Plasma display, driving apparatus for a plasma display panel and driving method thereof

Abstract
A plasma display panel driving method for a display panel having a plurality of electrodes forming cells, including a first electrode group arranged on a permeable substrate and being capable of being driven in common, a second electrode group arranged in parallel with the first electrode group on the permeable substrate and being capable of being driven independently, a third electrode group arranged perpendicular to the first and second electrode groups on another substrate and being capable of being driven independently. The driving method supplying a voltage with a fast rising leading edge so as to immediately produce a maximum electric discharge one time per a sub-field in a cell in which an electric discharge was performed beforehand and supplying another voltage without causing any electric discharge under a first condition.
Description




BACKGROUND OF THE INVENTION




The invention relates to plasma display, driving apparatus for a plasma display panel and driving method thereof for use, for example, as a display apparatus for a personal computer or workstation, a flat type wall hanging television receiver, or for a display apparatus for advertising and information. This invention is preferably applicable to AC type plasma display devices.




In plasma display, one field is divided into several sub-fields, and each pixel (cell) emits light by exciting a phosphor using ultraviolet rays that are generated by a electric discharge carried out in the cell. The cell that emits light is selected by an address electric discharge between two set of electrodes which are provided perpendicular to each other on a front side glass substrate and a back side glass substrate, respectively, and are capable of being driven independently.




A first example of a plasma display device is disclosed, for example, in Japanese Patent Application Laid-Open No. 1994/186927. In this first example, the condition of electrically charged particles in all cells is equalized for surely prohibiting the lighting of some cells which are not intended to emit light, and two sets of light emitting discharges, that is, a full writing electric discharge and a full erasing electric discharge in each sub-field are carried out so as to be able to use a low voltage for an address electric discharge. Therefore, the contrast is deteriorated because light emitting occurs on the full panel when black is displayed.




A second example is disclosed, for example, in Japanese Patent Application Laid-Open No. 1995/49663. In the second example, a plurality of sub-fields having the same brightness gradations are arranged to form a sub-field block, and several blocks are provided. In sub-field blocks, a preliminary discharge, including a full writing electric discharge and a fine line erasing electric discharge, is performed in one sub-field, and a writing electric discharge and a erasing electric discharge for a pixel is carried out one time. Therefore, deterioration of the panel is reduced and the contrast of the display is improved. The second example discloses one solution to improve the contrast, but no means is disclosed to improve the contrast in an arrangement in which plural sub-fields having different brightness gradations are provided for forming one sub-field block.




About 3 μsec to 4 μsec is needed to write one line of plasma panel, and an ordinary television display has 480 lines. The writing period of a screen is 1.44 msec, if the writing period of one line is 3 sec, so that 1.44 msec×9≈=13 msec is needed for one field. However, the period of one field is 16.7 msec. The sustaining period is 16.7 msec minus a writing period and preliminary discharge period, and so this period is not long enough. Further, if a display has 760 lines per screen, like a high definition display, or if a display has 8 sub-fields for providing 256 gradations, the period for writing will not be sufficient.




SUMMARY OF THE INVENTION




It is an object of the present invention to improve contrast in a display.




It is another object of the present invention to improve contrast in a display by reducing a full erasing electric discharge and full writing electric discharge.




It is still another object of the invention to improve contrast in a display by reducing a preliminary discharge without changing the number of sub-fields.




According to a feature of the present invention, to achieve the above objects, a plasma display and a plasma display driving system include a first electrode group, which is arranged on a permeable substrate and in which the electrodes are capable of being driven in common, a second electrode group, which is arranged in parallel with the first electrode group on the permeable substrate and in which the electrodes are capable of being driven independently, a third electrode group, which is arranged perpendicular to the first and second electrode groups on the other substrate and in which the electrodes are capable of being driven independently, and a plasma panel, and wherein the driving system comprises means for performing at least one electric discharge for equalizing electrically charged particles in a cell in which another electrically charged particle is produced beforehand.




According to another feature of the present invention, to achieve the above objects, a plasma display, and a plasma display panel driving system and circuit include a first electrode group in which the electrodes are driven in common, a second electrode group in which the electrodes are driven independently, a third electrode group for producing an address electric discharge, means for erasing and polarizing electrically charged particles by a fine line erasing pulse after a sustaining period and for supplying an equalizing pulse to one electrode of the one of the first and second electrode groups to which the last fine line erasing pulse was supplied and for supplying a regulating pulse to an electrode of the other of the first and the second electrode groups after the equalizing pulse has been supplied, thereby controlling the electrically charged particles without fully erasing the electric discharge and fully writing an electric discharge, while improving the contrast without a light emitting discharge in the case of a black display.




According to still another feature of the present invention, to achieve the above objects, a plasma display and a plasma display panel driving system and circuit include means for forming a field block from a plurality of sub-fields and for performing a full writing electric discharge and a fine line erasing electric discharge in a first sub-field of the field block for decreasing the number of electric discharges, means for gathering positive electrically charged particles in the vicinity of an address electrode by the full writing electric discharge and fine line erasing electric discharge, thereby decreasing the voltage level of an address pulse, and means for reproducing the condition of electrically charged particles to the same condition as after performing full writing electric discharge and fine line erasing electric discharge are performed by utilizing a sustaining electric discharge in a cell in which the address electric discharge occurred, thereby reducing the voltage of a address electric discharge in the next field, without the full writing electric discharge and the fine line electric discharge. In a cell having no address electric discharge, the condition of electrically charged particles after the full writing electric discharge and fine line erasing electric discharge are performed is maintained during one field, so that it is sufficient to perform full writing electric discharge and fine line electric discharge only one time.











These and other objects, features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a exploded perspective view illustrating a plasma display panel of the present invention.





FIG. 2

is a sectional view of a plasma display panel as seen in the direction of arrow A in FIG.


1


.





FIG. 3

is a sectional view of a plasma display panel as seen in the direction of arrow B in FIG.


1


.





FIG. 4

is a diagram which illustrates electrodes and circuits connected to the electrodes of the plasma display panel of FIG.


1


.




FIG.


5


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the first embodiment of the present invention.




FIG.


5


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the first embodiment of the present invention.




FIG.


5


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the first embodiment of the present invention.




FIG.


5


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the first embodiment of the present invention.




FIG.


5


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the first embodiment of the present invention.





FIG. 6

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell is illustrated immediately after power is supplied and then equalizing pulse and a protecting pulse are supplied.





FIG. 7

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after performing an address electric discharge is illustrated.





FIG. 8

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying a fine line erasing pulse is illustrated.





FIG. 9

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying an equalizing pulse in a second field is illustrated.





FIG. 10

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying a regulating pulse in a second field is illustrated.




FIG.


11


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


11


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the second embodiment of the present invention.




FIG.


11


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the second embodiment of the present invention.




FIG.


11


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the second embodiment of the present invention.




FIG.


11


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the second embodiment of the present invention.




FIG.


12


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


12


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the third embodiment of the present invention.




FIG.


12


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the third embodiment of the present invention.




FIG.


12


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the third embodiment of the present invention.




FIG.


12


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the third embodiment of the present invention.




FIG.


13


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the invention.




FIG.


13


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the fourth embodiment of the present invention.




FIG.


13


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the fourth embodiment of the present invention.




FIG.


13


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the fourth embodiment of the present invention.




FIG.


13


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the fourth embodiment of the present invention.




FIG.


14


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the invention.




FIG.


14


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the fifth embodiment of the present invention.




FIG.


14


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the fifth embodiment of the present invention.




FIG.


14


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the fifth embodiment of the present invention.




FIG.


14


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the fifth embodiment of the present invention.




FIG.


15


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


15


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the sixth embodiment of the present invention.




FIG.


15


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the sixth embodiment of the present invention.




FIG.


15


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the sixth embodiment of the present invention.




FIG.


15


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the sixth embodiment of the present invention.




FIG.


16


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the invention.




FIG.


16


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the seventh embodiment of the present invention.




FIG.


16


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the seventh embodiment of the present invention.




FIG.


16


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the seventh embodiment of the present invention.




FIG.


16


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the seventh embodiment of the present invention.




FIG.


17


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


17


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the eighth embodiment of the present invention.




FIG.


17


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the eighth embodiment of the present invention.




FIG.


17


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the eight embodiment of the present invention.




FIG.


17


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the eight embodiment of the present invention.




FIG.


18


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


18


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the ninth embodiment of the present invention.




FIG.


18


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the ninth embodiment of the present invention.




FIG.


18


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the ninth embodiment of the present invention.




FIG.


18


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the ninth embodiment of the present invention.





FIG. 19

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell is illustrated immediately after power is supplied and then an equalizing pulse and a regulating pulse are supplied in accordance with the ninth embodiment.





FIG. 20

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after performing an address electric discharge is illustrated in accordance with ninth embodiment of the present invention.





FIG. 21

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying a fine line erasing pulse is illustrated in accordance with the ninth embodiment of the present invention.





FIG. 22

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying an equalizing pulse in a second field is illustrated in accordance with the ninth embodiment of the present invention.





FIG. 23

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying a regulating pulse in a second field is illustrated in accordance with the ninth embodiment of the present invention.




FIG.


24


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


24


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the tenth embodiment of the present invention.




FIG.


24


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the tenth embodiment of the present invention.




FIG.


24


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the tenth embodiment of the present invention.




FIG.


24


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the tenth embodiment of the present invention.




FIG.


25


(


a


) is a t time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


25


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the eleventh embodiment of the present invention.




FIG.


25


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the eleventh embodiment of the present invention.




FIG.


25


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the eleventh embodiment of the present invention.




FIG.


25


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the eleventh embodiment of the present invention.




FIG.


26


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


26


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the twelfth embodiment of the present invention.




FIG.


26


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the twelfth embodiment of the present invention.




FIG.


26


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the twelfth embodiment of the present invention.




FIG.


26


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the twelfth embodiment of the present invention.




FIG.


27


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention.




FIG.


27


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the thirteenth embodiment of the present invention.




FIG.


27


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the thirteenth embodiment of the present invention.




FIG.


27


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the thirteenth embodiment of the present invention.




FIG.


27


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the thirteenth embodiment of the present invention.




FIG.


28


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with a second embodiment of the present invention.




FIG.


28


(


b


) is a waveform diagram which illustrates a driving wave-form supplied to a common X electrode in accordance with the fourteenth embodiment of the present invention.




FIG.


28


(


c


) is a waveform diagram which illustrates a driving wave-form supplied to an address A electrode in accordance with the fourteenth embodiment of the present invention.




FIG.


28


(


d


) is a waveform diagram which illustrates a driving wave-form supplied to a first independent Y electrode in accordance with the fourteenth embodiment of the present invention.




FIG.


28


(


e


) is a waveform diagram which illustrates a driving wave-form supplied to a second independent Y electrode in accordance with the fourteenth embodiment of the present invention.




FIG.


28


(


f


) is a waveform diagram which illustrates a driving wave-form supplied to a third independent Y electrode in accordance with the fourteenth embodiment of the present invention.




FIG.


28


(


g


) is a waveform diagram which illustrates a driving wave-form supplied to a fourth independent Y electrode in accordance with the fourteenth embodiment of the present invention.





FIG. 29

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying sustaining pulses is illustrated in accordance with a embodiment shown in FIGS.


28


(


a


)-


28


(


g


) of the present invention.





FIG. 30

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell during discharging by a selection electric discharge pulse is illustrated in accordance with the embodiment shown in FIGS.


28


(


a


)-


28


(


g


) of the present invention.





FIG. 31

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell during the supplying of an electrically charged particle control pulse is illustrated in accordance with the embodiment shown in FIGS.


28


(


a


)-


28


(


g


) of the present invention.





FIG. 32

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying a fine line erasing pulse is illustrated in accordance with the embodiment shown in FIG.


28


(


a


)-FIG.


28


(


g


) of the present invention.





FIG. 33

is a time chart of sub-fields illustrating a driving method in accordance with the fifteenth embodiment of the present invention.





FIG. 34

is a time chart of sub-fields illustrating a driving method in accordance with the sixteenth embodiment of the present invention.





FIG. 35

is a time chart of sub-fields illustrating a driving method in accordance with the seventeenth embodiment of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The preferred embodiments of the present invention will be described with reference to the drawings hereinafter.





FIG. 1

illustrates an exploded perspective view of a plasma display panel relating to the first embodiment of the present invention.




A transparent common X electrode


22


and a transparent independent Y electrode


23


are provided under a front glass substrate


21


, and a X bus electrode


24


and a Y bus electrode


25


are laminated on the electrodes


21


and


22


, respectively. A dielectric layer


26


and a protecting layer


27


, such as acid magnesium (MgO), are provided on these electrodes


22


,


23


,


24


and


25


. An address A electrode


29


provided on a back glass substrate


28


is arranged perpendicular to the common X electrode


22


and the independent Y electrode


23


on the front glass substrate


21


. The address A electrode


29


is covered by a dielectric layer


30


, and a partition wall


31


arranged parallel to the address A electrode


29


is provided on the electrode


29


. A phosphor


32


is coated on the partition wall


31


and the address A electrode


29


.





FIG. 2

is a sectional view of a plasma display panel as seen in the direction of arrow A in FIG.


1


. The address A electrode


29


is centered with respect to the two partition walls. A discharge gas, such as a neon gas or a xenon gas, is filled in a space


33


that is provided between the front glass substrate


21


and the back glass substrate


38


.





FIG. 3

is a sectional view of a plasma display panel as seen in the direction of arrow B in

FIG. 1. A

border of each cell is shown by a dotted line, and the common X electrode


22


and the independent Y electrode


23


are arranged alternatively.




In an AC type plasma display panel, the electrically charged particles on the dielectric layer in the vicinity of the common X electrode


22


and the independent Y electrode


23


are divided into positive electrically charged particles and negative electrically charged particles for forming an electric field, so that a discharge is generated by means of an electric field.





FIG. 4

illustrates electrodes and circuits connected to the electrodes of the plasma display panel of FIG.


1


. The common X electrode


22


is connected to an output terminal or several terminals of a X electrode driving circuit


35


that generates a driving pulse for supplying a voltage to the common X electrode


22


. Each independent Y electrode


23


is connected to respective output terminals of a Y electrode driving circuit


36


. Each address A electrode


29


is connected to respective output terminals of an A electrode driving circuit


37


.




FIGS.


5


(


a


) to


5


(


e


) illustrate a first driving system in accordance with a first embodiment of the present invention. FIG.


5


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the invention, wherein reference numeral


1


denotes one field, the horizontal axis illustrates time and the vertical axis illustrates a line of the cell. The one field is divided into eight sub-fields, that is, a first sub-field


2


to an eighth sub-field


9


. An electrically charged particle equalizing period


2




a


-


9




a


, an address period


2




b


-


9




b


and a sustaining period


2




c


-


9




c


are arranged in order in each sub-field. Numbers of electric discharges are allotted for each sub-field, and display on gradations are determined by the total numbers of the discharges. The order for arranging the sub-fields having predetermined numbers of discharges is free, but in the embodiment, the sub-fields are arranged in order from a sub-field having a fewer number of electric discharges.




FIGS.


5


(


b


)-FIG.


5


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and the second independent Y electrodes, respectively. A pulse waveform


10


illustrates a part of the driving wave-form supplied to the common X electrode


22


in one field. A pulse wave-form


11


illustrates a part of the driving wave-form supplied to the one of the address A electrodes


29


.




Pulse wave-forms


12


and


13


illustrate parts of a driving wave-form supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


10


, which is supplied to the common X electrode


22


during a first sub-field includes a regulating pulse


40


lasting from a first part of the electrically charged particle equalizing period


2




a


through the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c


. In this embodiment, the voltage of the regulating pulse


40


is lower than the voltage of the sustaining pulses


41


. The pulse wave-form


11


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


, which address pulse


42


corresponds to the cell which is to emit light. The address pulse


42


is not supplied when there is no cell to be illuminated. That is, the address pulses


42


are supplied to the cells to be illuminated, and the address pulse


42


is not supplied to the other cells which are not to be illuminated. The pulse wave-forms


12


and


13


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes electrically charged particle equalizing pulses


43




a


,


43




b


, - - - in the electrically charged particle equalizing period


2




a


of the first sub-field, scan pulses


44




a


,


44




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and fine line erasing pulses


46




a


,


46




b


, - - - in the sustaining period


2




c


. In the embodiment, the voltage of the scan pulses


44




a


,


44




b


, - - - is lower than the voltage of the sustaining pulses


45




a


,


45




b


, - - - . The fine line erasing pulses


46




a


,


46




b


, - - - and the equalizing pulses


43




a


,


43




b


, - - - are supplied to the same electrodes. Further, it is preferable to select the pulse width of the fine line erasing pulses


46




a


,


46




b


, - - - between 0.5 μsec-2 μsec.




The actions in the panel will be explained hereinafter.




In this embodiment, electric discharges in all cells are performed between the independent Y electrodes


23


and the common X electrodes


22


by supplying the equalizing pulses


43




a


,


43




b


, - - - to the independent Y electrodes


23


, whereby negative electrically charged particles are formed on the dielectric layer


26


in the vicinity of the independent Y electrode


23


during the equalizing period


2




a


occurring immediately after the power is supplied to the display. The electric discharge generated by the equalizing pulses


43




a


,


43




b


, - - - occurs only one time, and the discharge is not generated after this. That is, the discharge occurs only one time other than when the space


33


of the cell becomes in an abnormal condition. The regulating pulse


40


is supplied to the common X electrode


22


within the time between 0.3 μsec-2 μsec from the rising edge of the equalizing pulses


43




a


,


43




b


, - - - . The negative electrically charged particles are formed in the vicinity of the common X electrode


22


, and the positive electrically charged particles are formed in the vicinity of the address A electrode


29


.




The reason the time between the rising edge of the equalizing pulses


43




a


,


43




b


, - - - and the rising edge of the regulating pulse


40


is determined as described the above is that too many negative electrically charged particles are gathered in the vicinity of the independent Y electrode


23


and the negative electrically charged particles gather at the common X electrode


22


when the time between edges of both pulses


43




a


,


43




b


, - - - and


40


is selected to be too long. When the time is too short, on the other hand, the negative electrically charged particles are not gathered on the independent Y electrode


23


and also the positive electrically charged particles are not gathered on the address A electrode


22


.




The main purpose for supplying the regulating pulse


40


is to attract the negative electrically charged particles toward the common X electrode


22


and to form positive electrically charged particles on the address A electrode


29


. Another purpose is to assist the electric discharges between the common X electrode


22


and the independent Y electrode


23


when the address electric discharge is performed between the address A electrode


29


and the independent Y electrode


23


.




An address electric discharge is performed in the cell which is formed at the cross point of the first line of the independent Y electrode


23


and one of the address A electrodes


22


when the scan pulse


44




a


is supplied to the first line of the independent Y electrode


23


and the address pulse


42


is supplied to one of the address A electrodes


29


at the same time, with the result that the positive electrically charged particles are gathered on the independent Y electrode


23


. On the other hand, no discharge occurs when the address pulse


42


, which corresponds to the scan pulse


44




b


, is not supplied to the second line of the independent Y electrode


23


; therefore, no electrically charged particle is gathered on the independent Y electrode


23


. The address pulses


42


are supplied to the address A electrodes


29


which correspond to the cell to be illuminated, and select all the cells at the cross points of all address A electrodes


29


, and the scan pulses


44




a


or


44




b


are supplied to the independent Y electrodes


23


, so that the electric discharges are performed between the address A electrode


29


and the independent Y electrodes


23


.




Next, in the sustaining period


2




c


, the electric discharges for emitting light are performed by the sustaining pulses


41


,


45




a


,


45




b


, - - - between the common X electrode


22


and the independent Y electrodes


23


in the cell in which the positive electrically charged particles are gathered on the independent Y electrodes


23


side by the electric discharges performed during the address period


2




b


. After that, electric discharges occur between the independent Y electrodes


23


and the common X electrode


22


by supplying the fine line erasing pulses


46




a


,


46




b


, - - - to the independent Y electrodes


23


, whereby the electrically charged particles in the cells are erased, so that all electrically charged particles generated for emitting light in the cell are erased. The pulse width of the fine line erasing pulses


46




a


,


46




b


, - - - is a little longer than the electric discharge duration time, therefore, the negative electrically charged particles are gathered on the dielectric layer in the vicinity of the independent Y electrodes


23


. In the cells in which no electric discharge has occurred, the erasing discharges are not performed because no electrically charged particle is in the cell. Therefore, the negative electrically charged particles formed in the vicinity of the independent Y electrodes


23


are kept unchanged.




In this situation, no electric discharge occurs when supplying the equalizing pulses


43




a


,


43




b


, - - - to the independent Y electrodes


23


because the negative electrically charged particles in the cell negate the voltage of the equalizing pulses


43




a


,


43




b


, - - - and sufficient electric fields needed for the electric discharge are not formed. After that, no electric discharge is performed through all sub-fields even if the equalizing pulses are supplied. Therefore, the electric discharges are not performed, except for the first sub-field immediately after the power is turned on, therefore no light emitting occurs in the black display.




Further, for the linearity of display gradations determined by the numbers of sustaining pulses, one electric discharge will have less influence than two electric discharges. According to the present invention, the equalization of electrically charged particles is effected by one electric discharge in the cell in which the sustaining electric discharge is performed, therefore, the influence on the linearity for display gradations is very small.




The same driving method is performed during the second sub-field


3


to the eighth sub-field


9


, and so a screen of one field is formed.




FIG.


6


-

FIG. 10

are sectional views of the plasma display panel in which the condition of the electrically charged particles in the cell during a sustaining electric discharge are illustrated from the first sub-field after the power is supplied to the second sub-field until the equalizing pulses and the regulating pulse are supplied. In these figures, reference numeral


60


denotes a positive electrically charged particles, and reference numeral


61


denotes negative electrically charged particles. Further the condition of electrically charged particles is illustrated in a cell at a center position in FIG.


6


-FIG.


10


.





FIG. 6

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell is illustrated immediately after power is supplied and then an equalizing pulse and a regulating pulse are supplied. The figure illustrates the condition of electrically charged particles in the first sub-field after power is supplied at first and then the equalizing pulses


43




a


,


43




b


are supplied to the independent Y electrodes


23


and finally the regulating pulse


40


is supplied. The electric discharges in all cells occur between the common X electrode


22


and the independent Y electrodes


23


by supplying the equalizing pulses


43




a


,


43




b


, - - - to the independent Y electrodes


23


, whereby the negative electrically charged particles


61


are gathered on the dielectric layer in the vicinity of the independent Y electrodes


23




a


and the common X electrode


22


and the positive electrically charged particles


60


are gathered on the address A electrodes


29


side.





FIG. 7

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after performing an address electric discharge is illustrated. In

FIG. 7

, the condition of electric discharges is illustrated after the address pulse


42


is supplied to the address A electrode


29


and address electric discharges occur between the address A electrode


29


and the independent Y electrodes


23


. The positive electrically charged particles


60


are gathered on the dielectric layer in the vicinity of the independent Y electrode


23


because the voltage of the independent Y electrode


23


is lower than the voltages of the address A electrode


29


and the common X electrode


22


. The condition of the electrically charged particles is shown in FIG.


7


. The electric discharge occurs between the independent Y electrode


23


and the common X electrode


22


by the positive electrically charged particles


60


and the first pulse of the sustaining pulses


45




a


,


45




b


, - - - supplied to the independent Y electrode


23


. This is a sustain discharge. This time, the negative electrically charged particles


61


are gathered around the independent Y electrode


23


and the positive charges


60


are gathered around the common X electrode


22


by the electric discharge generated by the sustaining pulses


45




a


,


45




b


. As a result, sustaining electric discharges occur between the independent Y electrode


23


and the common X electrode


22


by the first pulse of sustaining pulses


41


. These electric discharges are repeated during the sustaining period


2




c.







FIG. 8

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying a fine erase pulse is illustrated. In

FIG. 8

, the condition of the electric discharge after the last sustaining pulses


41


is supplied to the common X electrode


22


and then the fine line erasing pulses


46




a


,


46




b


, - - - are supplied is illustrated.




The condition of the electrically charged particles after the discharges have occurred due to the final sustaining pulses


41


is the same as the condition shown in FIG.


7


.




The pulse width of the fine line erasing pulses


46




a


,


46




b


, - - - is longer than the discharge duration time, so that negative electrically charged particles


61


which move so quickly are gathered on the dielectric layer in the vicinity of the independent Y electrode


23


. As a result, separation of the electrically charged particles is performed. The positive electrically charged particles that move slowly in space float in the cell. The negative charges float in the discharge space for a while.





FIG. 9

is a sectional view of a plasma display panel in which a condition of the electrically charged particles in a cell after supplying an equalizing pulse in a second field is illustrated. In

FIG. 9

, a condition of the electric discharge after the equalizing pulses


43




a


,


43




b


, - - - in the second sub-field are supplied is illustrated. The voltage of the equalizing pulses


43




a


,


43




b


, - - - is canceled by the negative charges and does not reach the discharge voltage, so that no discharge is performed. The voltage of the independent Y electrode


23


is higher than the voltage of the other electrodes, so the negative charges are attracted toward the independent Y electrode


23


.





FIG. 10

is a sectional view of a plasma display panel in which a condition of the electrically charged particles in a cell after supplying a regulating pulse in a second field is illustrated.




Referring to the drawing, the condition of the electrically charged particles after the regulating pulse


40


is supplied to the common X electrode


22


is illustrated. The negative electrically charged particles are gathered on the dielectric layer in the vicinity of the common X electrode


22


and the positive charges are gathered at the address A electrode


29


. By this, the same driving as the first sub-field is performed without electric discharge by the equalizing pulses


43




a


,


43




b


, - - - . In this case, the voltage of the equalizing pulses


43




a


,


43




b


, - - - is reduced by the negative electrically charged particles at the independent Y electrode


23


, so that an electric discharge between the independent Y electrode


23


and the common X electrode


22


is not performed.




The driving of the panel is capable of being performed without using the full writing electric discharge and fine line erasing electric discharge for each sub-field. As a result, unnecessary light emitting is erased for displaying a black brightness, so that the contrast is improved.




A second embodiment of the present invention will be described hereinafter. FIGS.


11


(


a


) to


11


(


e


) illustrate a driving method in accordance with a second embodiment of the present invention. FIG.


11


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis shows time and the vertical axis shows lines of cells.




FIG.


11


(


b


)-FIG.


11


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


70


illustrates a part of the driving wave-form supplied to the common X electrode


22


in one field. A pulse wave-form


71


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


72


and


73


illustrate parts of a driving wave-form supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


70


, which is supplied to the common X electrode


22


during the first sub-field, includes a regulating pulse


40


lasting from a first part the electrically charged particle equalizing period


2




a


through the address period


2




b


and the sustaining pulses


41


and a fine line erasing pulse


74


in the sustaining period


2




c


. The pulse waveform


71


which is supplied to one of the address A electrodes


29


illustrates the address pulse


42


in the address period


2




b


which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse waveforms


71


and


72


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes an electrically charged particle equalizing pulse


43




a




43




b


, - - - in the equalizing period


2




a


of the first sub-field, scan pulses


44




a


,


44




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and first fine line erasing pulses


75




a


,


75




b


, - - - in the sustaining period


2




c.






Under these circumstances, the pulse width of the first fine line erasing pulses


75




a


,


75




b


, - - - is the same as or shorter than the pulse width of the second fine line erasing pulse


74


. The number of the fine line erasing pulses is an even number as shown in FIG.


11


(


c


), that is, the first and the second fine line erasing pulses


75




a


,


75




b


and


74


, the first fine line erasing pulses


75




a


,


75




b


, - - - which are the last erasing pulses, and the equalizing pulses


43




a


,


43




b


, - - - are supplied to the same electrodes, that is, the independent Y electrode


23


. The second fine line erasing pulse


74


is supplied to the other electrode, that is, the common X electrode


22


.




In the embodiment, the last sustaining pulse is supplied to the independent Y electrode


23


. A condition of electrically charged particles after supplying the first fine line erasing pulses


75




a


,


75




b


, - - - is almost the same as the condition shown in

FIG. 8

in accordance with the first embodiment. The condition of the electric discharges in the other sub-fields


3


-


9


are the same condition. Further, the erasing and polarizing of the electrically charged particles are performed by these fine line erasing pulses, so that these erasing pulses may be designated as a polarization pulse group. In this embodiment, by using the first and the second fine line erasing pulses


75




a


,


75




b


and


74


, the erasing and polarization are effectively performed, and the electric discharging time during the address discharging time is maintained constant.




A third embodiment of the present invention will be described hereinafter. FIGS.


12


(


a


) to


12


(


e


) illustrate a driving method in accordance with the third embodiment of the present invention. FIG.


12


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells.




FIG.


12


(


b


)-FIG.


12


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and the second independent Y electrodes, respectively.




A pulse wave-form


80


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


81


illustrates a part of the driving wave-form supplied to the one of the address A electrodes


29


. Pulse wave-forms


82


and


83


illustrate parts of the driving wave-forms supplied, for example to first and second independent Y electrodes


23


.




The pulse wave-form


80


, which is supplied to the common X electrode


22


during the first sub-field, includes a regulating pulse


40


lasting from a first part of the electrically charged particle equalizing period


2




a


through the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c


and second fine line erasing pulse


84


. The pulse wave-form


81


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse wave-forms


82


and


83


which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


includes electrically charged particle equalizing pulses


43




a




43




b


, - - - in the equalizing period


2




a


of the first sub-field, scan pulses


44




a


,


44




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and third fine line erasing pulses


85




a


,


85




b


, - - - and first fine line erasing pulses


86




a


,


86




b


, - - - in the sustaining period


2




c .






Under these circumstances, the pulse width of the second fine line erasing pulses


84


is the same as or shorter than the pulse width of a third fine line erasing pulses


85




a


,


85




b


, - - - . The pulse width of the first fine line erasing pulses


86




a


,


86




b


, - - - is also the same as or shorter than the pulse width of the second fine line erasing pulse


84


.




If the numbers of the fine line erasing pulses are an odd number, as shown in FIG.


12


(


d


), that is, the first to the third fine line erasing pulses, the first fine line erasing pulses


86




a


,


86




b


, - - - which are the last supplied erasing pulses and the equalizing pulses


43




a


,


43




b


, - - - are supplied to the same electrodes, that is, the independent Y electrode


23


. The third fine line erasing pulse


85


, which is first supplied fine line erasing pulse, is supplied to the same electrode to which the first supplied fine line erasing pulses


86




a


and


86




b


are supplied, that is, the independent Y electrode


23


. Therefore, the last sustaining pulse is supplied to the common X electrode


22


. A condition of the electrically charged particles after supplying the first fine line erasing pulses


86




a


,


86




b


, - - - is almost the same condition as shown in

FIG. 8

in accordance with the first embodiment. The condition of the electric discharges in the other sub-fields


3


-


9


is the same condition. In this embodiment, by using the first, the second and the third fine line erasing pulses


86




a


,


86




b


,


84


,


85




a


and


85




b


, the erasing and polarization are more effectively performed, and the electric discharging time during address discharging time is maintained constant. According to an experiment performed by the present inventors, it was found that it is effective for erasing to use up to three fine line erasing pulses, but using more than four fine line erasing pulses is not so effective.




A fourth embodiment of the present invention will be described hereinafter. FIGS.


13


(


a


) to


13


(


e


) illustrate a driving method in accordance with a fourth embodiment of the present invention. FIG.


13


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells.




FIG.


13


(


b


)-FIG.


13


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


90


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


91


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


92


and


93


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


90


, which is supplied to the common X electrode


22


during the first sub-field, includes a regulating pulse


94


lasting from a first part of the electrically charged particle equalizing period


2




a


to the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c.






The voltage of the regulating pulse


94


and the voltage of the sustaining pulses


41


are the same, and thereby the driving circuit is simplified because the same power is used. The pulse wave-form


91


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be emitted. The pulse wave-forms


92


and


93


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes electrically charged particle equalizing pulses


43




a




43




b


, - - - in the electric charge particle equalizing period


2




a


of the first sub-field, scan pulses


44




a


,


44




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and fine line erasing pulses


46




a


,


46




b


, - - - in the sustaining period


2




c


. A condition of electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same condition. In this embodiment, the voltage of the regulating pulse


94


supplied to the common X electrode


22


and the voltage of the sustaining pulses are the same, therefore simplifying the driving circuit construction.




A fifth embodiment of the present invention will be described hereinafter. FIGS.


14


(


a


) to


14


(


e


) illustrate a driving method in accordance with the fifth embodiment of the present invention. FIG.


14


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells. FIG.


14


(


b


)-FIG.


14


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


100


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


101


illustrates a part of the driving wave-form supplied to the one of the address A electrodes


29


. Pulse wave-forms


102


and


103


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


100


, which is supplied to the common X electrode


22


during the first sub-field, includes a regulating pulse


94


lasting from a first part of the electrically charged particle equalizing period


2




a


through the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c


. The voltage of the regulating pulse


94


and the voltage of the sustaining pulses


41


are the same as the fourth embodiment shown in FIG.


13


(


d


), thereby the driving circuit is simplified because the same power is used. The pulse wave-form


101


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse wave-forms


102


and


103


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes electrically charged particle equalizing pulses


43




a




43




b


, - - - in the equalizing period


2




a


of the first sub-field, scan pulses


104




a


,


104




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and fine line erasing pulses


46




a


,


46




b


, - - - in the sustaining period


2




c


. The voltage of the independent Y electrode


23


during the address period


2




c


and the voltage of the sustaining pulses


45




a


,


45




b


, - - - are the same, thereby the driving circuit is simplified because the same power is used. A condition of the electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of the electrically charged particles in accordance with the first embodiment. The condition of the electrically charged particles in the other sub-fields


3


-


9


is the same condition.




A sixth embodiment of the present invention will be described hereinafter. FIGS.


15


(


a


) to


15


(


e


) illustrate a driving method in accordance with a sixth embodiment of the present invention. FIG.


15


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and vertical axis illustrates a line of cells. FIG.


15


(


b


)-FIG.


15


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and first and second independent Y electrodes, respectively.




A pulse wave-form


110


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


111


illustrates a part of the driving wave-form supplied to the one of the address A electrodes


29


. Pulse wave-forms


112


and


113


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


110


, which is supplied to the common X electrode


22


during the first sub-field, includes a first regulating pulse


114


in the electrically charged particle equalizing period


2




a


, a second regulating pulse


115


in the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c


. In this embodiment, the regulating pulse supplied to the common X electrode


22


is divided into a first regulating pulse


114


in the equalizing period


2




a


and a second regulation pulse


115


in the address period


2




b


. The pulse wave-form


111


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse wave-forms


112


and


113


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes electrically charged particle equalizing pulses


43




a




43




b


, - - - in the equalizing period


2




a


of the first sub-field, scan pulses


116




a


,


116




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and fine line erasing pulses


46




a


,


46




b


, - - - in the sustaining period


2




c


. A condition of electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same condition. As seen FIGS.


15


(


b


) and


15


(


d


), the rising edge of the first regulating pulse slightly later than that of the equalizing pulse


43




a


, thereby preventing electric discharging by mistake between the common X electrode


22


and the independent Y electrode. Further, a rising edge of the second regulating pulse


115


and a rising edge of the scan pulses


116




a


,


116




b


is effected at the same time, thereby preventing electric discharge by mistake between the common X electrode


22


and the independent Y electrode


23


.




The first regulating pulse


114


supplied to the common X electrode


22


and the sustaining pulses


41


may use the same voltage.




A seventh embodiment of the present invention will be described hereinafter. FIGS.


16


(


a


) to


16


(


e


) illustrate a driving method in accordance with a seventh embodiment of the present invention. FIG.


16


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells. FIG.


16


(


b


)-FIG.


16


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrode, respectively.




A pulse wave-form


130


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


131


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


132


and


133


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


130


, which is supplied to the common X electrode


22


during the first sub-field, includes a first regulating pulse


134


in the electrically charged particle equalizing period


2




a


, a second regulating pulse


135


in the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c


. The pulse wave-form


131


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


of the first sub-field which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse wave-forms


132


and


133


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes electrically charged particle equalizing pulses


136




a


,


136




b


, - - - in the equalizing period


2




a


of the first sub-field, scan pulses


137




a


,


137




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and fine line erasing pulses


46




a


,


46




b


, - - - in the sustaining period


2




c .






A falling edge of the equalizing pulse


136




a


,


136




b


, - - - becomes zero voltage within a time less than 1 μs in accordance with the present embodiment, which is different from the above mentioned embodiment. As the voltage of the second regulating pulse


135


and the scan pulses


137




a


,


137




b


, the same voltage as the sustaining pulses


41


,


45




a


,


45




b


, - - - is employed. A condition of the electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same condition.




In this embodiment, the edge of the first regulating pulse


134


rises after the edge of the equalizing pulse rises, as shown in FIG.


16


(


d


), thereby preventing electric discharge by mistake between the common X electrode


22


and the independent Y electrode.




An eighth embodiment of the present invention will be described hereinafter. FIGS.


17


(


a


) to


17


(


e


) illustrate a driving method in accordance with an eighth embodiment of the present invention. FIG.


17


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells. FIG.


17


(


b


)-FIG.


17


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


140


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


141


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


142


and


143


illustrate part of the driving wave-form supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


140


, which is supplied to the common X electrode


22


during the first sub-field, includes a first regulating pulse


144


in the electrically charged particle equalizing period


2




a


, a second regulating pulse


145


in the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c.






According to the present embodiment, the voltage of the first regulating pulse


144


is set higher than the voltage of the sustaining pulses


41


. The pulse wave-form


141


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


of the first sub-field which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse wave-forms


142


and


143


which are supplied to the first electrode of the independent electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes electrically charged particle equalizing pulses


136




a




136




b


, - - - in the equalizing period


2




a


of the first sub-field, scan pulses


137




a


,


137




b


, - - - in the address period


2




b


, sustaining pulses


45




a


,


45




b


, - - - and fine line erasing pulses


46




a


,


46




b


, - - - in the sustaining period


2




c .






The voltage of the second regulating pulse


135


and the scan pulses


137




a


,


137




b


, - - - can be set to the same voltage as the sustaining pulses


41


,


45




a


,


45




b


, - - - . A condition of the electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same.




According to the present embodiment, the voltage of the first regulating pulse


144


is higher than that of the sustaining pulses


41


. By using a higher voltage for the first regulating pulse


144


, a lot of negative electrically charged particles can be collected, and as a result, a lot of positive electrically charged particles are collected on the address electrode


29


side, thereby address discharging is performed very easily.




A ninth embodiment of the present invention will be described hereinafter. FIGS.


18


(


a


) to


18


(


e


) illustrate a driving method in accordance with a ninth embodiment of the present invention. FIG.


18


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells. FIG.


18


(


b


)-FIG.


18


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


150


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


151


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


152


and


153


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


150


, which is supplied to the common X electrode


22


during the first sub-field, includes an equalizing pulse


153


in the equalizing period


2




a


, a regulating pulse


154


in the address period


2




b


and the sustaining pulses


41


and a fine line erasing pulse


155


in the sustaining period


2




c.






According to the present embodiment, only one fine line erasing pulse


155


is provided. The equalizing pulse


153


is supplied to the electrode to which the fine line erasing pulse


155


is supplied, such as in the case of the fifth embodiment.




In case two or three fine line erasing pulses are provided, as shown in the second and the third embodiment (see FIGS.


11


(


b


),


11


(


d


) and FIGS.


12


(


b


),


12


(


d


), the equalizing pulses are supplied to the electrode to which the last fine line erasing


20


pulse is supplied.




The pulse wave-form


151


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


of the first sub-field which corresponds to the light emitting cell. The address pulse


42


is not supplied


25


when there is no cell to be illuminated. The pulse wave-forms


152


and


153


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, include first regulating pulses


156




a


,


156




b


, - - - in the electrically charged particle equalizing period


2




a


of the first sub-field, scan pulses


137




a


,


137




b


, - - - in the address period


2




b


, and sustaining pulses


45




a


,


45




b


, - - - in the sustaining period


2




c.






In this embodiment, the first regulating pulses


156




a


,


156




b


, - - - are supplied within 0.3 μsec to 2 μsec from the rising edge of the equalizing pulse


153


.




The voltage of the second regulating pulse


154


and the scan pulses


137




a


,


137




b


, - - - can be set to the same voltage as that of the sustaining pulses


41


,


45




a


,


45




b


, - - - as shown in the fifth embodiment (see FIG.


14


(


b


)). A condition of the electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of the electrically charged particles in accordance with the first embodiment. The condition of electric discharge in the other sub-fields


3


-


9


is the same.




According to the present embodiment, the first regulating pulses


156




a


,


156




b


, - - - are similar to the equalizing pulses


43




a


,


43




b


, - - - as shown in FIG.


15


(


d


) and FIG.


15


(


e


), but an equalizing pulse according to the present invention is a pulse that rises first during the electrically charged particle equalizing period. The reason for providing a 0.3 μsec to 2 μsec period between the rising edge of the equalizing pulse


153


and the rising edge of the first regulating pulses


156




a


,


156




b


, - - - has already been explained.





FIG. 19

to

FIG. 23

are sectional views of the plasma display panel in accordance with the ninth embodiment in which the condition of electrically charged particles in the cell for effecting an electric discharge for light emission are illustrated from the first sub-field after the power is supplied to the second sub-field until the equalizing pulses and the regulating pulses are supplied. In these drawings, reference numeral


60


denotes a positive electrically charged particle, and reference numeral


61


denotes a negative electrically charged particle. Further, the condition of the electrically charged particles is illustrated in a cell at a center position in FIG.


19


through FIG.


23


.





FIG. 19

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell is illustrated immediately after power is supplied and then an equalizing pulse and regulating pulses are supplied. The figure illustrate the condition of electrically charged particles in a first sub-field after power is supplied at first and then the equalizing pulse


153


is supplied to the common X electrode


22


and finally the first regulating pulses


156




a


,


156




b


, - - - are supplied. The electric discharge occurs between the common X electrode


22


and the independent Y electrodes


23


by supplying the equalizing pulse


153


to the independent Y electrodes


23


in all cells, so that the negative electrically charged particles


61


are gathered on the dielectric layer in the vicinity of the independent Y electrodes


23


and the common X electrode


22


, and the positive electrically charged particles


60


are gathered on the address A electrode


29


side.





FIG. 20

is a sectional view of a plasma display panel in accordance with the ninth embodiment in which a condition of the electrically charged particles in a cell after performing an address electric discharge is illustrated. In

FIG. 20

, the condition of the electric discharge is illustrated after the address pulse


42


is supplied to the address A electrode


29


and address electric discharges are performed between the address A electrode


29


and the independent Y electrodes


23


. The positive electrically charged particles


60


are gathered on the dielectric layer in the vicinity of the independent Y electrode


23


because the voltage of the independent Y electrode


23


is lower than the voltages of the address A electrode


29


and the common X electrode


22


. The negative electrically charged particles


61


are gathered on the other electrode side.




The condition of the electrically charged particles is shown in FIG.


20


. The sustaining electric discharge is produced between the independent Y electrode


23


and the common X electrode


22


by the positive electrically charged particles


60


and the first pulse of the sustaining pulses


45




a


,


45




b


, - - - supplied to the independent Y electrode


23


. This is a sustain discharge.





FIG. 21

is a sectional view of a plasma display panel in which a condition of electrically charged particles in a cell after supplying a fine line erasing pulse is illustrated. In

FIG. 21

, the condition of the electric discharge after the last sustaining pulses


45




a


,


45




b


, - - - are supplied to the independent Y electrode and then the fine line erasing pulses


155


are supplied to the common X electrode


22


is illustrated.




The pulse width of the fine line erasing pulse


155


is longer than the discharge duration time, so that negative electrically charged particles


61


, which move so quickly, are gathered on the dielectric layer in the vicinity of the common X electrode


22


. The positive electrically charged particles that move slowly in space float in the cell. The negative charges float in the discharge space for a while.





FIG. 22

is a sectional view of a plasma display panel in accordance with the ninth embodiment in which a condition of electrically charged particles in a cell after supplying an equalizing pulse in a second sub-field is illustrated.

FIG. 22

illustrates a condition of the electric discharge after the equalizing pulse


153


in the second sub-field is supplied. The voltage of the equalizing pulse


153


is canceled by the negative charged particles


61


and does not reach the discharge voltage, so that no electric discharge occurs.





FIG. 23

is a sectional view of a plasma display panel in which a condition of electric charges in a cell after supplying a regulating pulse in a second sub-field is illustrated. In the figure, the condition of electrically charged particles after the first regulating pulses


156




a


,


156




b


, - - - are supplied to the independent Y electrodes


23


is illustrated. The negative electrically charged particles


61


are gathered on the dielectric layer in the vicinity of the common X electrode


22


and the independent Y electrodes


23


, and the positive electrically charged particles


60


are gathered on the address A electrode


29


side. By this, the same driving as the first sub-field is performed without electric discharge by the equalizing pulses


153


.




A tenth embodiment of the present invention will be described hereinafter. FIGS.


24


(


a


) to


24


(


e


) illustrate a driving method in accordance with a tenth embodiment of the present invention. FIG.


24


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


18


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells. FIG.


24


(


b


)-FIG.


24


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


160


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


161


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


162


and


163


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


160


, which is supplied to the common X electrode


22


during the first sub-field, includes an equalizing pulse


164


in the equalizing period


2




a


, a regulating pulse


165


, which continues from the equalizing pulse


164


in the equalizing period


2




a


and continues through the address period


2




b


, and the sustaining pulses


41


and a fine line erasing pulse


155


in the sustaining period


2




c.






According to the present embodiment, only one fine line erasing pulse is provided. The equalizing pulse


164


is supplied to the electrode to which the fine line erasing pulse


155


is supplied as in the first embodiment. In case two or three fine line erasing pulses are provided, as in the second embodiment and the third embodiment (see FIGS.


11


(


b


),


11


(


d


) and FIGS.


12


(


b


),


12


(


d


)), the equalizing pulse is supplied to the electrode to which the last fine line erasing pulse is supplied. The pulse wave-form


161


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


of the first sub-field which corresponds to the light emitting cell. The address pulses


42


are not supplied when there is no cell to be illuminated. The pulse wave-forms


162


and


163


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, includes first regulating pulses


156




a


,


156




b


, - - - in the electrically charged particle equalizing period


2




a


of the first sub-field, scan pulses


137




a


,


137




b


, - - - in the address period


2




b


, and sustaining pulses


45




a


,


45




b


, - - - in the sustaining period


2




c


. In this embodiment, the first regulating pulses


156




a


,


156




b


, - - - are supplied within 0.3 μsec to 2 μsec from the rising edge of the equalizing pulse


164


. The voltage of the regulating pulse


165


and the scan pulses


137




a


,


137




b


, - - - can be set to the same voltage as the sustaining pulses


41


,


45




a


,


45




b


, - - - as shown in the ninth embodiment (see FIG.


18


(


b


)). The other sub-fields


3


-


9


are constructed the same as the first sub-field.




A condition of the electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same condition.




According to the present embodiment, the reason for setting the voltage of the equalizing pulse


164


at a higher voltage is to collect the negative electrically charged particles on the common X electrode side, and to collect lots of positive electrically charged particles on the address A electrode


29


side. Further, the reason for setting the voltage of the regulating pulse


165


in the address period


2




b


is to protect an electric discharge from taking place by mistake between the common X electrode


22


and the independent Y electrode


23


.




An eleventh embodiment of the present invention will be described hereinafter. FIGS.


25


(


a


) to


25


(


d


) illustrate a driving system in accordance with an eleventh embodiment of the present invention. FIG.


25


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates line of cells. FIG.


25


(


b


)-FIG.


25


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


170


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


171


illustrates a part of the driving wave-form supplied to the one of the address A electrodes


29


. Pulse wave-forms


172


and


173


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


170


, which is supplied to the common X electrode


22


during the first sub-field, includes a regulating pulse


40


in the period continuing from the first part of the equalizing period


2




a


through the address period


2




b


and the sustaining pulses


41


in the sustaining period


2




c


. The pulse wave-form


171


, which is supplied to one of the address A electrodes


29


, includes a voltage holding pulse


174


whose voltage is determined so that a discharge is not produced by the scan pulses


44




a


,


44




b


, - - - and the address pulse


42


in the first address period


2




b


which corresponds to the light emitting cell and between the address electrode


29


and the independent Y electrode


23


. The address pulse


42


is not supplied when there is no cell to be illuminated. According to the present embodiment, the voltage needed for the address electric discharging to occur is the sum of the voltage of the voltage holding pulse


174


and the voltage of the address pulse


175


, thereby making it possible to reduce the voltage of the address pulse


175


. The address pulse


175


is not supplied when there is no cell to be illuminated. The pulse wave-forms


172


and


173


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, include equalizing pulses


43




a


,


43




b


, - - - in the electrically charged particle equalizing period


2




a


of the first sub-field, scan pulses


44




a


,


44




b


, - - - in the address period


2




b


, and sustaining pulses


45




a


,


45




b


, - - - in the sustaining period


2




c


. The voltage of the regulating pulse


40


and the scan pulses


44




a


,


44




b


, - - - can be determined to be the same voltage as sustaining pulses


41


,


45




a


,


45




b


, - - - .




A condition of the electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same condition.




A twelfth embodiment of the present invention will be described hereinafter. FIGS.


26


(


a


) to


26


(


e


) illustrate a driving method in accordance with a twelfth embodiment of the present invention. FIG.


26


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


5


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells. FIG.


26


(


b


)-FIG.


26


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


180


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


181


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


182


and


183


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The pulse wave-form


180


, which is supplied to the common X electrode


22


during the first sub-field includes a regulating pulse


184


in the equalizing period


2




a


and sustaining pulses


41


in the sustaining period


2




c


. The pulse wave-form


181


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


of the first address period which corresponds to the light emitting cell. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse wave-forms


182


and


183


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, include equalizing pulses


43




a


,


43




b


, - - - in the electric charging equalizing period


2




a


of the first sub-field, sustaining pulses


185




a


,


185




b


, - - - in the address period


2




b


, and sustaining pulses


45




a


,


45




b


, - - - and fine line erasing pulses


46




a


,


46




b


, - - - in the sustaining period


2




c


. The voltage level of the regulating pulse


184


can be the same as the voltage of the sustaining pulses


41


.




A condition of the electrically charged particles after supplying the fine line erasing pulses


46




a


,


46




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same condition. According to the present embodiment, the voltage of the scan pulses


185




a


,


185




b


, - - - is a minus voltage and the voltage of the address pulses


42


is a plus voltage, therefore the voltage differences become so large that the electric discharge is performed surely.




A thirteenth embodiment of the present invention will be described hereinafter. FIGS.


27


(


a


) to


27


(


e


) illustrate a driving method in accordance with a thirteenth embodiment of the present invention. FIG.


27


(


a


) is a time chart illustrating an arrangement of sub-fields in one field in accordance with the present invention. The figure illustrates a division of one field into several sub-fields, similar to the case of FIG.


18


(


a


). The horizontal axis illustrates time and the vertical axis illustrates a line of cells. FIG.


27


(


b


)-FIG.


27


(


e


) illustrate wave-forms of pulses supplied to the common X electrode, the address A electrode, and the first and second independent Y electrodes, respectively.




A pulse wave-form


190


illustrates a part of the driving wave-form supplied to the common X electrode


22


in the first sub-field. A pulse wave-form


191


illustrates a part of the driving wave-form supplied to one of the address A electrodes


29


. Pulse wave-forms


192


and


193


illustrate parts of the driving wave-forms supplied, for example, to first and second independent Y electrodes


23


.




The wave-form


190


, which is supplied to the common X electrode


22


during the eighth sub-field, and the field blank period


9


d thereafter includes a regulating pulse


40


from the first part of the electric charge particle equalizing period


2




a


through the address period


2




b


, sustaining pulses


41


and a full writing pulse


194


in the sustaining period


2




c


. In this embodiment, the voltage of the full writing pulse


194


is high enough to produce a discharge regardless of whether a sustaining discharge occurs or not. As a result, the electrically charged particles in all cells are equalized. The field blank period


9




d


can be provided between the sub-fields. And also, the field blank period


9




d


can be provided several times in one field. The pulse waveform


191


, which is supplied to one of the address A electrodes


29


, includes the address pulse


42


in the address period


2




b


. The address pulse


42


is not supplied when there is no cell to be illuminated. The pulse wave-forms


192


and


193


, which are supplied to the first electrode of the independent Y electrodes


23


and adjacent second electrode of the independent Y electrodes


23


, include the equalizing pulses


43




a


,


43




b


, - - - in the electric charging equalizing period


2




a


, the scan pulses


44




a


,


44




b


, - - - in the address period


2




b


, the sustaining pulses


45




a


,


45




b


, - - - in the sustaining period


2




c


, and fine line erasing pulses


195




a


,


195




b


, - - - in the field blank period


9




d


. The voltage level of the regulating pulse


40


and the scan pulses


44




a


,


44




b


, - - - can be the same as the voltage of the sustaining pulses


41


. A condition of the electrically charged particles after supplying the fine line erasing pulses


195




a


,


195




b


, - - - is almost the same condition as shown in

FIG. 8

, which illustrates the condition of electrically charged particles in accordance with the first embodiment. The condition of the electric discharge in the other sub-fields


3


-


9


is the same condition.




According to the present embodiment, no electrically charged particle remain in the cells when a black portion continues across several sub-fields, and so the address electric discharges are not performed well in the coming address period. To prevent this situation, discharges are forced by the field full writing pulse


194


between the common X electrode


22


and the independent Y electrode


23


.




As explained above, the plasma display driving system in accordance with the first through the twelfth embodiments can drive the panel without using the full writing electric discharge and erasing discharge for all the cells for equalizing the electrically charged particles.




Still other embodiments of the present invention will be explained hereinafter.




FIGS.


28


(


a


) to


28


(


g


) illustrate a driving method for a plasma display panel in accordance with a fourteenth embodiment of the present invention. FIG.


28


(


a


) is a time chart illustrating an arrangement of sub-fields in the first sub-field. The horizontal axis illustrates time, and the vertical axis illustrates a line of cells. FIG.


28


(


b


)-FIG.


28


(


g


) are wave-forms illustrating pulse wave-forms supplied to a common X electrode, an address A electrode and four independent Y electrodes, respectively. In the figure, reference numeral


201


denotes a field, reference numerals


202


-


209


denote sub-fields, reference numerals


202




a


-


209




a


denote address periods, reference numerals


202




b


-


209




b


denote sustaining periods, reference numerals


210


-


213


denote field blocks, and reference numerals


210




a


-


213




a


denote full writing periods. A wave-form


220


is a driving wave-form supplied to the common X electrode. A wave-form


221


is a driving wave-form supplied to the address A electrode


29


. The wave-forms


222


-


225


are driving wave-forms supplied to first, second, third and fourth electrodes of the independent Y electrodes


23


, respectively.




In FIG.


28


(


a


), one field period


201


is divided into eight sub-fields


202


-


209


, and one field block is formed by two successive sub-fields, therefore one field period


201


is constructed of four field blocks.




In each field block, the full writing periods


210




a


,


211




a


,


212




a


and


213




a


, which are arranged as the first period of sub-fields, are provided in each first sub-field


202


,


204


,


206


and


208


of the field blocks


210


-


213


, and following the writing period


210




a


-


213




a


, the address periods


202




a


,


204




a


,


206




a


and


208




a


and sustaining periods


202




b


,


204




b


,


206




b


and


208




b


are provided, respectively. In the second sub-fields


203


,


205


,


207


and


209


, which follow the first sub-fields


202


-


208


, the address periods


203




a


,


205




a


,


207




a


and


209




a


are provided first, and then the sustaining periods


203




b


,


205




b


,


207


b and


209


b are provided, respectively.




The numbers of light emissions are allotted for each sustaining period


202




b


-


209




b


, and display graduations are effected by the combinations of the numbers of the light emissions. The numbers of light emissions and the order of the sub-fields are optional. In this embodiment, the numbers of light emissions of the sustaining periods


202




b


,


204




b


,


206




b


,


208




b


,


203




b


,


205




b


,


207




b


and


209




b


are arranged in this order from few numbers. The sustaining periods


202




b


,


204




b


,


206




b


and


208




b


just before the sub-fields


203


,


205


,


207


and


209


in which a full writing erase period is not provided have fewer numbers of light emissions.




FIG.


28


(


b


) illustrates the field block


210


, and the other field blocks are constructed similarly. The driving wave-form


220


supplied to the common X electrode


22


includes in the first sub-field


202


a full writing pulse


240


and a polarizing pulse


241


in the first full writing erasing period


210




a


, a high pulse


242


in the succeeding address period


202




a


and sustaining pulses


243


and an electrically charged particle control pulse


244


and a fine line erasing pulse


245


in the succeeding sustaining period


202




b


, and further includes in the succeeding sub-field a high pulse


246


and sustaining pulses


247


.




The voltage level of the electrically charged particle control pulse


244


and the fine line erasing pulse


245


is the same as or less than the voltage level of the sustaining pulses


243


. Next to the sustaining pulses


247


is the field block


211


. The voltage of the full writing pulse


240


is stepped up a level. The voltage is usually determined to be about 300 volts, and the reason for stepping up the level thereof is to allow the circuit to be constructed simply, therefore the stepping up the voltage of the full writing pulse


240


is not always necessary.




The driving wave-form


221


supplied to the address A electrode


29


shown in FIG.


28


(


c


) includes, in the first sub-field, a plurality of the address pulses


248




a


,


248




b


, - - - which relates to the cells to be illuminated in the address period


202




a


, and, in the succeeding sub-field


203


, a plurality of address pulses


249




a


,


249




b


, - - - in the address period


203




a.






FIG.


28


(


d


)-


28


(


g


) show wave-forms


222


,


223


,


224


and


225


supplied to four independent Y electrodes


23


whose electrodes


23


are arranged side by side, and these waveforms include, in the first sub-field


202


, scan pulses


250




a


,


250




b


,


250




c


,


250




d


, - - - in the address period


202




a


, sustaining pulses


251




a


,


251




b


,


251




c


,


251




d


, - - - , selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


- - - , fine line erasing pulses


253




a


,


253




b


,


253




c


,


253




d


, - - - in the sustaining period,


222




b


and, in the succeeding sub-field


203


, scan pulses


254




a


,


254




b


,


254




c


,


254




d


, - - - , in the address period


203




a


, and sustaining pulses


255




a


,


255




b


,


255




c


,


255




d


, - - - in the sustaining period


203




b.






The voltage level of the selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - is almost the same as the voltage level of the electrically charged particle control pulse


244


, which rises with a time lag from the rising edge of the selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - , the delay time t


1


being 0.1 μsec-1.5 μsec. The electrically charged particle control pulse


244


falls earlier than the selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - . The time t


2


is about 0.1 μsec-1.0 μsec. The reason for setting the time lag from the rising edge of the selection electric discharge pulses


252




a


-


252




d


to the rising edge of the electrically charged particle control pulse


244


as above mentioned is that, if the time longer than that is set, a lot of negative electrically charged particles gather on the independent Y electrode


23


side, and a few negative electrically charged particles gather on the common X electrode


22


side. Further, the reason for starting the selection electric discharge pulses


252




a


-


252




d


a little earlier than the electrically charged particle control pulse


244


is to produce an electric discharge by generating a selection electric discharge between the common X electrode


22


and independent Y electrode


23


. The reason for ending the electrically charged particle control pulse


244


is to defends the electric charge between the common X electrode


22


and the independent Y electrode


23


when the selection electric discharge pulses


252




a


-


252




d


fall.




The selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - , the fine line erasing pulses


253




a


,


253




b


,


253




c


,


253




d


, - - - and the electrically charged particle control pulse


244


are not provided in the succeeded sub-field


203


of the field block


210


of FIG.


28


(


a


).




The sustaining pulses of the sub-field


203


terminate with the sustaining pulses


255




a


,


255




b


,


255




c


,


255




d


, - - - supplied to the independent Y electrodes


23


. The same driving wave-forms are used in the other field blocks


211


-


213


, but the numbers of the sustaining pulses are different. The selection electric discharge pulses, the electrically charged particle control pulse and the fine line erasing pulses are provided in the first sub-field


204


,


206


,


208


of the field blocks


210


-


213


.




The operation of this embodiment will be explained with reference to FIG.


29


-FIG.


32


. The electric discharges occur in all the cells in response to the full writing pulse


240


supplied to the common X electrode


22


in the field block


210


of FIG.


28


(


a


)-FIG.


28


(


b


), and so the electrically charged particles are formed. Under these circumstances, the negative electrically charged particles


61


are gathered on the address A electrode


29


side. The electric discharge for polarization occurs in response to the polarization pulse


241


, and electrically charged particles on the common X electrode


22


side and the independent Y electrode


23


side are polarized.




The scan pulses


250




a


of the wave-form


222


are supplied to the first line of the independent Y electrode


23


, and at the same time, the address pulses


248




a


are supplied to a predetermined address A electrode


29


in the succeeded address period


202




a


, thereby generating a full writing electric discharge and forming electrically charged particles in the cell positioned at the cross point of the first line of the independent Y electrode


23


and the address A electrode


29


, so that positive electrically charged particles are gathered on the independent Y electrode


23


side in the cell.




In a similar way, when the scan pulses


250




c


of the driving wave-form


224


are supplied to the third independent Y electrode


23


and the address pulse


248




b


is supplied to a predetermined address A electrode


29


, thereby generating a full writing electric discharge and forming electrically charged particles in the cell positioned at the cross point of the third line of the independent Y electrode


23


and the address A electrode


29


, positive electrically charged particles


60


are gathered on the independent Y electrode


23


side in the cell.




The address pulses which correspond to the scan pulses


250




b


,


250




d


of the driving wave-form


223


,


225


supplied to the second and the fourth independent Y electrodes


23


are not supplied when the predetermined cells are not illuminated, therefore, writing electric discharges do not occur and electrically charged particles are not formed on the independent Y electrode


23


side.




The sustaining discharge or light emitting discharge in the sustaining period


202




b


occurs in response to the sustaining pulses


234


of the driving wave-form


220


and the sustaining pulses


251




a


,


251




b


,


251




c


,


251




d


, - - - , of the driving wave-forms


222


,


223


,


224


,


225


in the cell in which the positive electrically charged particles are gathered on the independent Y electrode


23


side.




The optional or selecting electric discharges occur in response to the selection electric discharge pulses


252




a


,


252




b


,


252




c


and


252




d


in the cell in which a sufficient number of electrically charged particles are formed by the electric discharge for light emission. The positive electrically charged particles


60


are gathered on the address A electrode


29


side by supplying electrically charged particle control pulse


244


to the common X electrode


22


before the electric discharges by the selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - , cease.




After that, the erasing electric discharge is caused by the fine line erasing pulse


245


of the waveform


220


supplied to the common X electrode


22


and the fine line erasing pulses


253




a


,


253




b


,


253




c


,


253




d


, - - - , of the wave-form


222


supplied to the independent Y electrode


23


, so that the electrically charged particles on the common X electrode


22


side and on the independent Y electrode


23


side are mainly erased. Thereby, the condition of the electrically charged particles in all cells in which electric discharges are produced is almost the same as the condition of the electrically charged particles after the full writing erasing period


210




a


is finished.




On the other hand, the writing electric discharges or the address electric discharges are not generated in the cells in which the electric discharges for light emission are not produced, and the condition of electrically charged particles is the same condition after the full writing erasing period


210




a


is finished.




As explained above, the electrically charged particles in all cells at a point of time after the final erasing pulses


245


,


253




a


,


253




b


,


253




c


,


253




d


, - - - , are supplied in the first sub-field


202


can be made to have the same condition after the full writing erasing period


210




a


is finished. By this, in the succeeding sub-field, address electric discharges in all of the cells can be produced without providing a full writing erasing period.




The same functions are repeated in the field blocks


211


-


213


, whereby a screen of one field is formed.




FIG.


29


-

FIG. 32

are sectional views of a plasma display panel illustrating a condition of the electrically charged particles in a cell in which a sustaining discharge is performed. The condition of the electrically charged particles in the drawings is illustrated in a center cell of three cells.





FIG. 29

is a sectional view of the plasma display panel in which a condition of the electrically charged particles in a cell after supplying sustaining pulses is illustrated in accordance with the embodiment shown in FIG.


28


(


a


)-


28


(


g


) of the present invention. The negative electrically charged particles


61


are gathered on the dielectric layer


26


of the common X electrode


22


side and the positive electrically charged particles


60


are gathered on the dielectric layer


26


of the independent Y electrode


23


side after a final pulse of the sustaining pulses


243


is supplied to the common X electrode


22


.





FIG. 30

is a sectional view of the plasma display panel in which a condition of the electrically charged particles in a cell during discharging by a selection electric discharge pulse is illustrated. Electric discharges are caused by the voltage of the selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - and the voltage of positive electrically charged particles gathered on the dielectric layer at the independent Y electrode


23


, and these discharges are produced


20


between the independent Y electrode


23


and the common X electrode


22


when selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - , are supplied to the independent Y electrode. Thereby, many positive and negative electrically charged-particles are generated in the discharging space.





FIG. 31

is a sectional view of the plasma display panel in which a condition of the electrically charged particles in a cell when electric charge particle control pulse is supplied is illustrated. The positive electrically charged particles are gathered on the address A electrode


29


when the electrically charged particle control pulse


244


is supplied to the common X electrode


22


, because the voltages of the common X electrode


22


and the independent Y electrode


23


are almost the same and these voltages are higher than the voltage of address A electrode


29


. Erasing of electrically charged particles by the erase pulse is still needed because there still remains electrically charged particles on the common X electrode


22


side, on the independent Y electrode


23


side and in the discharging space, which are not neutralized and not erased.





FIG. 32

is a sectional view of the plasma display panel in which a condition of the electrically charged particles in a cell after supplying a fine line erasing pulse is illustrated. The positive electrically charged particles


60


are gathered on the address A electrode


29


side and the negative electrically charged particles


61


are gathered on the common X electrode


22


side and the independent Y electrode


23


side. The condition of the electrically charged particles is the same after the full writing erase period


210




a


is finished.




A condition of the electrically charged particles after the full writing erasing period


210




a


is finished is maintained in the sustaining period


202




b


because address electric discharges are not generated in the cells in which no sustaining electric discharge is performed. Also, no electric discharge is performed by the selection electric discharge pulses


252




a


,


252




b


,


252




c


,


252




d


, - - - , and there is no change in the condition of the electrically charged particles even if the electrically charged particle control pulse


244


and erasing pulse are supplied. Therefore, the condition of the electrically charged particles in all cells is almost same as the condition after the full writing erasing period


210




a


and the address electric discharge or a writing electric discharge is produced in the next sub-field


203


, thereby increasing the contrast by double.




By increasing the voltage of the address pulses


248




a


and


248




b


in the sub-fields


203


,


205


,


207


,


209


in which the full writing erasing period is not carried out, compared with the voltage of the address pulses


248




a


and


248




b


in the other sub-fields


202


,


204


,


206


and


208


, the address electric discharges are caused surely even in a cell in which sustaining electric discharges are not performed, because the positive electrically charged particles


60


on the address A electrode


29


side are reduced gradually by neutralization.





FIG. 33

is a time chart of sub-fields illustrating a driving method in accordance with a fifteenth embodiment of the present invention. Referring to the drawing, the horizontal axis illustrates time, and the vertical axis illustrates lines of cells. Reference numeral


270


denotes one field period,


271


-


276


denote sub-fields,


271




a


-


276




a


denote address periods,


271




b


-


276




b


denote sustaining periods,


277


and


278


denote field blocks, and


277




a


and


278




a


denote full writing erasing periods.




One field period


270


is divided into six sub-fields


271


-


276


, and the consecutive first three sub-fields


271


-


273


form the field block


277


, while the succeeding consecutive three sub-fields


274


-


276


form the other field block


278


.




In the first period of the field blocks


277


and


278


, full writing erasing periods


277




a


and


278




a


are arranged, respectively. In each sub-field


271


-


276


, the address periods


271




a


-


276




a


and the sustaining periods


271




b


-


276




b


are provided, but the full writing erasing periods


277




a


and


278




a


are not provided. That is, the full writing erasing periods


277




a


and


278




a


are arranged at the first part of the first sub-fields


271


and


274


of the field blocks


277


and


278


, respectively. The numbers of light emissions are allotted for the sustaining periods


271




b


-


276




b


, and gradations of display are produced by combining the numbers of light emissions. According to this fifteenth embodiment, the numbers of the light emissions are increased in the order of the sub-fields


271


,


272


,


273


.




Referring to FIGS.


28


(


b


) to


28


(


g


), the selection electric discharge pulses


252




a


-


252




d


, the electrically charged particle control pulse


244


and fine line erasing pulses


245


,


253




a


-


253




b


, which are used in the fourteenth embodiment, are provided in the first two sub-fields


271


,


272


,


274


,


275


of the field blocks


277


and


278


, and these pulses are not provided in the other (last) sub-field. Further, these selection electric discharge pulses, the electrically charged particle control pulse and the fine line erasing pulses are arranged in the last part of the sustaining period


271




b


,


272




b


,


274




b


and


275




b


, thereby the condition of electrically charged particles in all cells after the sustaining periods


271




b


,


272




b


,


274




b


and


275




b


are finished is maintained in the same condition after the full writing erasing period


277




a


is finished, so that the full writing erasing period


210




a


can be deleted in the sub-fields


272


,


273


,


275


and


276


, although it is provided in the first sub-fields


271


and


274


, and the address electric discharges are produced in the address periods


272




a


,


273




a


,


275




a


and


276




a


without supplying the selection electric discharge pulses


252




a


-


252




d


and electrically charged particle control pulse


244


in the last sub-field. Therefore, the contrast is multiplied by three.





FIG. 34

is a time chart of sub-fields illustrating a driving method in accordance with a sixteenth embodiment of the present invention. Referring to the drawing, the horizontal axis illustrates time, and the vertical axis illustrates a line of cells. Reference numeral


280


denotes one field period,


281


-


286


denote sub-fields,


281




a


-


288




a


denote address periods,


281




b


-


288




b


denote sustaining periods,


289


and


290


denote field blocks, and


289




a


and


290




a


denote full writing erasing periods.




One field period


280


is divided into eight sub-fields


281


-


288


, and the consecutive first four sub-fields


281


-


284


form the field block


289


, while the succeeding consecutive four sub-fields


285


-


288


form the other field block


290


.




The first period of these field blocks


289


and


290


include the full writing erasing periods


289




a


and


290




a


, respectively, and the address periods


281




a


-


288




a


and the sustaining periods


281




b


-


288




b


are arranged in each sub-field


281


-


288


, respectively. That is, the full writing erasing periods


289




a


and


290




a


are arranged at the first part of the first sub-fields


281


and


285


of the field blocks


289


and


290


, respectively. The numbers of the light emissions are allotted for the sustaining periods


281




b


-


288




b


, and gradations of display are performed by combining the numbers of the light emissions. According to the sixteenth embodiment, the numbers of the light emissions are increased in order of the sub-fields


281


,


282


,


283


, - - - .




Referring to FIGS.


28


(


b


) to


28


(


g


), the selection electric discharge pulses


252




a


-


252




d


, the electrically charged particle control pulse


244


and the fine line erasing pulses


245


,


253




a


-


253




b


, which are used in the fourteenth embodiment, are provided in the sustaining periods


281




b


,


282




b


,


283




b


,


285




b


,


286




b


and


287




b


of the first three sub-fields


281


,


282


,


284


,


285


,


286


and


287




b


in the field blocks


287


and


290


, and these pulses are not provided in the other (last) sub-field.




The condition of the electrically charged particles in all cells after the sustaining periods


281




b


,


282




b


and


283




b


of the sub-fields


281


,


282


and


283


in the field block


289


and sustaining periods


285




b


,


286




b


and


287




b


of the sub-fields


285


,


286


and


287


in the field block


290


are finished is maintained in the same condition after the full writing erasing period


289




a


is finished, so that the full writing erasing periods


210




a


can be deleted in the three sub-fields


282


,


283


,


284


,


286


,


287


and


288


, although they are retained in the first sub-fields


281


and


285


, and the address electric discharges are produced in the address periods


282




a


,


283




a


,


284




a


,


286




a


,


287




a


and


288




a


without supplying the selection electric discharge pulses


252




a


-


252




d


and the electrically charged particle control pulse


244


in the last sub-field. Therefore, the contrast is multiplied by four.





FIG. 35

is a time chart of sub-fields illustrating a driving method in accordance with a seventeenth embodiment of the present invention. Referring to the drawing, the horizontal axis illustrates time, and the vertical axis illustrates a line of cells. Reference numeral


300


denotes one field period,


301


-


308


denote sub-fields,


301




a


-


308




a


denote address periods,


301




b


-


308




b


denote sustaining periods,


309


denotes a field block, and


309




a


denotes a full writing erasing period.




One field period


300


is divided into eight sub-fields


301


-


308


, and the field block


309


is formed by all the sub-fields


301


-


308


in the one field. The first period of this field block


309


includes the full writing erasing period


309




a


. The address periods


301




a


-


308




a


and the following sustaining periods


301




b


-


308




b


are arranged in each sub-field


301


-


308


, respectively. That is, the full writing erasing period


309




a


are arranged at the first part of the first sub-field


301


. The numbers of the light emissions are allotted for the sustaining periods


301




b


-


308




b


and gradations of display are performed by combining the numbers of the light emissions.




Referring to FIGS.


28


(


b


) to


28


(


g


), the selection electric discharge pulses


252




a


-


252




d


, the electrically charged particle control pulses


244


and the fine line erasing pulses


245


,


253




a


-


253




b


, which are used in the fourteenth embodiment, are provided in the sustaining periods


301




b


-


307




b


of the first seven sub-fields


301


-


307


, and the full writing erasing period


309




a


is arranged only in the first sub-field


301


. The address electric discharges in the address periods


302




a


-


308




a


are possible, even if the full writing erasing periods


309




a


in the sub-fields


302


-


308


which follow the first sub-field


301


are deleted. Thereby the contrast is multiplied by eight.




According to the invention, by deleting the full writing erasing period in some sub-fields, the contrast is improved. The practical contrast of a cathode ray tube display is, for example, 150:1, and in the plasma display according to the embodiments shown in

FIG. 33

or

FIG. 34

, a corresponding contrast is accomplished.




The numbers of sub-fields in one field and the numbers of the sub-fields in one field block are optional and not limited to the above mentioned embodiments, and so any combination will be applicable.




According to the present invention, full writing electric discharge and erasing electric discharge are deleted or reduced, thereby improving the contrast of the display.




According to the present invention, a full writing erasing period can be arranged one time per several sub-fields, thereby improving the contrast.




While we have shown and described several embodiments in accordance with the present invention, it is understood that the invention is not limited thereto, but is susceptible of numerous changes and modifications as known to those skilled in the art, and we therefore do not wish to be limited to the details shown and described herein, but intend to cover all such changes and modifications as are encompassed by the scope of the appended claims.



Claims
  • 1. A plasma display panel driving method for a display panel having a plurality of electrodes forming cells, including a first electrode group arranged on a permeable substrate and being capable of being driven in common, a second electrode group arranged in parallel with said first electrode group on said permeable substrate and being capable of being driven independently, a third electrode group arranged perpendicular to said first and second electrode groups on another substrate and being capable of being driven independently, said driving method comprising the steps of:supplying a voltage with a fast rising leading edge so as to immediately produce a maximum electric discharge one time per a sub-field in a cell in which an electric discharge was performed beforehand; and supplying another voltage having a voltage value larger than a voltage value of said voltage with said fast rising leading edge without causing any electric discharge under a first condition.
  • 2. A plasma display panel driving method according to claim 1, further comprising the steps of producing an electric discharge between said first electrode group and said second electrode group by supplying said another voltage under a second condition to said one of said first and second electrode groups one time immediately after power is supplied to said display panel other than when an abnormal state occurs in said cell, and gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering electrically charged particles having the other polarity in the vicinity of said third electrode group by supplying a pulse after said another pulse is supplied.
  • 3. A plasma display panel driving method according to claim 1, wherein said another voltage has a fast rising leading edge.
  • 4. A plasma display panel driving apparatus for a display panel having a plurality of cells, comprising:a first electrode group arranged on a permeable substrate and being capable of being driven in common; a second electrode group arranged in parallel with said first electrode group on said permeable substrate and being capable of being driven independently; a third electrode group arranged perpendicular to said first and second electrode groups on another substrate and being capable of being driven independently; and a circuit for supplying a voltage with a fast rising leading edge so as to immediately produce a maximum electric discharge one time per a sub-field in a cell in which an electric discharge was performed beforehand and for supplying another voltage having a voltage value larger than a voltage value of said voltage with said fast rising leading edge without causing any electric discharge under a first condition.
  • 5. A plasma display panel driving apparatus according to claim 4, wherein said circuit further supplies said another voltage under a second condition to one of said first and second electrode groups for producing an electric discharge between said first electrode group and said second electrode group one time immediately after power is supplied to said display panel other than when an abnormal state occurs in said cell, and another circuit for supplying a pulse after said another pulse is supplied for gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering electrically charged particles having the other polarity in the vicinity of said third electrode group.
  • 6. A plasma display panel driving apparatus according to claim 4, wherein said another voltage has a fast rising leading edge.
  • 7. A plasma display having a plurality of cells, comprising:a first electrode group arranged on a permeable substrate and being capable of being driven in common; a second electrode group arranged in parallel with said first electrode group on said permeable substrate and being capable of being driven independently; and a third electrode group arranged perpendicular to said first and second electrode groups on another substrate and being capable of being driven independently; a circuit for supplying a voltage with a fast rising edge so as to immediately produce a maximum electric discharge one time per a sub-field in a cell to which the electric discharge was performed beforehand and for supplying another voltage having a voltage value larger than a voltage value of said voltage with said fast rising leading edge without causing any electric discharge under a first condition, thereby improving linearity of display gradation.
  • 8. A plasma display according to claim 7, further comprising wherein said circuit further supplies said another voltage under a second condition to one of said first and second electrode groups for producing an electric discharge between said first electrode group and said second electrode group one time immediately after power is supplied to said display panel other than when an abnormal state occurs in said cell, and another circuit for supplying a pulse after said another pulse is supplied for gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering electrically charged particles having the other polarity in the vicinity of said third electrode group.
  • 9. A plasma display according to claim 7, wherein said another voltage has a fast rising leading edge.
  • 10. A plasma display panel driving method for a display panel having a plurality of electrodes forming cells, including first electrode group arranged on a first substrate and being capable of being driven in common, a second electrode group arranged in parallel with said first electrode group on said first substrate and being capable of being driven independently, a third electrode group arranged perpendicular to said first and second electrode groups on a second substrate and being capable of being driven independently, said driving method comprising the steps of:generating a sustaining electric discharge by supplying a sustaining pulse to said first and said second electrode groups; polarizing electrically charged particles in a cell by supplying a fine line erasing pulse having a fast rising edge to one of said first and said second electrode groups so as to immediately produce a maximum electric discharge; gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups, gathering said electrically charged particles having the other polarity in the vicinity of said third electrode group by supplying an equalizing pulse having a voltage value larger than a voltage value of said fine line erasing pulse to said one of electrode groups, and by supplying a regulating pulse rising later than said equalizing pulse to the other electrode group of said first and said second electrode groups without producing an electric discharge under a first condition.
  • 11. A plasma display panel driving method according to the claim 10, further comprising the steps of producing an electric discharge between said first electrode group and said second electrode group by supplying said equalizing pulse to said one of the electrode groups after supplying power, and gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering electrically charged particles having the other polarity in the vicinity of said third electrode group by supplying said regulating pulse after said equalizing pulse is supplied.
  • 12. A plasma display panel driving method according to claim 10, further comprising the steps of producing an address electric discharge between said second electrode group and said third electric group after gathering electrically charged particles having one of the polarities in the vicinity of the said first and said second electrode groups and gathering electrically charged particles having the other polarity in the vicinity of said third electrode group, and performing a sustaining electric discharge.
  • 13. A plasma display panel driving method according to claim 10, further comprising the step of supplying said regulating pulse to said other electrode group within 0.3 μsec-2 μsec after supplying said equalizing pulse to said one of said electrode groups.
  • 14. A plasma display panel driving method according to claim 10, further comprising the steps of supplying said equalizing pulse to said second electrode group, and maintaining the supply of said regulating pulse to said first electrode group until selecting cells to be illuminated for gathering electrically charged particles to a predetermined electrode group.
  • 15. A plasma display panel driving method according to claim 10, further comprising the step of supplying said equalizing pulse to said one electrode group, and setting the falling edge of said equalizing pulse to a time more than 1 μsec.
  • 16. A plasma display panel driving method according to claim 10, wherein said equalizing pulse has a fast rising leading edge.
  • 17. A plasma display panel driving circuit comprising:a first electrode group arranged on a first substrate and driven in common; a second electrode group arranged parallel to said first electrode group on said first substrate and controlled independently; a third electrode group arranged perpendicular to said first and second electrode groups on a second substrate facing said first substrate and controlled independently; a first driving circuit connected to said first electrode group for supplying a first driving pulse; a second driving circuit connected to said second electrode group for supplying a second driving pulse; and a third driving circuit connected to said third electrode group for supplying an address driving pulse; wherein said second driving circuit supplies a fine line erasing pulse having a fast rising leading edge to said second electrode group after sustaining discharging so as to immediately produce a maximum electric discharge, said second driving circuit further supplies an equalizing pulse having a voltage value larger than a voltage value of said fine line erasing pulse to said second electrode group and said first driving circuit supplies a regulating pulse which is delayed from the rising edge of said equalizing pulse to the other electrode group of said first and said second electrode groups, gathers electrically charged particles having one of opposite polarities in the vicinity of said first and said second electrode groups and gathers electrically charged particles having the other polarity in the vicinity of said third electrode group.
  • 18. A plasma display panel driving circuit according to claim 17, wherein said regulating pulse is supplied to said other electrode group within 0.3 μsec-2 μsec after supplying said equalizing pulse to said one of said electrode groups.
  • 19. A plasma display panel driving circuit according to claim 17, wherein said equalizing pulse is supplied from said second driving circuit to said second electrode group, and said regulating pulse is supplied from said first driving circuit to said first electrode group during the addressing of cells to be illuminated.
  • 20. A plasma display panel driving circuit according to claim 17, wherein said equalizing pulse has a fast rising leading edge.
  • 21. A plasma display comprising:a first electrode group arranged on a first substrate and driven in common; a second electrode group arranged parallel to said first electrode group on said first substrate and controlled independently; a third electrode group arranged perpendicular to said first and second electrode groups on a second substrate facing said first substrate and controlled independently; a plurality of cells constructed at the cross points of said first and said second and said third electrode groups; a first circuit for generating a discharge using a fine line erasing pulse having a fast rising leading edge supplied to one of the electrodes of said first and said second electrode groups after a sustaining discharge so as to immediately produce a maximum electric discharge for erasing and polarizing electrically charged particles generated in cells in which said sustaining discharge was generated and for supplying an equalizing pulse having a voltage value larger than a voltage value of said fine line erasing pulse; and a second circuit for supplying a regulating pulse so as to gather electrically charged particles having one of opposite polarities in the vicinity of said first and said second electrode groups and to gather electrically charged particles having the other one of the polarities in the vicinity of said third electrode group by supplying said equalizing pulse to said one of the electrodes and by supplying said regulating pulse to the other of said first and said second electrode groups so as to be able to produce a discharge for addressing which determines light emitting cells by said third electrode group.
  • 22. A plasma display according to claim 21, wherein said regulating pulse is supplied to said other electrode group within 0.3 μsec-2 μsec after supplying said equalizing pulse to said one of said electrode groups for collecting electrically charged particles having one of said polarities in the vicinity of said first and said second electrode groups and electrically charged particles having the other one of said polarities in the vicinity of said third electrode group.
  • 23. A plasma display according to claim 21, wherein said equalizing pulse has a fast rising leading edge.
  • 24. A plasma display panel driving method for a display panel having a plurality of electrodes forming cells, including a first electrode group arranged on a first substrate and being capable of being driven in common, a second electrode group arranged in parallel with said first electrode group on said first substrate and being capable of being driven independently, a third electrode group arranged perpendicular to said first and second electrode groups on a second substrate and being capable of being driven independently, said driving method comprising the steps of:supplying an equalizing pulse under one condition for producing an electric discharge one time in cells other than when an abnormal state occurs in said cells after supplying power for generating electrically charged particles; gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering said electrically charged particles having the other polarity in the vicinity of said third electrode group by supplying a regulating pulse; producing address electric discharge by supplying an address pulse to said third electrode group for selecting cells to be illuminated; generating a sustaining electric discharge by supplying a sustaining pulse to said first and said second electrode groups, polarizing electrically charged particles in a cell by supplying a fine line erasing pulse having a voltage value smaller than a voltage value of said equalizing pulse and having a fast rising leading edge to one of said first and said second electrode groups one time per a sub-field so as to immediately produce a maximum electric discharge; and gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering said electrically charged particles having the other polarity in the vicinity of said third electrode group by supplying said equalizing pulse under another condition to said one of electrode groups and by supplying said regulating pulse rising later than said equalizing pulse to the other electrode group of said first and said second electrode groups without producing an electric discharge.
  • 25. A plasma display panel driving method according to claim 24, wherein said equalizing pulse has a fast rising leading edge.
  • 26. A plasma display panel driving circuit comprising:a first electrode group arranged on a first substrate and driven in common; a second electrode group arranged parallel to said first electrode group on said first substrate and controlled independently; a third electrode group arranged perpendicular to said first and second electrode groups an a second substrate facing said first substrate and controlled independently; a first driving circuit connected to said first electrode group for supplying a first driving pulse; a second driving circuit connected to said second electrode group for supplying a second driving pulse; and a third driving circuit connected to said third electrode group for supplying an address driving pulse; wherein said second driving circuit is arranged for supplying an equalizing pulse under one condition for producing an electric discharge one time in cells other than when an abnormal state occurs in said cells after supplying power for generating electrically charged particles; said first driving circuit is arranged for supplying a regulating pulse for gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering said electrically charged particles having the other polarity in the vicinity of said third electrode group; said third driving circuit is arranged for supplying an address pulse to said third electrode group for producing address electric discharge to select cells to be illuminated; said first driving circuit is arranged for supplying a sustain pulse to said first electrode group and said second driving circuit is arranged for supplying a sustain pulse to said second electrode group for generating sustain discharge; said second driving circuit is arranged for supplying a fine line erasing pulse having a voltage value smaller than a voltage value of said equalizing pulse and having a fast rising leading edge to one of said first and second electrode groups after sustaining discharging so as to immediately produce a maximum electric discharge; and said second driving circuit is arranged for supplying said equalizing pulse under another condition to said one electrode group without discharging, and said first driving circuit is arranged for supplying said regulating pulse which is delayed from the rising edge of said equalizing pulse to the other electrode group of said first and said second electrode groups for gathering electrically charged particles having one of opposite polarities in the vicinity of said first and said second electrode groups and for gathering electrically charged particles having the other polarity in the vicinity of said third electrode group.
  • 27. A plasma display panel driving circuit according to claim 26, wherein said equalizing pulse has a fast rising leading edge.
  • 28. A plasma display comprising:a first electrode group arranged on a first substrate and driven in common; a second electrode group arranged parallel to said first electrode group on said first substrate and controlled independently; a third electrode group arranged perpendicular to said first and second electrode groups on a second substrate provided faced on said first substrate and controlled independently; a plurality of cells constructed at the cross points of said first and said second and said third electrode groups; a first circuit arrangement for supplying an equalizing pulse under one condition for producing an electric discharge one time in cells other than when an abnormal state occurs in said cells after supplying power for generating electrically charged particles; a second circuit arrangement for supplying a regulating pulse for gathering electrically charged particles having one of the polarities in the vicinity of said first and said second electrode groups and gathering said electrically charged particles having the other polarity in the vicinity of said third electrode group; and a third circuit arrangement for supplying an address pulse to said third electrode group for producing address electric discharge to select cells to be illuminated; said first circuit arrangement is arranged for supplying a sustain pulse to said second electrode group and said second circuit arrangement is arranged for supplying a sustain pulse to said first electrode group for generating sustain discharge; said first circuit arrangement is arranged for supplying a fine line erasing pulse to one of said first and second electrode groups after sustaining discharging; and said first circuit arrangement is arranged for generating a discharge using said fine line erasing pulse having a voltage value smaller than a voltage value of said equalizing pulse and having a fast rising leading edge supplied to one of the electrodes of said first and said second electrode groups after a sustaining discharge so as to immediately produce a maximum electric discharge for erasing and polarizing electrically charged particles in cells in which said sustaining discharge was generated; and said first and second circuit arrangements are arranged for gathering electrically charged particles having one of polarities in the vicinity of said first and said second electrode groups and for gathering electrically charged particles having the other one of the polarities in the vicinity of said third electrode group by supplying said equalizing pulse under another condition to said one of the electrodes without electric discharging and by supplying a regulating pulse to the other of said first and said second electrode groups so as to be able to produce a discharge for addressing which determines light emitting cells by said third electrode group.
  • 29. A plasma display according to claim 28, wherein said equalizing pulse has a fast rising leading edge.
Priority Claims (2)
Number Date Country Kind
8-267264 Oct 1996 JP
8-330596 Dec 1996 JP
CROSS REFERENCE TO RELATED APPLICATION

This is a continuation of U.S. application Ser. No. 08/941,098, filed Oct. 8, 1997, now U.S. Pat. No. 6,320,560, the subject matter of which is incorporated by reference herein.

US Referenced Citations (10)
Number Name Date Kind
5446344 Kanazawa Aug 1995 A
5656893 Shino et al. Aug 1997 A
5663741 Kanazawa Sep 1997 A
5745086 Weber Apr 1998 A
5854540 Matsumoto et al. Dec 1998 A
5874932 Nagaoka et al. Feb 1999 A
5877734 Amemiya Mar 1999 A
5889501 Sasaki et al. Mar 1999 A
6023258 Kuriyama et al. Feb 2000 A
6320560 Sasaki et al. Nov 2001 B1
Foreign Referenced Citations (5)
Number Date Country
0 657 861 Jun 1995 EP
6-186927 Aug 1994 JP
7-49663 Feb 1995 JP
8-63123 Mar 1996 JP
8-160910 Jun 1996 JP
Non-Patent Literature Citations (1)
Entry
“Plasma Display”, Kyouritu Shuppan Co.,.
Continuations (1)
Number Date Country
Parent 08/941098 Oct 1997 US
Child 09/987333 US