element S22 is turned off, and the potential Vh-Voff of the positive terminal of the power source B6 is applied to the electrode Yj through the switching element S21. After that, as shown in
In the display cells belonging to the row electrode to which the scanning pulse SP has been applied, discharge is generated in the display cell to which the pixel data pulse of the positive voltage has been further applied at the same time, and most of its wall electric charge are lost. On the other hand, since discharge is not generated in the display cell to which the scanning pulse SP has been applied but the pixel data pulse of the positive voltage has not been applied, the wall electric charge still remains. The display cell in which the wall electric charge remains is the lighting state, and the display cell in which the wall electric charge has gone out is in the unlighted state.
In switching from the address stage to the sustain stage, the switching elements S17 and S21 are turned off, and the switching elements S14, S15 and S22 are instead turned on. The ON-state of the switching element S4 continues.
In the sustain stage, in the X-row electrode drive circuit 51, turning on the switching element S4 turns the potential of the electrode Xj to nearly 0 V of the ground potential (first potential). Subsequently, when the switching element S4 is turned off and the switching element S1 is turned on, current reaches the electrode Xj through the coil L1, the diode D1, and the switching element S1 by electric charge charged in the condenser C1 to flow into the condenser CO, and then the condenser CO is charged. At this time, the time constant of the coil L1 and the condenser CO gradually increases the potential of the electrode Xj as shown in
Then, the switching element S3 is turned on. Thus, the potential Vs (second potential) of the positive terminal of the power source B1 is applied to the electrode Xj, and the potential of the electrode Xj is clamped to Vs.
After that, the switching elements S1 and S3 are turned off, the switching element S2 is turned on, and current is carried from the electrode Xj into the condenser C1 through the coil L2, the diode D2, and the switching element S2 by electric charge charged in the condenser CO. At this time, the time constant of the coil L2 and the condenser C1 gradually decreases the potential of the electrode Xj as shown in
In the X-row electrode drive circuit 51, the period for the first step from when the switching element S1 is turned on to right before the switching element S3 is turned on. The ON-period of the switching element S3 is the period for the second step. The ON-period for the switching element S2 is the period for the third step.
By this operation, the X-row electrode drive circuit 51 applies the sustain pulse IPX of the positive voltage to the electrode Xj as shown in
In the Y-row electrode drive circuit 53, at the same time when turning on the switching element S4 where the sustain pulse IPX goes out, the switching element S11 is turned on, and the switching element S14 is turned off. The potential of the electrode Yj is the ground potential of nearly 0 V when the switching element S14 is on. However, when the switching element S14 is turned off and the switching element S11 is turned on, current reaches the electrode Yj through the coil L3, the diode D3, the switching element S11, the switching element S15, and the diode D6 by electric charge charged in the condenser C2 to flow into the condenser CO, and then the condenser CO is charged. At this time, the time constant of the coil L3 and the condenser CO gradually increases the potential of the electrode Yj as shown in
Subsequently, the switching element S13 is turned on. Thus, the potential Vs of the positive terminal of the power source B3 is applied to the electrode Yj through the switching element S13, the switching element S15, and the diode D6.
After that, the switching elements S11 and S13 are turned off, the switching element S12 is turned on, the switching element S22 is turned on, and current flows from the electrode Yj into the condenser C2 through the switching element S22, the switching element S15, the coil L4, the diode D4, and the switching element S12 by electric charge charged in the condenser CO. At this time, the time constant of the coil L4 and the condenser C2 gradually decreases the potential of the electrode Yj as shown in
Also in the Y-row electrode drive circuit 53, it is the period for the first step from when turning on the switching element S11 to right before turning on the switching element S13. The ON-period of the switching element S13 is the period for the second step. The ON-period of the switching element S12 is the period for third step.
By this operation, the Y-row electrode drive circuit 53 applies the sustain pulse IPY of the positive voltage to the electrode Yj as shown in
In this manner, in the sustain stage, since the sustain pulse IPX and the sustain pulse IPY are alternately generated and alternately applied to the electrodes X1 to Xn and the electrodes Y1 to Yn, the display cell in which the wall electric charge still remains repeats discharge light emission to maintain its lighting state.
In the sustain stage, the timing to clamp the potential of the sustain pulse IPX (IPY) to Vs is different between the first group including the beginning first sustain pulse of each of the subfields and the second group after that. In the X-row electrode drive circuit 51, when it is explained that suppose the switching element S1 is turned on and the switching element S4 is turned off at a time point t0 in both the first and second groups, in the first group, as shown in
If the second sustain pulse as well as the first sustain pulse belong to the first group, the second sustain pulse may be generated at a time point for clamping to the potential Vs as the first sustain pulse shown in
When the sustain pulse is clamped to Vs before the resonance potential reaches Vs, a discharge start voltage is increased, so that brightness can be increased. However, in the panel with improved discharge probability, discharge is generated simultaneously in many display cells, and a large current is momentarily carried to distort the voltage waveform. Consequently, when discharge is slightly delayed or accelerated, voltage values applied in discharge are varied, and discharge intensity for each cell is changed to cause brightness variations to impair display quality. Then, in the first sustain pulse where an amount of priming particles is small and discharge tends to be varied, the time point to be clamped to Vs is delayed, that is, the electrode potential is clamped to Vs after it reaches Vs, and thus ringing of the Voltage waveform can be suppressed, and instability of discharge can be suppressed.
In addition, for the PDP 50 in the embodiment, the structure is adopted in which the display cell PC is formed between the row electrodes X and the row electrodes Y that are paired with each other as (X1, Y1), (X2, Y2), (X3, Y3), Ψ, (Xn, Yn). However, the structure may be adopted in which the display cell PC is formed between all the row electrodes. More specifically, the structure may be adopted in which the display cell PC is formed between the row electrodes X1 and Y1, the row electrode Y1 and X2, the row electrode X2 and Y2, Ψ, the row electrode Yn−1 and Xn, the row electrode Xn and Yn.
Furthermore, for the PDP 50 in the embodiment, the structure is adopted in which the row electrodes X and Y are formed in the front transparent substrate 10 and the column electrode D and the fluorescent material layer 17 are formed in the rear substrate 14. However, the structure may be adopted in which the column electrodes D as well as the row electrodes X and Y are formed in the front transparent substrate 10 and the fluorescent material layer 17 is formed in the rear substrate 14.
As described above, according to the invention, in the sustain period, even though many display cells are set in the lighting state, variation in discharge intensity in each of the display cells can be prevented to improve display quality.
This application is based on Japanese Patent Application No. 2004-338724 which is hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2004-338724 | Nov 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6466186 | Shimizu et al. | Oct 2002 | B1 |
6486611 | Tokunaga et al. | Nov 2002 | B2 |
6833824 | Ide et al. | Dec 2004 | B2 |
20010026254 | Ide et al. | Oct 2001 | A1 |
20020054002 | Tokunaga et al. | May 2002 | A1 |
20040075388 | Miyashita et al. | Apr 2004 | A1 |
20040113870 | Roh et al. | Jun 2004 | A1 |
20050264487 | Tokunaga et al. | Dec 2005 | A1 |
20060267878 | Ikeda et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
1 152 387 | Nov 2001 | EP |
07-192630 | Jul 1995 | JP |
2004055771 | Jul 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060109210 A1 | May 2006 | US |