The above and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments thereof with reference to the attached drawings, in which:
Korean Patent Application No. 10-2006-0076208, filed on Aug. 11, 2006, in the Korean Intellectual Property Office, and entitled: “PDP and Method of Fabricating the Same,” is incorporated by reference herein in its entirety.
Exemplary embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are illustrated. Aspects of the invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
In the figures, the dimensions of layers and regions may be exaggerated for clarity of illustration. It will also be understood that when a layer or element is referred to as being “on” another layer or substrate, it can be directly on the other layer or substrate, or intervening layers or elements may also be present. Further, it will be understood that the term “on” can indicate solely a vertical arrangement of one element or layer with respect to another element or layer, and may not indicate a specific vertical orientation. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout.
An exemplary embodiment of a plasma display panel (PDP) according to the present invention will now be described more fully with reference to
The front and rear substrates 101 and 102 may be disposed in parallel, and may face each other. Each one of the front and rear substrates 101 and 102 may be any one of a transparent substrate, e.g., formed of soda lime glass, a semi-transmissible substrate, a reflective substrate, or a colored substrate. A frit glass layer 203 may be applied to peripheral areas of inner surfaces of the front and rear substrates 101 and 102 to connect therebetween in order to form a sealed space between the front and rear substrates 101 and 102. The sealed space, i.e., a display area 201, may include functional elements, e.g., the discharge electrodes and the discharge cells 120, and may provide display functions. In this respect, it should be noted that “inner surfaces” may refer to surfaces facing the sealed space.
As illustrated in
The discharge electrodes of the PDP 100 may be formed in the display area 201, and may include sustain electrodes 103 and address electrodes 112. More specifically, the sustain electrodes 103 and/or the address electrodes 112 may extend along the display area 201, and may have electrode terminals 204 in the non-display area 202. In this respect, it should be noted that unless otherwise indicated, “discharge electrodes” may refer to the sustain electrodes 103 and/or the address electrodes 112, and therefore, the electrode terminals 204 may refer to terminals of the sustain electrodes 103 and/or the address electrodes 112.
The sustain electrodes 103 of the PDP 100 may be disposed on an inner surface of the front substrate 101 to extend along the x-axis, and may be spaced apart from each other, as illustrated in
Each X electrode 104 of the sustain electrodes 103 may include a first bus electrode line 107 and a plurality of first transparent electrodes 106. The first bus electrode line 107 may extend along an array of discharge cells 120 along the x-axis. The first transparent electrodes 106 may be independently disposed in each of the discharge cells 120, and may be electrically connected to each other via the first bus electrode line 107, as illustrated in
The first and second transparent electrodes 106 and 108 of the X and Y electrodes 104 and 105, respectively, may have rectangular cross sections, and may be spaced apart from each other in each discharge cell 120 to form a discharge gap therebetween. The first and second transparent electrodes 106 and 108 may be formed of a transparent conductive film, e.g., indium tin oxide (ITO). The first and second bus electrode lines 107 and 109 of the X and Y electrodes 104 and 105 may be spaced apart from each other along opposing edges of arrays of discharge cells 120 along the x-axis, e.g., a plurality of first and second bus electrode lines 107 and 109 may form a stripe-pattern, and may be formed of metal, e.g., a silver (Ag) paste or a chromium-cobalt alloy (Cr—Co—Cr) with high conductivity.
The X and Y electrodes 104 and 105 may be covered by a front dielectric layer 110 formed of a transparent dielectric material, e.g., a mixture of PbO'B2O3—SiO2 having a high electricity. The front dielectric layer 110 may be disposed in the entire display area 202. A protective layer 111 may be formed of magnesium oxide (MgO) on an inner surface of the front dielectric layer 110 in order to increase emission of secondary electrons.
The address electrodes 112 of the PDP 100 may be disposed on an inner surface of the rear substrate 102 to extend along the y-axis, i.e., in a direction crossing the sustain electrodes 103. Each address electrode 112 may extend along an array of discharge cells 120 arranged along the y-axis, so that a plurality of address electrodes 112 may form a stripe-pattern. The address electrodes 112 may be spaced apart from each other at predetermined intervals. A rear dielectric layer 113 may be disposed on the address electrodes 112, so that the rear dielectric layer 113 may be disposed between the address electrodes 112 and the front substrate 101. The rear dielectric layer 113 may be formed of a substantially similar material as the front dielectric layer 110, and it may be disposed in the entire display area 202.
The electrode terminals 204 of the PDP 100 may be formed by drawing the sustain electrodes 103 and/or the address electrodes 112 to the non-display area 202 and patterning edges thereof. For example, if the electrode terminals 204 are terminals of the address electrodes 112, the electrode terminals 204 may extend on an upper surface of the rear substrate 102 along the y-axis, and may be arranged in a stripe-pattern along the x-axis in the non-display area 202, as illustrated in
The barrier ribs 114 of the PDP 100 may be disposed between the front and rear substrates 101 and 102 to define the discharge cells 120 and to prevent cross talk therebetween. The barrier ribs 114 may include first barrier ribs 115 along the x-axis and second barrier ribs 116 along the y-axis, as further illustrated in
The photoluminescent layers 117 of the PDP 100 may be disposed on inner surfaces of the discharge cells 120, so that voltage applied to the discharge gas may trigger ultraviolet (UV) light generation, followed by emission of visible light by the photoluminescent layers 117. The photoluminescent layer 117 may be formed on any portion of an inner surface of the discharge cells 120, e.g., an upper surface of the rear dielectric layer 113 and/or on side surfaces of the barrier ribs 114. The photoluminescent layers 117 may include a phosphor layer emitting red light, e.g., (Y,Gd)BO3;Eu+3, a phosphor layer emitting green light, e.g., Zn2SiO4:Mn2+, and/or a phosphor layer emitting blue light, e.g., BaMgAl10O17:Eu2+.
The short-circuit prevention units 604 of the PDP 100 may be formed between adjacent electrode terminals 204, i.e., terminals of either the sustain electrodes 103 or the address electrodes 112, in order to prevent short-circuit therebetween. For example, as illustrated in
In detail, each short-circuit prevention unit 604 may be a rectangular longitudinal protrusion between two adjacent electrode terminals 204, and may be positioned on a same plane therewith. The short-circuit prevention unit 604 may extend from either the rear dielectric layer 113 or the front dielectric layer 110 in a direction of the address electrodes 112 or the sustain electrodes 103, respectively. A length of the short circuit prevention units 604, i.e., a distance as measure from an edge of the dielectric layer, may substantially equal a length of the electrode terminals 204. Therefore, the short-circuit prevention units 604 may form a repetitive pattern interposed between the electrode terminals 204, so that the electrode terminals 204 may be blocked from each other. In this respect, it should be noted the short-circuit prevention units 604 are illustrated and described with respect to the address electrodes 112 for ease of illustration only, and the short-circuit prevention units 604 may be formed on the front substrate 101 between terminals of the sustain electrodes 103.
Accordingly, even if silver is used to form the electrode terminals 204, the short-circuit prevention units 604 disposed therebetween may physically block a potential migration path between the electrode terminals 204. Such blocking may substantially minimize or prevent electron migration between adjacent electrode terminals 204 despite ionization thereof due to moisture in the air, thereby minimizing or preventing a short-circuit therebetween.
The signal transmission unit 205 of the PDP 100 may be formed in any suitable shape, and may be connected to the electrode terminals 204, as illustrated in
More specifically, as illustrated in
The ACF 400, as illustrated in
In other words, the insulating member 403 may be sufficiently thin to be broken down and to be displaced along the horizontal direction, i.e., along the y-axis, due to vertical compression between the first terminal 207a, the conductive particle layer 402, and the electrode terminal 204, thereby forming gaps in the insulating member 403 around the conductive particle layer 402. Accordingly, electrical connection between the first terminal 207a and the electrode terminal 204 may be established via the conductive particle layer 402, while the insulating member 403 may tightly surround the conductive particle layer 402 without interrupting conduction thereof. As such, portions of the insulating member 403 disposed within the adhesive layer may provide sufficient insulation between the electrode terminals 204.
The non-conductive film 500 may be formed between the electrode terminals 204 and the leads 207 to electrically connect therebetween, as illustrated in
More specifically, the protrusion 503 may have a non-uniform cross-sectional area. For example, the protrusion 503 may have an inverted trapezoidal cross-sectional area, i.e., narrowing cross-sectional area from the first terminal 207a toward the electrode terminal 204. Accordingly, when pressing together the first terminal 207a and the electrode terminal 204 with the protrusion 503 therebetween, a narrower portion of the protrusion 503 may penetrate through the adhesive layer 501 to be in communication with the electrode terminal 204, as further illustrated in
According to another embodiment illustrated in
For example, as further illustrated in
According to yet another embodiment illustrated in
Fabrication of short-circuit prevention units in a PDP according to embodiments of the present invention, e.g., the PDP 100, will be described in more detail below with reference to
Next, as illustrated in
A dielectric material 904 may be disposed on the rear substrate 102 to cover the address electrodes in the display area (not shown) and to extend between the electrode terminals 204 in the openings 907 in the non-display area, as illustrated in
Alternatively, the dielectric layer 113 in the display area may be patterned as a non-continuous layer in order to cover only the address electrodes 112, i.e., portions of the dielectric material between the address electrodes 112 may be removed to expose the upper surface of the rear substrate 102. A portion of the dielectric material along a boundary line between the display and non-display areas may remain on the rear substrate in order to facilitate connection between the dielectric layer and the short-circuit prevention units.
A PDP according to embodiment of the present invention, e.g., the PDP 100, may operate as follows. A predetermined voltage from an external power source may be applied between the address electrodes 112 and the Y electrodes 105 to select discharge cell 120 to be operated, i.e., discharge cells 120 to emit light. Application of voltage to the address electrodes 112 and the Y electrodes 105 may cause accumulation of wall charges on inner side surfaces of the selected discharge cells 120.
Next, positive voltage may be applied to the X electrodes 104 of the selected discharge cells 120, and high voltage, i.e., higher voltage as compared to the voltage of the X electrodes 104, may be applied to the Y electrodes 105 of the selected discharge cells 120. Accordingly, the voltage difference between the X and Y electrodes 104 and 105 may trigger movement of the accumulated wall charges. Movement of the wall charges may trigger collisions between the wall charges and the discharge gas particles in the discharge cell 120, thereby activating discharge and plasma generation. The discharge may start from a discharge gap between the X and Y electrodes 104 and 105, and may spread to outer portions of the X and Y electrodes 104 and 105.
After the discharge occurs, the voltage difference between the X and Y electrodes 104 and 105 may be lower than a discharge voltage, thereby providing discharge suspension and accumulation of spatial charges and wall charges in the discharge cells 120. At this time, polarities of voltages applied to the X and Y electrodes 104 and 105 may be changed, thereby triggering a new discharge via collisions between the wall charges and the discharge gas. A continuous change of voltage polarities, as described above, may cause a repeated discharge process. UV light generated during the discharge may excite the photoluminescent layers 117, thereby emitting visible light. The visible light may be emitted from the discharge cell 120 toward the substrate to form images.
A PDP according to embodiments of the present invention may be advantageous in providing short-circuit prevention units between the electrode terminals, thereby substantially minimizing or preventing a potential short-circuit therebetween due to electrode ionization. In addition, selective formation of the dielectric layer on upper portions of the discharge electrodes may significantly reduce invalid power consumption.
Exemplary embodiments of the present invention have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0076208 | Aug 2006 | KR | national |