1. Field of the Invention
The present invention relates to a plasma display panel (PDP) having an opposing discharge structure. More particularly, the present invention relates to a PDP that may be easily formed, has high light transmittance and luminescence efficiency, and a manufacturing method thereof.
2. Description of the Related Art
In a conventional plasma display panel (PDP), a rear substrate and a front substrate are assembled facing each other, an inert gas is filled in a discharge space between the rear substrate and the front substrate, and glow discharge is generated in the discharge space.
In more detail, the rear substrate is provided by forming an address electrode on a rear substrate, covering the address electrode with a dielectric layer, forming a barrier rib on the dielectric layer and forming a phosphor layer within the areas bounded by the barrier rib. Additionally, the front substrate facing the rear substrate is provided by forming an electrode pair having a sustain electrode and a scan electrode on a front substrate, the electrode pair being orthogonal to the address electrode, and covering the electrode pair with a stacked structure including a dielectric layer and a protective layer.
The PDP generates plasma from the glow discharge in the discharge space. Vacuum ultraviolet (VUV) rays are generated by the plasma, and the phosphor is excited by the VUV rays. Subsequently an image is displayed using red, green and blue light generated by the phosphor.
The sustain electrodes and the scan electrodes formed on the front substrate of the PDP are typically opaque. Accordingly, visible light emitted by the phosphor is blocked by the sustain electrodes and the scan electrodes, decreasing light transmittance. When a PDP has a surface discharge structure, high voltage is required and luminescence efficiency is low during sustain discharge. In order to overcome these problems, a PDP having an opposing discharge structure is required, as the following operational explanation illustrates.
Glow discharge is generated by applying a voltage, higher than discharge firing voltage, between two electrodes. Once the discharge is generated, voltage distribution between a cathode and an anode has a distorted form due to a space charge effect generated on the dielectric layer in the periphery of the cathode and the anode. That is, regions of a cathode sheath, an anode sheath, and a positive column are formed between the two electrodes. Most of the voltage applied to the two electrodes for the discharge is consumed in the cathode sheath region in the periphery of the cathode. A portion of the voltage is consumed in the anode sheath region in the periphery of the anode. The positive column region is formed between the cathode sheath region and the anode sheath region, and consumes negligible voltage.
A PDP having an opposing discharge structure increases a positive column generated between an anode sheath and a cathode sheath during glow discharge, thus improving luminescence efficiency compared to a PDP having a surface discharge structure.
The above information disclosed in this background section is only for enhancement of understanding of the background of the invention and therefore may contain information that does not form prior art known to a person of ordinary skill in the art.
The present invention is directed to a plasma display panel (PDP) and a manufacturing method thereof, which substantially overcome one or more of the problems due to the limitations and disadvantages of the.
It is a feature of an embodiment of the present invention to provide a PDP and a manufacturing method thereof allowing easy formation of an opposing discharge structure of a sustain electrode and a scan electrode.
It is another feature of an embodiment of the present invention to provide a PDP and a manufacturing method thereof having high luminescence efficiency and light transmittance.
At least one of the above and other features and advantages of the present invention may be realized by providing a PDP including a first substrate, an address electrode formed on the first substrate and extending in a first direction, a first dielectric layer covering the address electrode, a second dielectric layer on the first dielectric layer, a first electrode and a second electrode alternately disposed on the second dielectric layer and extending in a second direction, a third dielectric layer covering the first electrode and the second electrode, a discharge space, the discharge space having a bottom defined by the first dielectric layer at a bottom of the discharge space and sidewalls defined by the second and third dielectric layers, and a phosphor layer in the discharge space.
A first photosensitive material layer may be between the first dielectric layer and the second dielectric layer. The second direction may be orthogonal to the first direction and the first photosensitive material layer may be where the second dielectric layer intersects the address electrode. A width of the first photosensitive material layer may be substantially coextensive with a width of the second dielectric layer, the widths being measured in the first direction.
The second dielectric layer may include a first member disposed between adjacent address electrodes and extending in the first direction and a second member orthogonal to and crossing the address electrode. The third dielectric layer may include a third member corresponding to the first member and a fourth member crossing the third member and corresponding to the second member.
The third dielectric layer may have a protective layer formed thereon inside the discharge space. The protective layer may be opaque. The second dielectric layer and the third dielectric layer may be formed of a same dielectric material. The address electrode, the first electrode, and the second electrode may be formed of a conductive, opaque material. In a cross-section of the first electrode and the second electrode, a dimension in a horizontal direction of the first electrode and the second electrode may be less than a dimension in a vertical direction. The distance from the first substrate to the first dielectric layer corresponding to the address electrode may be greater than the distance from the first substrate to the first dielectric layer disposed adjacent to the second dielectric layer in parallel with the address electrode. A groove being adjacent to a sidewall of the sidewalls of the discharge space may be in the first dielectric layer. The groove may be parallel to the address electrode.
At least one of the above and other features and advantages of the present invention may be realized by providing a method of manufacturing a PDP including forming an address electrode on a first substrate, forming a first dielectric layer on the address electrode, forming a first photosensitive material layer on the first dielectric layer, forming a second dielectric film on the first photosensitive material layer, forming alternating first and second electrodes on the second dielectric layer, forming a third dielectric film on the first and second electrodes, forming a second photosensitive material layer on a third dielectric layer, the second photosensitive material being patterned to cover the first electrode and the second electrode, forming a discharge space by etching the second dielectric layer and the third dielectric layer to the first photosensitive material layer using the patterned second photosensitive material layer as a mask and forming a phosphor layer inside the discharge space.
Forming the discharge space may include sandblasting. Forming the phosphor layer further may include applying phosphor to an inner surface of the second dielectric layer forming the discharge space, and to a surface of the first dielectric layer partitioned by the second dielectric layer. The method may further include forming a protective layer on sidewalls of the third dielectric layer. Before forming the phosphor layer and after forming the discharge space, the first photosensitive material layer and the second photosensitive material layer may be removed.
The above and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
Korean Patent Application No. 10-2005-0024488, filed on Mar. 24, 2005, in the Korean Intellectual Property Office, and entitled: “Plasma Display Panel and Manufacturing Method of the Same,” is incorporated by reference herein in its entirety.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the figures, the dimensions of layers and regions are exaggerated for clarity of illustration. It will also be understood that when a layer is referred to as being “on” another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being “under” another layer, it can be directly under, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout.
Referring to the
An address electrode 11, a first electrode 31 (hereinafter, a “sustain electrode”) and a second electrode 32 (hereinafter, a “scan electrode”) may be disposed between the front substrate 20 and the rear substrate 10 to display an image. The address electrode 11 may be formed corresponding to each discharge space 17. The sustain electrode 31 and the scan electrode 32 may be disposed facing each other in a direction crossing the address electrode 11, corresponding to each discharge space 17. When an electrode crossing the address electrode 11 and generating an address discharge is additionally formed, the sustain electrode 31 and the scan electrode 32 may be formed in the direction parallel to the address electrode 11. Hereinafter, for convenience of explanation, a structure of the sustain electrode 31 and the scan electrode 32 crossing the address electrode 11 will be described as an example.
An address pulse may be applied to the address electrode 11 and a scan pulse may be applied to the scan electrode 32, generating address discharge. A discharge space 17 to be turned on may be selected by the address discharge. After the address discharge, a sustain pulse may be reciprocally applied to the sustain electrode 31 and the scan electrode 32, generating a sustain discharge. The sustain discharge displays an image in the selected discharge space 17. Additionally, after the sustain discharge, a reset pulse having a voltage higher than a sustain pulse may be applied to the scan electrode 32 such that the sustain electrode 31 may be biased with a reference voltage. Each discharge space 17 may be reset by the reset pulse. The present invention is not limited to the above description, since each electrode may act differently according to a voltage applied thereto.
The address electrode 11 may be formed on the inner surface of the rear substrate 10 and may extend in one direction, e.g., along a y-axis direction as shown in
A first photosensitive material layer 12 may be formed on the first dielectric layer 13. As shown in
Even when the portion exposed to the etching is removed, the first photosensitive material layer 12 remains where the address electrode 11 crosses the second dielectric layer 14, because the first photosensitive material layer 12 is covered by the second dielectric layer 14, as shown in
The second dielectric layer 14 may be formed on the first photosensitive material layer 12 and the first dielectric layer 13 where the first photosensitive material layer 12 is not formed. The second dielectric layer 14 may partition the discharge space 17. The second dielectric layer 14 may partition the discharge space 17 in a lattice form as shown in the
When the discharge space 17 is in a lattice form as shown in
Referring to
In more detail, the second dielectric layer 14 may be etched, e.g., by a sandblasting method, to form the discharge space 17. Due to the first photosensitive material layer 12, a part of the first dielectric layer 13 corresponding to the address electrode 11 is not affected by the etching. However, where the first photosensitive material layer 12 is not formed, i.e., at both edges of the discharge space 17, the first dielectric layer 13 may be affected by the sandblasting. Accordingly, after removing the first photosensitive material layer 12, a groove 13a may be formed on the bottom surface of both edges of the discharge space 17 in the first dielectric layer 13. The groove may be parallel and adjacent to the first member 14a. When the phosphor layer 19 is provided in the discharge space, it may fill the groove 13a.
The sustain electrode 31 and the scan electrode 32 may be disposed facing each other on the second dielectric layer 14. The sustain electrode 31 and the scan electrode 32 may be formed on the second member 14b and extend in the direction crossing the address electrode 11, i.e., the x-axis direction. Alternatively, though not shown, when another electrode crossing the address electrode is employed, the sustain electrode 31 and the scan electrode 32 may be disposed alternately on the first member 14a, along the direction parallel to the address electrode 11, i.e., the y-axis direction.
As shown in
Since the sustain electrode 31 and the scan electrode 32 are formed at both sides of the discharge space 17 and the address electrode 11 is formed at the rear substrate 10, visible light is not blocked by the electrodes. Accordingly, the electrodes may be formed of an opaque material having excellent electrical conductivity, e.g., a metal.
The sustain electrode 31 and the scan electrode 32 may be covered by the third dielectric layer 15. Additionally, a second photosensitive material layer 16 may be formed on the third dielectric layer 15. In
The second photosensitive material layer 16 may protect the sustain electrode 31 and the scan electrode 32 from being etched. That is, like the first photosensitive material layer 12, when a discharge space 17 is formed between the sustain electrode 31 and the scan electrode 32 by etching the second dielectric layer 14 and the third dielectric layer 15, the second photosensitive material layer 16 protects the sustain electrode 31 and the scan electrode 32 from the etching. Accordingly, the second photosensitive material layer 16 may be used during a manufacturing process, and removed after etching the second dielectric layer 14 and the third dielectric layer 15.
The second photosensitive material layer 16 may be formed as a stripe (not shown) corresponding to the sustain electrode 31 and scan electrode 32, and may be removed after use. Alternatively, as shown in
In the present embodiment, a structure having the third dielectric layer 15 formed as a lattice, the second photosensitive material layer 16 formed as a lattice, and the second photosensitive material layer 16 removed is shown as an example. That is, the third dielectric layer 15 may include a third member 15a corresponding to the first member 14a of the second dielectric layer 14, and a fourth member 15b crossing the third member 15a and corresponding to the second member 14b. The second dielectric layer 14 and the third dielectric layer 15 may be formed of the same dielectric material. In this case, the manufacturing process may be simplified by use of the same material.
The phosphor layer 19 may be formed on the inner surfaces of the first member 14a and the second member 14b of the second dielectric layer 14, and on the inner surface of the first dielectric layer 13 corresponding to the discharge space 17. The phosphor layer 19 may also be formed on the inner surfaces of the third member 15a and the fourth member 15b of the third dielectric layer 15 forming the discharge space 17 (not shown). As noted above, the phosphor layer 19 may fill the groove 13a.
When the phosphor layer 19 is not formed on the inner surfaces of the third dielectric layer 15, a protective layer 36 may be formed on the inner side surface of the third dielectric layer 15. The protective layer 36 may be formed at a part exposed to plasma discharge generated in the discharge space 17. The protective layer 36 may protect the third dielectric layer 15. The protective layer 36 requires a high secondary electron emission coefficient, but does not need to transmit visible light.
Thus, in the present embodiment, the sustain electrode 31 and the scan electrode 32 may not be formed on the front substrate 20, but may be formed between the substrates 10 and 20, and the protective layer 36 is formed on the third dielectric layer 15 covering the sustain electrode 31 and the scan electrode 32. Accordingly, the protective layer 36 may be formed of a material that is opaque to visible light, e.g., an opaque MgO. Opaque MgO has a far higher secondary electron emission coefficient than MgO that is transparent to visible light, thereby allowing the discharge firing voltage to be further decreased.
Referring to
At step ST30, the front substrate and the rear substrate may be combined and secured together. At step ST40, air may be evacuated from the discharge space 17 and a discharge gas, e.g. a mixed gas of Ne and Xe, fills the discharge space 17 to complete the PDP.
As described above, the step ST10 of manufacturing the rear substrate may include forming the address electrode 11 as shown in
Conventional methods, e.g., a pattern printing method or an exposing and developing method utilizing photosensitive paste, may be used to manufacture the address electrode 11.
Referring to
Referring to
Subsequently, the sustain electrode 31 and the scan electrode 32 may be covered with a third dielectric film 15′ and the second photosensitive material layer 16 may be formed thereon, as shown in
Referring to
Thus, the discharge space 17 may be formed by etching, e.g., using sandblasting the second dielectric film 14′ and the third dielectric film 15′. After such etching, part of the second dielectric film 14′ and the third dielectric film 15′ not covered by the second photosensitive material layer 16, may be removed, i.e., the second photosensitive material layer 16 serves as a mask. By such removal, the first photosensitive material layer 12 may be exposed between the second dielectric layer 14 and the third dielectric layer 15, and the discharge space 17 may be formed. The first photosensitive material layer 12 may protect the first dielectric layer 13 and address electrode 11 from being removed during the etching, i.e., the first photosensitive material layer 12 serves as an etch stop.
As described above, the sustain electrode 31 and scan electrode 32 may be formed on a partitioned location of the discharge space 17, and the discharge space 17 may be formed by etching the second dielectric layer 14 and the third dielectric layer 15 covering the sustain electrode 31 and the scan electrode 32. Accordingly, an opposing discharge structure of the sustain electrode 31 and the scan electrode 32 may be formed easily.
Subsequently, any of the first photosensitive material layer 12 and the second photosensitive material layer 16 exposed by the etching may be removed, and the phosphor layer 19 may be formed inside the discharge space 17, as shown in
The manufacturing method of a PDP according to an exemplary embodiment of the present invention may further include forming the protective layer 36 on the inner surface of the third dielectric layer 15, as shown in
As described above, according to an exemplary embodiment of the present invention, an address electrode may be formed on a rear substrate, and a first photosensitive material layer may be formed on a first dielectric layer covering the address electrode. Additionally, a second dielectric layer may be formed on the first dielectric layer and the first photosensitive material layer, a first electrode and a second electrode may be formed on the second dielectric layer in an opposing discharge structure, and a second photosensitive material layer may be formed on a third dielectric layer covering the first electrode and the second electrode. Accordingly, regions of the second dielectric layer and the third dielectric layer on which a second photosensitive material layer is not formed are etched to the first photosensitive material layer, and thereby a discharge space is formed. Additionally, since the first photosensitive material layer and the second photosensitive material layer exposed to etching may be removed, the opposing discharge structure of the first electrode and the second electrode may be formed easily. Additionally, luminescence efficiency may be improved by the opposing discharge structure, and light transmittance may be improved by forming the first electrode and the second electrode at sides of the discharge space.
Exemplary embodiments of the present invention have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. For example, while the first photosensitive layer is disclosed as a patterned layer, the first photosensitive layer may cover the first dielectric layer in its entirety. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2005-0024488 | Mar 2005 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5742122 | Amemiya et al. | Apr 1998 | A |
6650062 | Inoue et al. | Nov 2003 | B2 |
7067979 | Sakamoto | Jun 2006 | B2 |
20020179579 | Lin et al. | Dec 2002 | A1 |
20030080683 | Inoue et al. | May 2003 | A1 |
20040245929 | Sakamoto | Dec 2004 | A1 |
20050007018 | Akiba | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
0 739 026 | Oct 1996 | EP |
07-230756 | Aug 1995 | JP |
08-339766 | Dec 1996 | JP |
11-233010 | Aug 1999 | JP |
2000-331615 | Nov 2000 | JP |
2003-132804 | May 2003 | JP |
2003-208853 | Jul 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20060214582 A1 | Sep 2006 | US |