Information
-
Patent Grant
-
6784615
-
Patent Number
6,784,615
-
Date Filed
Tuesday, June 25, 200222 years ago
-
Date Issued
Tuesday, August 31, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 313 584
- 313 581
- 313 583
- 313 631
- 313 585
- 313 582
- 313 586
- 313 593
- 313 60
- 313 587
- 313 491
- 313 493
- 313 497
- 315 1694
-
International Classifications
-
Abstract
A plasma display panel having a plurality of surface discharge electrode pairs formed in a column direction at predetermined intervals, each surface discharge electrode pair having a pair of sustaining electrodes extending in a row direction so that a discharge gap is put between the sustaining electrodes. Each sustaining electrode is made up of a transparent conductive thin film, is provided with a main electrode portion formed in stripe shapes so as to face the discharge gap and a metal film of which a width is narrower than a width of the main electrode portion, and a sub-electrode portion formed at a side opposite to the discharge gap side of the main electrode portion which corresponds. With this configuration, a high image quality and a low power consumption can be obtained.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a plasma display panel used as a flat display for a television receiver, a computer, and a like, and a method of manufacturing the plasma display panel (PDP), and more particularly, relates to an AC (Alternating Current) driving surface discharge type of plasma display panel and a method of manufacturing the AC driving surface discharge type of plasma display panel.
The present application claims priority of Japanese Patent Application No. 2001-191765 filed on Jun. 25, 2001, which is hereby incorporated by reference.
2. Description of Related Art
FIG. 7
is a perspective exploded view showing a schematic structure of a conventional AC driving surface discharge type of Plasma Display Panel (hereinafter referred to as PDP)
1
in that a part of the front insulation substrate
2
is cut out.
FIG. 8
is a top view showing a state in that a front insulation substrate
2
of the PDP
1
is removed.
FIG. 9
is an enlarged sectional view showing a section along a line A-A′ in FIG.
8
. The PDP
1
is disclosed in Japanese Patent No. 3036496, Japanese Patent Application Laid-open No. Hei 11-202831, and a like.
In the PDP
1
, as shown in
FIG. 7
to
FIG. 9
, under the front insulation substrate
2
, a plurality of pairs of sustaining electrodes
3
a
and sustaining electrodes
3
b
of each extending in a row direction (in a horizontal direction in
FIG. 8
) are arranged in a column direction (in a vertical direction in
FIG. 8
) at predetermined intervals so that a discharge gap
4
is put between each pair. The front insulation substrate
2
is made of soda lime glass or a like so as to have a thickness of 2 mm to 5 mm similarly to a back insulation substrate
8
which will be described later. Both of the sustaining electrode
3
a
and the sustaining electrode
3
b
are made up of transparent conductive thin films such as tin oxide, indium oxide, and ITO (Indium Tin Oxide) and form a surface discharge electrode pair
3
.
A plurality of pairs of bus electrodes
5
a
and bus electrodes
5
b
are respectively formed on low surfaces of the plurality of pairs of sustaining electrodes
3
a
and sustaining electrodes
3
b
at one side of each end. The bus electrodes
5
a
and the bus electrodes
5
b
are made up of metal films such as thick films of silver, or thin films of aluminum or copper and are formed in order to make resistance values of the sustaining electrode
3
a
and the sustaining electrode
3
b
of which each electrical conductivity is low. Respective lower faces on which no sustaining electrode
3
a
and no sustaining electrode
3
b
and no bus electrode
5
a
and no bus electrode
5
b
are formed in the front insulation substrate
2
are covered by a dielectric layer
6
which is transparent. The dielectric layer
6
is made of low melting point glass of which a thickness is 10 μm to 40 μm. A protection layer
7
is formed on the lower face of the dielectric layer
6
in order to protect the dielectric layer
6
from ion impacts during discharge. The protection layer
7
is made of magnesium oxide or a like of which a secondary emission coefficient is large and of which a sputtering-resistance is good, and formed by vacuum deposition or a like so as to have a thickness of 0.5 μm to 2.0 μm.
On the other hand, a plurality of data electrodes
9
in stripe shapes extending in a column direction, namely, in a direction perpendicular to formation direction of the sustaining electrodes
3
a
and the sustaining electrodes
3
b
are formed at predetermined intervals. The data electrode
9
is made up of a silver film or a like. Respective upper faces of the data electrodes
9
and the back insulation substrate
8
on which no data electrodes
9
are formed are covered by a white dielectric layer
10
. On the dielectric layer
9
except the data electrode
9
, a plurality of division walls
13
for separating display cells
12
are formed in the column direction. The display cell
12
is a minimum unit for forming a display screen. In
FIG. 8
, an area surrounded by a dashed line indicates one of the display cells
12
.
Three fluorescent layers
14
R,
14
G, and
14
B for converting an ultraviolet ray which is generated by discharge of a discharge gas into three primary colors of red (R), green (G), and blue (B) of a visible light are formed on the upper face of the dielectric layer
8
on the data electrode
9
and on the side face of the division wall
13
. The fluorescent layers
14
R,
14
G, and
14
B are formed in order of the fluorescent layer
14
R, the fluorescent layer
14
G, and the fluorescent layer
14
B sequentially repeatedly in the row direction. The fluorescent layers (not shown) for each converting the ultraviolet ray into a visible light of a same color are formed continuously in the column direction.
Each discharge gas space
15
is kept in each space formed by the lower face of the protection layer
7
, each upper face of the fluorescent layers
14
R,
14
G, and
14
B, and two division walls
13
adjacent to each other. The discharge gas space
15
is filled with a discharge gas such as xenon, helium, or neon, or mixed gas thereof under pressure of 20 kPa to 80 kPa. An area including the sustaining electrode
3
a
and the sustaining electrode
3
b
, the bus electrode
5
a
and the bus electrode
5
b
, the data electrode
9
, the fluorescent layers
14
R,
14
G, and
14
B and the discharge gas space
15
makes the display cell
12
. When the size of the display cell
12
is 1.05 mm in the vertical direction (column direction) and 0.355 mm in the horizontal direction (row direction), the sustaining electrode
3
a
and the sustaining electrode
3
b
of which widths are 300 μm to 500 μm and of which thicknesses are 0.1 μm to 2.0 μm are made so as to have the discharge gap
4
of 50 μm to 300 μm therebetween.
Next, a method of forming the sustaining electrode
3
a
and the sustaining electrode
3
b
, and the bus electrode
5
a
and the bus electrode
5
b
included in the PDP
1
will be explained with reference to
FIG. 10A
to FIG.
10
E. The sustaining electrode
3
a
and the sustaining electrode
3
b
are formed by a lift-off method shown in
FIG. 10A
to FIG.
10
E.
FIG. 10A
to
FIG. 10E
are enlarged sectional views showing a side of the front insulation substrate
2
which is enlarged and is turned over up and down in a section along a line A-A′ in FIG.
8
. First, as shown in
FIG. 10A
, a photosensitive dry film
21
is laminated on the front insulation substrate
2
. The photosensitive dry film
21
includes a support film (not shown) and photosensitive resin (not shown) formed on the support film. Then, as shown in
FIG. 10B
, the photosensitive dry film
21
is exposed and developed to pattern the dry film
21
. Then, as shown in
FIG. 10C
, a transparent conductive thin film
22
is formed on the photosensitive dry film
21
which is patterned. Then, as shown in
FIG. 10D
, the sustaining electrode
3
a
and the sustaining electrode
3
b
of predetermined shapes are obtained by removing the photosensitive dry film
21
. Then, as shown in
FIG. 10E
, after pattern printing of silver paste (not shown) is applied onto the sustaining electrode
3
a
and the sustaining electrode
3
b
, the bus electrode
5
a
and the bus electrode
5
b
of predetermined shapes are obtained by annealing (for example, keeping 560° C. for thirty minutes).
Now, an outline principle in which one display cell
12
emits in the PDP
1
will be explained. First, when a voltage signal for keeping discharge is applied to the sustaining electrode
3
a
and the sustaining electrode
3
b
, a discharge generates in the discharge gas space
15
. Electrons which generate by this discharge are in collision with xenon atoms, helium atoms, neon atoms, or a like (hereunder, called only xenon atoms or a like), the xenon atoms or a like are excited or ionized. For example, excited xenon atoms generate ultraviolet rays of a vacuum ultraviolet area of 147 nm to 190 nm. The generated ultraviolet rays are irradiated to the fluorescent layer
14
R, the fluorescent layer
14
G, and the fluorescent layer
14
B. The fluorescent layer
14
R, the fluorescent layer
14
G, and the fluorescent layer
14
B to which the ultraviolet rays are irradiated respectively, generate a visible red light, a visible green light, and a visible blue light. The visible red light, the visible green light, and the visible blue are respectively reflected by the white dielectric layer
10
, and then go out after passing through the protection layer
7
, the dielectric layer
6
, the sustaining electrode
3
a
, the sustaining electrode
3
b
, and the front insulation substrate
2
.
On the other hand, the discharge which generates in the discharge gas space is stopped automatically, after electric charges are accumulated on a lower face of the dielectric layer
6
. For example, when a positive pulse voltage is applied to the sustaining electrode
3
a
and a negative pulse voltage is applied to the sustaining electrode
3
b
as voltage signal, electrons which generate by the discharge in the discharge gas space
15
move to the sustaining electrode
3
a
and positive ions such as xenon atoms move to the sustaining electrode
3
b
. With these processes, the lower face of the dielectric layer
6
formed under the sustaining electrode
3
a
is negatively charged and the lower face of the dielectric layer
6
formed under the sustaining electrode
3
b
is positively charged, and then the charge is stopped.
Recently, concerning general displays, also concerning an AC driving surface discharge type of PDP, it is required that an image quality is high and a power consumption is low.
However, in the conventional PDP
1
, when a luminance is made high by increasing the voltage to be applied the sustaining electrode
3
a
and the sustaining electrode
3
b
in order to improve the image quality, the power consumption caused by the discharge increases.
Then, to carry out a high image quality and a low power consumption, though a first technique to a third technique are considered, new problems occur as follows.
First, to reduce the power consumption of the AC driving surface discharge type of PDP, it is necessary to improve a luminous efficiency of a display cell and to reduce a power consumed by the discharge. Generally, in the AC driving surface discharge type of PDP, as a discharge current density becomes low, a luminous efficiency of ultraviolet rays becomes high. As a result, a luminous efficiency of visible light tends to become high. Then, when a voltage to be applied to a sustaining electrode is reduced and a discharge current is reduced, the discharge current density becomes low. Therefore, it is possible to make a luminous efficiency of a display cell high. However, when the voltage to be applied to the sustaining electrode is reduced, the discharge becomes unstable, and therefore, it is impossible to carry out a stable display operation.
Secondly, when widths of the sustaining electrode
3
a
and the sustaining electrode
3
b
are made narrow and areas of the sustaining electrode
3
a
and the sustaining electrode
3
b
are reduced, it is possible to reduce a capacitance between the lower face of the dielectric layer
6
, and the sustaining electrode
3
a
and the sustaining electrode
3
b
. When a voltage applied to the sustaining electrode
3
a
is equal to a voltage applied to the sustaining electrode
3
b
, a charge amount accumulated on the lower face of the dielectric layer
6
reduces when the charge is stopped. Therefore, it is possible to reduce a discharge current. However, in the second technique, as described above, since the areas of the sustaining electrode
3
a
and the sustaining electrode
3
b
are reduced, the discharge current density of the display cell
12
does not change after all, and therefore, the luminous efficiency hardly changes. Also, when the areas of the sustaining electrode
3
a
and the sustaining electrode
3
b
are reduced, the charge does not diffuse in the sustaining electrode
3
a
and the sustaining electrode
3
b
over all, and therefore, only a part of the fluorescent layer
14
R, the fluorescent layer
14
G, and the fluorescent layer
14
B emits. As a result, a luminance of the display cell
12
gets worse, and it is impossible to obtain a sufficient image quality.
Thirdly, Japanese Patent Application Laid-open No. Hei 8-22772 discloses a following technique. In this technique, a sustaining electrode made up of a transparent conductive thin film includes a main part extending in a row direction and a projection part projecting from the main part to an adjacent sustaining electrode for each display cell. Then, the projection part has a narrow small part which a width in the row direction is narrower than a width of a top end part in the row direction. In this technique, the narrow small part is provided, whereby the discharge current for one display cell is reduced so as to reduce the power consumption. As a result, the luminous efficiency is improved. However, in this technique, since the discharge concentrates near the small narrow part and does not diffuse in the display cell over all, there is a possibility in that a luminance lowers. Also, in this technique, the sustaining electrode made up of the transparent conductive thin film is patterned in a complex shape, a crack occurs in the small narrow part and there is a possibility of breaking.
SUMMARY OF THE INVENTION
In view of the above, it is an object of the present invention to provide a plasma display panel and a method of manufacturing the plasma display panel capable of providing both a high image quality and a low power consumption.
According to a first aspect of the present invention, there is provided a plasma display panel having a plurality of surface discharge electrode pairs formed in a column direction at predetermined intervals, each of the surface discharge electrode pairs having a pair of sustaining electrodes extending in a row direction so that a discharge gap is put between the sustaining electrodes, wherein:
each of the sustaining electrodes is made up of a transparent conductive thin film main electrode portion formed in stripe shapes so as to face the discharge gap and a metal film of which a width is narrower than a width of the main electrode portion that forms a sub-electrode at a side of the main electrode opposite the discharge gap.
In the foregoing, a preferable mode is one wherein the sub-electrode portion is provided with a first parallel portion extending in the row direction at a predetermined distance from the main electrode portion, and a second parallel portion extending in the row direction at a predetermined distance from the first parallel portion between the main electrode portion and the first parallel portion.
Also, a preferable mode is one wherein the sub-electrode portion is provided with a vertical portion extending to the main electrode portion at a position at which distances from adjacent division walls extending in the column direction for separating each display cell are approximately equal and integrated with the first parallel portion and the second parallel portion in a manner that an end portion of the vertical portion is electrically in contact with the main electrode portion.
Also, a preferable mode is one wherein the sub-electrode portion is provided with a first vertical portion extending to the main electrode portion at a position at which distances from adjacent division walls extending in the column direction for separating each display cell are approximately equal and integrated with the first parallel portion and the second parallel portion in a manner that an end portion of the vertical portion is electrically in contact with the main electrode portion, and a second vertical portion extending to the main electrode portion in the column direction at an upper side of the division wall and integrated with the first parallel portion and the second parallel portion in a manner that an end portion of the second vertical portion is electrically in contact with the main electrode portion.
Also, a preferable mode is one wherein a width of the second vertical portion is equal to a width of the division wall or is narrower than the width of the division wall.
Also, a preferable mode is one wherein a width of the second vertical portion is a half of a width of the division wall or less.
Also, a preferable mode is one wherein a width of the second parallel portion is 1 μm to 50 μm.
Also, a preferable mode is one wherein a width of the second parallel portion is 1 μm to 30 μm.
Also, a preferable mode is one wherein a width of the first vertical parallel portion is 1 μm to 50 μm.
Also, a preferable mode is one wherein a width of the first vertical parallel portion is 1 μm to 30 μm.
Also, a preferable mode is one wherein the main electrode portion is provided with a main electrode parallel portion extending in the row direction, and a main electrode projection part projecting from the main electrode portion at a side opposite to the discharge gap side of the main electrode portion at a position at which distances from adjacent division wall extending in the column direction to separate each display cell are approximately equal, and the first vertical portion extends to the main electrode portion in the column direction perpendicular to the first parallel portion and the second parallel portion and is integrated with the first parallel portion and the second parallel portion in a manner that an end portion of the first vertical portion is electrically in contact with the main electrode portion which corresponds.
Also, a preferable mode is one wherein lengths of the main electrode projection part in the row direction and in the column direction are 30 μm to 60 μm.
Also, a preferable mode is one wherein the sub-electrode portion is provided with a first parallel portion extending in the row direction at a predetermined distance from the main electrode portion, a first vertical portion extending to the main electrode portion in the column direction over each division wall extending in the column direction so as to separate each display cell and integrated with the first parallel portion in a manner that an end portion of the first vertical portion is electrically in contact with the main electrode portion, and a cross part including a second vertical portion extending to the main electrode portion in the column direction at a position at which distances from adjacent division walls are approximately equal and an end portion of the second vertical portion reaching near a side face of the main electrode portion, and second parallel portions respectively extending from an approximate center to the first vertical portions which are adjacent in a manner that an end portion of each of the second parallel portions reaches near the first vertical portions which are adjacent, the cross part integrated with the first vertical portion.
Also, a preferable mode is one wherein a width of the first vertical portion is equal to a width of the division wall or is narrower than a width of the division wall.
Also, a preferable mode is one wherein a width of the first vertical portion is a half of a width of the division wall or less.
Also, a preferable mode is one further including:
a bus electrode portion including a bus electrode parallel portion extending in the row direction in parallel with the first parallel portion at a distance at which there is no influence from the first parallel portion, and a bus electrode vertical portion extending to the first parallel portion in the column direction perpendicular to the first parallel portion and the bus parallel portion in a manner that an end portion of the bus electrode vertical portion is electrically in contact with the first parallel portion, and the bus electrode portion is integrated with the sub-electrode portion.
Also, a preferable mode is one wherein a width of the main electrode portion is 30 μm to 100 μm.
Also, a preferable mode is one wherein a width of the main electrode portion is 40 μm to 80 μm.
Also, a preferable mode is one wherein widths of the first parallel portion and the second parallel portion are 30 μm to 100 μm.
Also, a preferable mode is one wherein widths of the first parallel portion and the second parallel portion are 40 μm to 80 μm.
Also, a preferable mode is one wherein a width of the first parallel portion is 30 μm to 60 μm.
Furthermore, a preferable mode is one wherein both of an interval between the main electrode portion and the first parallel portion, and an interval between the second parallel portion and the first parallel portion are 30 μm to 140 μm.
According to a second aspect of the present invention, there is provided a method of manufacturing a plasma display panel according to the first aspect, a method including:
a first step of coating photosensitive silver paste on a front insulation substrate or a front insulation substrate after forming a plurality of surface discharge pair; and
a second step of forming a sub-electrode portion by annealing after exposing and developing the photosensitive silver paste and patterning the photosensitive silver paste.
According to a third aspect of the present invention, there is provided a method of manufacturing a plasma display panel according to the first aspect, a method including:
a first step of coating silver paste on a front insulation substrate or a front insulation substrate after forming a plurality of surface discharge pair; and
a second step of forming the sub-electrode portion by annealing after patterning the silver paste.
With this configuration, it is possible to obtain a high image quality high and to reduce power consumption.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, advantages, and features of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings in which:
FIG. 1
is a top view showing an AC driving surface discharge type of PDP
31
in that a front insulation substrate
32
is not shown, according to a first embodiment of the present invention;
FIG. 2A
to
FIG. 2F
are process views for explaining a forming method of a sustaining electrode
33
a
and a sustaining electrode
33
b
of the PDP
31
;
FIG. 3
is a top view showing an AC driving surface discharge type of PDP
51
in that a front insulation substrate
52
is not shown, according to a second embodiment of the present invention;
FIG. 4
is a top view showing an AC driving surface discharge type of PDP
61
in that a front insulation substrate
62
is not shown, according to a third embodiment of the present invention;
FIG. 5
is a top view showing an AC driving surface discharge type of PDP
81
in that a front insulation substrate
82
is not shown according to a fourth embodiment of the present invention;
FIG. 6
is a top view showing an AC driving surface discharge type of PDP
91
in that a front insulation substrate
92
is not shown, according to a fifth embodiment of the present invention;
FIG. 7
is a perspective exploded view showing a schematic structure of a conventional AC driving surface discharge type of PDP
1
in that a part of a front insulation substrate
2
is cut out;
FIG. 8
is a top view showing the conventional AC driving surface discharge type of PDP
1
in that the front insulation substrate
2
is not shown;
FIG. 9
is an enlarged sectional view showing a section taken along a line A-A′ in
FIG. 8
; and
FIG. 10A
to
FIG. 10E
are conventional process views for explaining a method of forming a sustaining electrode
3
a
, a sustaining electrode
3
b
, a bus electrode
5
a
, and a bus electrode
5
b
of the PDP
1
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Best modes for carrying out the present invention will be described in further detail using embodiments with reference to the accompanying drawings.
First Embodiment
A first embodiment of the present invention will be described.
FIG. 1
is a top view showing an AC driving surface discharge type of PDP
31
in that a front insulation substrate
32
is not shown, according to a first embodiment of the present invention.
In the PDP
31
, under the front insulation substrate
32
, as shown in
FIG. 1
, a plurality of pairs of sustaining electrodes
33
a
and sustaining electrodes
33
b
extending in a row direction (in a horizontal direction in
FIG. 1
) as whole are alternately arranged in a column direction (in a vertical direction in
FIG. 1
) at predetermined intervals so that a discharge gap
34
is put between each pair. The front insulation substrate
32
(shown in
FIGS. 2A-2F
) is made of soda lime glass or a like so as to have a thickness of 2 mm to 5 mm. The sustaining electrode
33
a
and the sustaining electrode
33
b
form a surface discharge electrode pair
33
. The sustaining electrode
33
a
includes a main electrode portion
35
a
and a sub-electrode portion
36
a
. Similarly, the sustaining electrode
33
b
includes a main electrode portion
35
b
and a sub-electrode portion
36
b.
Both of the main electrode portion
35
a
and the main electrode portion
35
b
are made up of transparent conductive thin films in stripe shapes such as tin oxide, indium oxide, or ITO (Indium Tin Oxide). Widths of the main electrode portion
35
a
and the main electrode portion
35
b
are 30 from μm to 100 μm, preferably, from 40 μm to 80 μm.
A plurality of pairs of the sub-electrode portion
36
a
and the sub-electrode portion
36
b
are respectively formed on lower faces of the plurality of pair of the main electrode portion
35
a
and the main electrode portion
35
b
so as to correspond to the main electrode portion
35
a
and the main electrode portion
35
b
. The sub-electrode portion
36
a
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and are provided with a first parallel portion
37
1
, a second parallel portion
37
2
, and a plurality of vertical portions
37
3
formed for respective display cells
12
. The first parallel portion
37
1
is formed in parallel with the main electrode portion
35
a
at a predetermined distance from the main electrode portion
35
a
so as to extend in the row direction. The second parallel portion
37
2
is formed in parallel with the main electrode portion
35
a
at a predetermined distance from the main electrode portion
35
a
between the main electrode portion
35
a
and the first parallel portion
37
1
so as to extend in the row direction. Each vertical portion
37
3
is integrated with the first parallel portion
37
1
and the second parallel portion
37
2
, and extends to the main electrode portion
35
a
in the column direction perpendicular to the first parallel portion
37
1
and the second parallel portion
37
2
, and an upper face of each vertical portion
37
3
is electrically in contact with a lower face of the main electrode portion
35
a
. Each vertical portion
37
3
is formed over a position at which distances from adjacent division walls
13
in the display cell
12
in an area surrounded by a dashed line in
FIG. 1
are approximately equal. Similarly, the sub-electrode portion
36
b
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and are provided with a first parallel portion
38
1
, a second parallel portion
38
2
, and a plurality of vertical portions
38
3
formed for respective display cells
12
. The sub-electrode portion
36
a
and the sub-electrode portion
36
b
are in a line-symmetric relationship in which a center axis of the discharge gap
34
is used as a symmetry line, and therefore, no detailed explanations of the sub-electrode portion
36
b
will be given.
Widths of the first parallel portion
37
1
and the first parallel portion
38
1
are preferably 30 μm to 60 μm to reduce resistance values of the main electrode portion
35
a
and the main electrode portion
35
b
of which conductivity is low. In other words, the first parallel portion
37
1
and the first parallel portion
38
1
function similarly to conventional bus electrodes. Widths of the second parallel portion
37
2
and the second parallel portion
38
2
, and widths of the vertical portion
37
3
and the vertical portion
38
3
are 1 μm to 50 μm, preferably, 1 μm to 30 μm. In the first embodiment, both of an interval between the main electrode portion
35
a
and the second parallel portion
37
2
, and an interval between the second parallel portion
37
2
and the first parallel portion
37
1
are 30 μm to 140 μm. Similarly, both of an interval between the main electrode portion
35
b
and the second parallel portion
38
2
, and an interval between the second parallel portion
38
2
and the first parallel portion
38
1
are 30 μm to 140 μm.
Additionally, the main electrode portion
35
a
and the main electrode portion
35
b
, the sub-electrode portion
36
a
and the sub-electrode portion
36
b
, and a dielectric layer (not shown) and a protection layer (not shown) which may be sequentially formed on a lower face of the front insulation substrate
32
(shown in
FIGS. 2A-2F
) on which no main electrode portion
35
a
and no main electrode portion
35
b
, and no sub-electrode portion
36
a
and no sub-electrode portion
36
b
are formed are similar to those of a conventional PDP, and therefore, no explanations of those will be given. Also, a data electrode, a dielectric layer, a division wall, three kinds of fluorescent layers, and discharge gas to be filled up in a discharge gas space are similar to those of the conventional PDP, and therefore, no explanations of those will be given.
Next, a method of forming the sustaining electrode
33
a
and the sustaining electrode
33
b
included in the PDP
31
will be explained with reference to
FIG. 2A
to FIG.
2
F. The main electrode portion
35
a
and the main electrode portion
35
b
are formed by a lift-off method shown in
FIG. 2A
to FIG.
2
F.
FIG. 2A
to
FIG. 2F
are enlarged sectional views showing a side of the front insulation substrate
32
which is enlarged and is turned over up and down in a section along a line B-B′ in FIG.
1
. First, as shown in
FIG. 2A
, a photosensitive dry film
41
is formed on the front insulation substrate
32
. The photosensitive dry film
41
includes a support film (not shown) and photosensitive resin (not shown) formed on the support film. Then, as shown in
FIG. 2B
, the photosensitive dry film
41
is exposed and developed to pattern the photosensitive dry film
41
.
Then, as shown in
FIG. 2C
, a transparent conductive thin film
42
is formed on the photosensitive dry film
41
which is patterned. Then, as shown in
FIG. 2D
, the main electrode portion
35
a
and the main electrode portion
35
b
of predetermined shapes are obtained by removing the photosensitive dry film
41
. Then, as shown in
FIG. 2E
, photosensitive silver paste
43
is coated on the front insulation substrate
32
with the main electrode portion
35
a
and the main electrode portion
35
b
. Then, as shown in
FIG. 2F
, the photosensitive silver paste
43
is exposed and developed, the photosensitive silver paste
43
is patterned, and then annealing is performed (for example, keeping at 550° C. for ten minutes), whereby the sub-electrode portion
36
a
(shown in
FIG. 1
) first parallel portion
37
1
, the second parallel portion
37
2
and the vertical portion
37
3
, and the sub-electrode portion
36
b
including the first parallel portion
38
1
, the second parallel portion
38
2
and the vertical portion
38
3
are formed. Sheet resistances of the sub-electrode portion
36
a
and the sub-electrode portion
36
b
which were formed under a above-mentioned annealing condition were 3 mΩ/□ to 4 mΩ/□. Here, the vertical portion
37
3
and the vertical portion
37
4
are not shown in FIG.
2
F.
As described above, according to the first embodiment, since the main electrode portion
35
a
and the main electrode portion
35
b
in stripe shapes are formed so as to extend in the row direction at both sides of the discharge gap
34
, discharge becomes stable and a discharge voltage can be reduced. Also, since the main electrode portion
35
a
and the main electrode portion
35
b
are made from transparent conductive thin films, a strong light near the discharge gap
34
can pass through, and a high luminance display can be obtained. According to an experiment, widths of the main electrode portion
35
a
and the main electrode portion
35
b
were set to 30 μm to 100 μm, a high luminance display was obtained with stability of the discharge, Particularly, when the widths of the main electrode portion
35
a
and the main electrode portion
35
b
were set to 40 μm to 80 μm, it was possible to reduce the discharge voltage and to obtain a high luminance display.
Also, the second parallel portion
37
2
and the vertical portion
37
3
are formed between the main electrode portion
35
a
and the first parallel portion
37
1
, and the second parallel portion
38
2
and the vertical portion
38
3
are formed between the main electrode portion
35
b
and the first parallel portion
38
1
. The second parallel portion
37
2
and the second parallel portion
38
2
, and the vertical portion
37
3
and the vertical portion
38
3
are made up of metal films and have a thickness of 1 μm to 50 μm. Therefore, according to the structure in the first embodiment, improvement of 10% to 40% of the luminous efficiency of the display cell
12
is caused by the following reasons.
As described above, generally, in an AC driving surface discharge type of PDP, as discharge current density is low, the luminous efficiency of the ultraviolet rays is high. As a result, the luminous efficiency of the visible light tends to be high. In the first embodiment, the widths of the second parallel portion
37
2
and the second parallel portion
38
2
, and the widths of the vertical portion
37
3
and the vertical portion
38
3
, are set to 1 μm to 50 μm, and an aperture is provided for each area between electrode portions forming the sub-electrode portion
36
a
and the sub-electrode portion
36
b
, whereby the discharge current density is controlled so as not to be high in those areas. As described above, the discharge current density is controlled, and this may be the reason why that the luminous efficiency of the display cell
12
can be improved. The metal film intercepts the visible light, whereas widths of the second parallel portion
37
2
and the second parallel portion
38
2
, and the widths of the vertical portion
37
3
and the vertical portion
38
3
are 1 μm to 50 μm. Then, an amount of intercepted visible light is extremely smaller than the whole amount of visible light, and therefore, it does not achieve an amount to influence on the luminance.
According to an experiment, when the widths of the second parallel portion
37
2
and the second parallel portion
38
2
, and the width of the vertical portion
37
3
and the vertical portion
38
3
were set to 1 μm to 30 μm, a high luminance display could be obtained. Also, in the structure of the first embodiment, as the voltage to be applied to the sustaining electrode
33
a
and the sustaining electrode
33
b
is not reduced, there does not occur danger that the discharge described as the first problem in Description of Related Art becomes unstable and a stable display operation cannot be performed.
Also, according to the structure of the first embodiment, the second parallel portion
37
2
and the second parallel portion
38
2
, and the vertical portion
37
3
and the vertical portion
38
3
are provided, and the widths of them are set to 1 μm to 50 μm. Also, there is no case in that areas of the main electrode portion
35
a
and the main electrode portion
35
b
are reduced, the shapes of the main electrode portion
35
a
and the main electrode portion
35
b
are stripes, and no projection part disclosed in Japanese Patent Application Laid-open No. Hei 8-22772 is provided. According to this structure, the discharge current density is controlled, and the discharge diffuses all over the sustaining electrode
33
a
and the sustaining electrode
33
b
. With this structure, since it is possible to excite all of a fluorescent layer
14
R, the fluorescent layer
14
G, and a fluorescent layer
14
B by ultraviolet rays, a luminance of the display cell
12
becomes higher, and a sufficient image quality can be obtained.
Therefore, according to the structure of the first embodiment, it is possible to make a higher image quality and to reduce the consumption power.
Also, according to the structure of the first embodiment, the photosensitive silver paste
43
is exposed and developed, and is patterned, and then, annealing is performed. Then, the sub-electrode portion
36
a
including the first parallel portion
37
1
, the second parallel portion
37
2
, and the vertical portion
37
3
, and the sub-electrode portion
36
b
including the first parallel portion
38
1
, the second parallel portion
38
2
, and the vertical portion
38
3
, which require a high patterning accuracy, are formed. Therefore, in comparison with the conventional technique in which the solution in the exposure is influenced by a thickness of a film, and the transparent conductive film is patterned by using a photosensitive dry film having an insufficient patterning accuracy, it is possible to form the sub-electrode
36
a
and the sub-electrode
36
b
easily with a good patterning accuracy.
On the other hand, according to the structure of the first embodiment, the main electrode portion
35
a
and the main electrode portion
35
b
are patterned by using a photosensitive dry film of which a process cost is cheaper. However, since the widths of the main electrode portion
35
a
and the main electrode portion
35
b
are 30 μm to 100 μm, a patterning accuracy is rougher than that of the sub-electrode
36
a
and the sub-electrode
36
b
, and therefore, it is possible to pattern the main electrode portion
35
a
and the main electrode portion
35
b
cheaply and easily.
Also, according to the structure of the first embodiment, since the sub-electrode portion
36
a
and the sub-electrode portion
36
b
are made from a metal film, it is hard to occur a crack at a joint point of the main electrode portion
35
a
and the vertical portion
37
3
or at an intersection of the first parallel portion
37
1
and the vertical portion
37
3
and it is hard to break a wire.
Second Embodiment
A second embodiment of the present invention will be described.
FIG. 3
is a top view showing an AC driving surface discharge type of PDP
51
in that a front insulation substrate
52
is not shown, according to a second embodiment of the present invention.
In the PDP
51
, under the front insulation substrate
52
(not shown), as shown in
FIG. 3
, a plurality of pairs of sustaining electrodes
53
a
and sustaining electrodes
53
b
extending in a row direction (in a horizontal direction in
FIG. 3
) as whole are alternately arranged in a column direction (in a vertical direction in
FIG. 3
) at predetermined intervals so that a discharge gap
54
is put between each pair. The front insulation substrate
52
is made of soda lime glass or a like so as to have a thickness of 2 mm to 5 mm. The sustaining electrode
53
a
and the sustaining electrode
53
b
form a surface discharge electrode pair
53
. The sustaining electrode
53
a
includes a main electrode portion
55
a
and a sub-electrode portion
56
a
. Similarly, the sustaining electrode
53
b
includes a main electrode portion
55
b
and a sub-electrode portion
56
b.
Both of the main electrode portion
55
a
and the main electrode portion
55
b
are made up of transparent conductive thin films in stripe shapes such as tin oxide, indium oxide, or ITO (Indium Tin Oxide). Widths of the main electrode portion
55
a
and the main electrode portion
55
b
are 30 μm to 100 μm, preferably 40 μm to 80 μm.
A plurality of pairs of the sub-electrode portion
56
a
and the sub-electrode portion
56
b
are respectively formed on lower faces of the plurality of pairs of the main electrode portion
55
a
and the main electrode portion
55
b
so as to correspond the main electrode portion
55
a
and the main electrode portion
55
b
. The main electrode portion
55
a
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and are provided with a first parallel portion
57
1
, a second parallel portion
57
2
, a plurality of first vertical portions
57
3
formed for respective display cells
12
, and a plurality of second vertical portions
57
4
provided over a division wall
13
. The first parallel portion
57
1
is formed in parallel with the main electrode portion
55
a
at a predetermined distance from the main electrode portion
55
a
so as to extend in the row direction. The second parallel portion
57
2
is formed in parallel with the main electrode portion
55
a
at a predetermined distance from the main electrode
55
a
between the main electrode portion
55
a
and the first parallel portion
57
1
so as to extend in the row direction. Each first vertical portion
57
3
is integrated with the first parallel portion
57
1
and the second parallel portion
57
2
, and extends to the main electrode portion
55
a
in the column direction perpendicular to the first parallel portion
57
1
and the second parallel portion
57
2
, and an upper face of each first vertical portion
57
3
is electrically in contact with a lower face of the main electrode portion
55
a
. Each first vertical portion
57
3
is formed over a position at which distances from an adjacent division wall
13
in the display cell
12
in an area surrounded by a dashed line in
FIG. 3
are approximately equal Each second vertical portion
57
4
is integrated with the first parallel portion
57
1
and the second parallel portion
57
2
, and extends to the main electrode portion
55
a
in the column direction perpendicular to the first parallel portion
57
1
and the second parallel portion
57
2
, and an upper face of an end portion of each second vertical portion
57
4
is electrically in contact with a lower face of the main electrode portion
55
a
. Also, each second vertical portion
57
4
is formed over the division wall
13
with a length approximately similar to that of the first vertical portion
57
3
which is adjacent. Similarly, the sub-electrode portion
56
b
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and are provided with a first parallel portion
58
1
, a second parallel portion
58
2
, a plurality of first vertical portions
58
3
formed for respective display cells
12
, and a plurality of second vertical portions
58
4
provided over the division wall
13
. The sub-electrode portion
56
a
and the sub-electrode portion
56
b
are in a line-ymmetric relationship in which a center axis of the discharge gap
54
is used as a symmetry line, and therefore, no detailed explanations of the sub-electrode portion
56
b
will given.
Widths of the first parallel portion
58
1
and the second parallel portion
58
2
are preferably 30 μm to 60 μm to reduce resistance values of the main electrode portion
55
a
and the main electrode portion
55
b
of which each conductivity is low. In other words, the first parallel portion
57
1
and the first parallel portion
58
1
function similarly to conventional bus electrodes. Widths of the second parallel portion
57
2
and the second parallel portion
58
2
, widths of the first vertical portion
57
3
and the first vertical portion
58
3
, and widths of the second vertical portion
57
4
and the second vertical portion
58
4
are 1 μm to 50 μm, preferably, 1 μm to 30 μm. In the second embodiment, both of an interval between the main electrode portion
55
a
and the second parallel portion
57
2
, and an interval between the second parallel portion
57
2
and the first parallel portion
57
1
are 30 μm to 140 μm, Similarly, both of an interval between the main electrode portion
55
b
and the second parallel portion
58
2
, and an interval between the second parallel portion
58
2
and the first parallel portion
58
1
are 30 μm to 140 μm. It is preferable that the widths of the second vertical portion
57
4
and the second vertical portion
58
4
are equal to a width of the division wall
13
or narrower than the width of the division wall
13
from a point of the luminous efficiency and the luminance.
Additionally, the main electrode portion
55
a
and the main electrode portion
55
b
, the sub-electrode portion
56
a
and the sub-electrode portion
56
b
, and a dielectric layer (not shown) and a protection layer (not shown) which may be sequentially formed on a lower face of the front insulation substrate
52
(not shown) on which no main electrode portion
55
a
and no main electrode portion
55
b
, and no sub-electrode portion
55
a
and no sub-electrode portion
56
b
are formed are similar to those of a conventional PDP, and therefore, no explanations of those will be given. Also, a data electrode, a dielectric layer, a division wall, and three kinds of fluorescent layers (all not shown) which are sequentially formed on the back insulation substrate, and discharge gas to be filled up in a discharge gas space are similar to those of the conventional PDP, and therefore, no explanations of those will be given. Also, a method of forming the sustaining electrode
53
a
and the sustaining electrode
53
b
included in the PDP
51
is approximately similar to that of the first embodiment except that a pattern shape in patterning of a photosensitive silver paste
43
(not shown) since shapes of the sub-electrode portion
56
a
and the sub-electrode portion
56
b
are different from those of a sub-electrode portion
36
a
and a sub-electrode portion
36
b
. Therefore, no explanations of the method will be given.
As described above, with the second embodiment, the second vertical portion
57
4
and the second vertical portion
58
4
are over the division wall
13
. In addition to the effects obtained by the first embodiment, the following effects can be obtained. Since the second vertical portion
57
4
and the second vertical portion
58
4
are over the division wall
13
, the discharge diffuses near the division wall
13
, xenon atoms or a like excited by the discharge generate ultraviolet rays, the generated ultraviolet rays are irradiated to side walls (not shown) of the division wall
13
and to a fluorescent layer
14
R, a fluorescent layer
14
G, and a fluorescent layer
14
B (all not shown) which are formed near the side walls. With this structure, it is possible to make the luminance of the display cell
12
higher than that of the first embodiment.
As described above, from points of luminous efficiency and luminance, it is preferable that the widths of the second vertical portion
57
4
and the second vertical portion
58
4
are equal to that of the division wall
13
or narrower. The width of the division wall
13
varies at a bottom and a top. Here, the width of the division wall
13
indicates the top width of the division wall
13
. Hereunder, the width of the division wall
13
also indicates the top width.
On the other hand, from points of manufacturing, it is preferable that the widths of the second vertical portion
57
4
and the second vertical portion
58
4
are a half of that of the division wall
13
or less. The reasons will be described. Distortions generate in the front insulation substrate (not shown) and the back insulation substrate (not shown) in a annealing process after forming the sustaining electrode
53
a
and the sustaining electrode
53
b
. Therefore, when the front insulation substrate and the back insulation substrate are put together, there is a possibility in that a positional relationship between the front insulation substrate and the back insulation substrate displaces. When a displacement occurs, and the second vertical portion
57
4
and the second vertical portion
58
4
are formed not over the division wall
13
though the second vertical portion
57
4
and the second vertical portion
58
4
must be formed over the division wall
13
, the discharge state changes, and a characteristic changes for every PDP
51
. Also, in a case of the displacement, when a strong discharge generates near the division wall
13
, the xenon atoms or a like excited by the discharge do not generate ultraviolet rays efficiently, and therefore, the luminous efficiency lowers. Then, the widths of the second vertical portion
57
4
and the second vertical portion
58
4
are a half of the division wall
13
or less. Therefore, though a displacement of the front insulation substrate and the back insulation substrate occurs, there is no case in that the the widths of the second vertical portion
57
4
and the second vertical portion
58
4
displace from the division wall
13
if only the displacement is in the half of the division wall
13
in the row direction. With this structure, it is possible to reduce the influences caused by the displacement.
Third Embodiment
A third embodiment of the present invention will be described.
FIG. 4
is a top view showing an AC driving surface discharge type of PDP
61
in that a front insulation substrate
62
is not shown, according to a third embodiment of the present invention.
In the PDP
61
, under the front insulation substrate
62
(not shown), as shown in
FIG. 4
, a plurality of pairs of sustaining electrodes
63
a
and sustaining electrodes
63
b
extending in a row direction (in a horizontal direction in
FIG. 4
) as whole are alternately arranged in a column direction (in a vertical direction in
FIG. 4
) at predetermined intervals so that a discharge gap
64
is put between each pair. The front insulation substrate
62
is made of soda lime glass or a like so as to have a thickness of 2 mm to 5 mm. The sustaining electrode
63
a
and the sustaining electrode
63
b
form a surface discharge electrode pair
63
. The sustaining electrode
63
a
includes a main electrode portion
65
a
and a sub-electrode portion
66
a
. Similarly, the sustaining electrode
63
b
includes a main electrode portion
65
b
and a sub-electrode portion
66
b.
Both of the main electrode portion
65
a
and the main electrode portion
65
b
are made up of transparent conductive thin films in stripe shapes such as tin oxide, indium oxide, or ITO (Indium Tin Oxide). The main electrode portion
65
a
includes a parallel portion
69
1
, and projection parts
69
2
, and the main electrode portion
65
b
includes a parallel portion
70
1
, and projection parts
70
2
. The parallel portion
69
1
and the parallel portion
70
1
are formed so as to extend in the row direction, and widths of the parallel portion
69
1
and the parallel portion
70
1
are 30 μm to 100 μm, preferably, 40 μm to 80 μm. The projection parts
69
2
are formed at an upper position at which distances from adjacent division walls
13
in the display cell
12
shown as a area surrounded by a dashed line in
FIG. 4
are approximately equal and are formed so as to project from the parallel portion
69
1
at a side opposite to a side facing the discharge gap
64
. Similarly, the projection parts
70
2
are formed at an upper position at which distances from adjacent division walls
13
in the display cell
12
shown as a area surrounded by a dashed line in
FIG. 4
are approximately equal and is formed so as to project from the parallel portion
70
1
at a side opposite to a side facing the discharge gap
64
. As to shapes of the projection parts
69
2
and the projection parts
70
2
, both lengths in the row direction and in the column direction are set to 30 μm to 60 μm, for example, 50 μm. Under this condition, it is possible to obtain sufficient electrical contact of the projection parts
69
2
and the projection parts
70
2
, and a vertical portion
68
3
and the vertical portion
70
3
which will be described. Additionally, though the main electrode portion
65
a
and the main electrode portion
65
b
are provided with the projection parts
69
2
and the projection parts
70
2
, it is possible to obtain a yield equal to the first embodiment in which a main substrate
35
a
(shown in
FIG. 1
) and a main substrate
35
b
(shown in
FIG. 1
) stripe shapes are patterned.
A plurality of pairs of the sub-electrode portion
66
a
and the sub-electrode portion
66
b
are respectively formed on lower faces of the plurality of pairs of the main electrode portions
65
a
and the main electrode portions
65
b
so as to correspond the main electrode portions
65
a
and the main electrode portions
65
b
. The sub-electrode portion
66
a
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and are provided with a first parallel portion
67
1
, a second parallel portion
67
2
, and a plurality of vertical portions
67
3
formed for respective display cells
12
. The first parallel portion
67
1
is formed in parallel with the main electrode portion
65
a
at a predetermined distance from the main electrode portion
65
a
so as to extend in the row direction. The second parallel portion
67
2
is formed in parallel with the main electrode portion
65
a
at a predetermined distance from the main electrode portion
65
a
between the main electrode portion
65
a
and the first parallel portion
67
1
so as to extend in the row direction. Each vertical portion
67
3
is integrated with the first parallel portion
67
1
and the second parallel portion
67
2
, and extends to the main electrode portion
65
a
in the column direction perpendicular to the first parallel portion
67
1
and the second parallel portion
67
2
, and an upper face of an end portion of each vertical portion
67
3
is electrically in contact with a lower face of the projection part
69
2
. Each vertical portion
67
3
is formed over a position at which distances from adjacent division wall
13
in the display cell
12
in an area surrounded by a dashed line in
FIG. 4
are approximately equal. Similarly, the sub-electrode portion
66
b
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and are provided with a first parallel portion
68
1
, a second parallel portion
68
2
, and the plurality of vertical portions
68
3
formed for respective display cells
12
. The sub-electrode portion
66
a
and the sub-electrode portion
66
b
are in a line-ymmetric relationship in which a center axis of the discharge gap
64
is used as a symmetry line, and therefore, no detailed explanations of the sub-electrode portion
66
a
will given.
Widths of the first parallel portion
67
1
and the first parallel portion
68
2
are preferably 30 μm to 60 μm to reduce resistance values of the main electrode portion
65
a
and the main electrode portion
65
b
of which conductivity is low. In other words, the first parallel portion
67
1
and the first parallel portion
68
1
function similarly to conventional bus electrodes. Widths of the second parallel portion
67
2
and the second parallel portion
68
2
, and widths of the vertical portion
67
3
and the vertical portion
68
3
are 1 μm to 50 μm, preferably, 1 μm to 30 μm. In the third embodiment, both of an interval between the parallel portion
69
1
of the main electrode portion
65
a
and the second parallel portion
67
2
, and an interval between the second parallel portion
67
2
and the first parallel portion
67
1
are 30 μm to 140 μm. Similarly, both of an interval between the parallel portion
70
1
of the main electrode portion
65
b
and the second parallel portion
68
2
and an interval between the second parallel portion
68
2
and the first parallel portion
68
1
are 30 μm to 140 μm.
Additionally, the main electrode portion
65
a
and the main electrode portion
65
b
, the sub-electrode portion
66
a
and the sub-electrode portion
66
b
, and a dielectric layer (not shown) and a protection layer (not shown) which may be sequentially formed on a lower face of the front insulation substrate
62
(not shown) on which no main electrode portion
65
a
and no main electrode portion
65
b
, and no sub-electrode portion
66
a
and no sub-electrode portion
66
b
are formed are similar to those of the conventional PDP, and therefore, no explanations of those will be given. Also, a data electrode, a dielectric layer, a division wall, and three kinds of fluorescent layers (all not shown) which are sequentially formed on the back insulation substrate, and discharge gas to be filled up in a discharge gas space are similar to those of the conventional PDP, and therefore, no explanations of those will be given. Also, a method of forming the sustaining electrode
63
a
and the sustaining electrode
63
b
included in the PDP
61
is approximately similar to that of the first embodiment except that a pattern shape in patterning of a photosensitive dry film
41
(shown in
FIG. 2A
) and a photosensitive silver paste
43
(shown in
FIG. 2E
) since shapes of the main electrode portion
65
a
and the main electrode
65
b
, and the sub-electrode portion
66
a
and the sub-electrode portion
66
b
are different from those of a main electrode portion
35
a
(shown in
FIG. 1
) and a main electrode portion
35
b
(shown in
FIG. 1
) and a sub-electrode portion
36
a
(shown in
FIG. 1
) and a sub-electrode portion
36
b
(shown in FIG.
1
). Therefore, no explanations of the method will be given.
As described above, with the third embodiment, the main electrode portion
65
a
is provided with a projection part
69
2
, and each top of the vertical portion
67
3
forming the sub-electrode portion
66
a
made from the metal film is electrically in contact with only the lower face of the corresponding projection part
69
2
. Similarly, the main electrode portion
65
b
is provided with the projection part
70
2
, and each top of the vertical portion
68
3
forming the sub-electrode portion
66
b
made from the metal film is electrically in contact with only the lower face of the corresponding projection part
70
2
. Therefore, according to the structure of the third embodiment, since it is possible to reduce an area of the metal film which is not transparent and intercepts visible light, it is possible to make luminance higher and to improve luminous efficiency in comparison with the first embodiment.
Fourth Embodiment
A fourth embodiment of the present invention will be described.
FIG. 5
is a top view showing an AC driving surface discharge type of PDP
81
in that a front insulation substrate
82
is not shown according to a fourth embodiment of the present invention.
In the PDP
81
, under the front insulation substrate
82
(not shown), as shown in
FIG. 5
, a plurality of pairs of sustaining electrodes
83
a
and sustaining electrodes
83
b
extending in a row direction (in a horizontal direction in
FIG. 5
) as whole are alternately arranged in a column direction (in a vertical direction in
FIG. 5
) at predetermined intervals so that a discharge gap
84
is put between each pair. The front insulation substrate
82
is made of soda lime glass or a like so as to have a thickness of 2 mm to 5 mm. The sustaining electrode
83
a
and the sustaining electrode
83
b
form a surface discharge electrode pair
83
. The sustaining electrode
83
a
includes a main electrode portion
85
a
and a sub-electrode portion
86
a
. Similarly, the sustaining electrode
83
b
includes a main electrode portion
85
b
and a sub-electrode portion
86
b.
Both of the main electrode portion
85
a
and the main electrode portion
85
b
are made up of transparent conductive thin films in stripe shapes such as tin oxide, indium oxide, or ITO (Indium Tin Oxide). Widths of the main electrode portion
85
a
and the main electrode portion
85
b
are 30 μm to 100 μm, preferably, 40 μm to 80 μm. A plurality of pairs of sub-electrode portions
86
a
and sub-electrode portions
86
b
are formed at under layers of the main electrode portion
85
a
and the main electrode portion
85
b
so as to correspond with the main electrode portion
85
a
and the main electrode portion
85
b
. The sub-electrode portion
86
a
is made up of a metal film such as thick film of silver, and a thin film of aluminum, copper or a like, and is provided with a parallel portion
87
1
, a plurality of vertical portions
87
2
provided on a division wall
13
, and a plurality of cross parts
87
3
provided for each display cell
12
. The parallel portion
87
1
is formed in parallel with the main electrode portion
85
a
at a predetermined distance from the main electrode portion
85
a
so as to extend in the row direction. Each vertical portion
87
2
is integrated with the parallel portion
87
1
and extends in the column direction perpendicular to the parallel portion
87
1
and to the main electrode portion
85
a
over the division wall
13
. an upper face end portion of each vertical portion
87
2
is electrically in contact with the lower face of the main electrode portion
85
a
. Each cross part
87
3
is integrated with the parallel portion
87
1
is formed over a position at which distances from adjacent division wall
13
in the display cell
12
in an area surrounded by a dashed line in FIG.
5
are approximately equal. Each cross part
87
3
is provided with a vertical portion
87
3a
and a parallel portion
87
3b
. The vertical portion
87
3a
extends to the main electrode
85
a
in the column direction perpendicular to the parallel portion
87
3b
. A top of the vertical portion
87
3a
reaches near a side face opposite to the side facing the discharge gap
84
of the main electrode portion
85
a
. The parallel portion
87
3b
extends from an approximate center to two adjacent vertical portions
87
2
in the row direction and reaches near the side of the vertical portion
87
2
. Similarly, the sub-electrode portion
86
b
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and is provided with a first parallel portion
88
1
, a plurality of vertical portions
88
2
formed on the division wall
13
, a plurality of cross parts
88
3
formed for respective display cells
12
. The sub-electrode portion
86
a
and the sub-electrode portion
86
b
are in a line-ymmetric relationship in which a center axis of the discharge gap
84
is used as a symmetry line, and therefore, no detailed explanations of the sub-electrode portion
86
b
will be given.
Widths of the parallel portion
87
1
and the parallel portion
88
1
are preferably 30 μm to 60 μm to reduce resistance values of the main electrode portion
85
a
and the main electrode portion
85
b
of which conductivity is low. In other words, the parallel portion
87
1
and the first parallel portion
88
1
function similarly to conventional bus electrodes. It is preferable that widths of the vertical portion
87
2
and the vertical portion
88
2
are equal to the width of the division wall
13
or narrower than the width of the division wall
13
from points of luminous efficiency and luminance. And, it is preferable that widths of the vertical portion
87
2
and the vertical portion
88
2
are a half of the width of the division wall
13
or less from points of manufacturing. Widths of the cross part
87
3
and the cross part
88
3
are 1 μm to 50 μm, preferably, 1 μm to 30 μm. In the fourth embodiment, both of an interval between the main electrode portion
85
a
and the parallel portion
87
1
, and an interval between the main electrode portion
85
b
and the parallel portion
88
1
are 60 μm to 280 μm.
Additionally, the main electrode portion
85
a
and the main electrode portion
85
b
, the sub-electrode portion
86
a
and the sub-electrode portion
86
b
, and a dielectric layer and a protection layer (both not shown) which may be sequentially formed on a lower face of the front insulation substrate
82
(not shown) on which no main electrode portion
85
a
and no main electrode portion
85
b
, and no sub-electrode portion
86
a
and no sub-electrode portion
86
b
are formed are similar to those of the conventional PDP, and therefore, no explanations of those will be given. Also, a data electrode, a dielectric layer, a division wall, and three kinds of fluorescent layers (all not shown) which are sequentially formed on a back insulation substrate (not shown), and discharge gas to be filled up in a discharge gas space (not shown) are similar to those of a conventional PDP, and therefore, no explanations of those will be given. Also, a method of forming the sustaining electrode
83
a
and the sustaining electrode
83
b
included in the PDP
81
is approximately similar to that of the first embodiment except that a pattern shape in patterning a photosensitive dry film
41
(shown in
FIG. 2A
) and photosensitive silver paste
43
(shown in
FIG. 2E
) since shapes of the sub-electrode portion
86
a
and the sub-electrode
86
b
are different from those of a sub-electrode portion
36
a
(shown in
FIG. 1
) and a sub-electrode portion
36
b
(shown in FIG.
1
). Therefore, no explanations of the method will be given.
As described above, with the fourth embodiment, differently from the second embodiment, as to the cross part
87
3
, the upper face of the end portion of the vertical portion
87
3a
is not electrically in contact with the lower face of the main electrode
85
a
, and the end portion of the vertical portion
87
3a
is not electrically contact with the side of the adjacent vertical portion
87
2
. Therefore, according to the structure of the fourth embodiment, since it is possible to reduce an area of metal film which is not transparent and intercepts visible lights in comparison with the second embodiment, it is possible to make luminance higher and to improve luminous efficiency more.
Fifth Embodiment
A fifth embodiment of the present invention will be described.
FIG. 6
is a top view showing an AC driving surface discharge type of PDP
91
in that a front insulation substrate
92
is not shown, according to a fifth embodiment of the present invention.
In the PDP
91
, under the front insulation substrate
92
(not shown), as shown in
FIG. 6
, a plurality of pairs of sustaining electrodes
93
a
and sustaining electrodes
93
b
extending in a row direction (in a horizontal direction in
FIG. 6
) as whole are alternately arranged in a column direction (in a vertical direction in
FIG. 6
) at predetermined intervals so that a discharge gap
94
is put between each pair. The front insulation substrate
92
(not shown) is made of soda lime glass or a like so as to have a thickness of 2 mm to 5 mm. The sustaining electrode
93
a
and the sustaining electrode
93
b
form a surface discharge electrode pair
93
. The sustaining electrode
93
a
includes a main electrode portion
95
a
and a sub-electrode portion
96
a
. Similarly, the sustaining electrode
93
b
includes a main electrode portion
95
b
and a sub-electrode portion
96
b.
Both of the main electrode portion
95
a
and the main electrode portion
95
b
are made up of transparent conductive thin films in stripe shapes such as tin oxide, indium oxide, or ITO (Indium Tin Oxide). Widths of the main electrode portion
95
a
and the main electrode portion
95
b
are 30 μm to 100 μm, preferably, 40 μm to 80 μm. A plurality of pairs of sub-electrode portions
96
a
and sub-electrode portions
96
b
and a plurality of pairs of bus electrode portions
98
a
and bus electrode portions
98
b
are formed at under layers of the main electrode portion
95
a
and the main electrode portion
95
b
so as to correspond the main electrode portion
95
a
and the main electrode portion
95
b
. The sub-electrode
96
a
is made up of a metal film such as thick film of silver, and a thin film of aluminum, copper or a like, and is provided with a first parallel portion
97
1
, a second parallel portion
97
2
, a plurality of vertical portions
97
3
provided for each display cell
12
. The first parallel portion
97
1
is formed in parallel with the main electrode portion
95
a
at a predetermined distance from the main electrode portion
95
a
so as to extend in the row direction. The second parallel portion
97
2
is formed between the main electrode portion
95
a
and the first parallel portion
97
1
in parallel with the main electrode portion
95
a
at a predetermined distance from the main electrode portion
95
a
so as to extend in the row direction. Each vertical portion
97
3
is integrated with the first parallel portion
97
1
and the second parallel portion
97
2
, and extends in the column direction perpendicular to the first parallel portion
97
1
and the second parallel portion
97
2
. Each top of the vertical portion
97
3
is electrically in contact with the lower face of the main electrode portion
95
a
. Each vertical portion
97
3
is formed over a position at which distances from adjacent division walls
13
in the display cell
12
in an area surrounded by a dashed line in
FIG. 6
are approximately equal. Also, the bus electrode portion
98
a
is made up of a metal film such as thick film of silver, and a thin film of aluminum, copper or a like, is integrated with the sub-electrode portion
96
a
, and is provided with a parallel portion
99
1
, and a plurality of vertical portions
99
2
provided over the division wall
13
. The parallel portion
99
1
is formed in parallel with the first parallel portion
97
1
at a predetermined distance from the first parallel portion
97
1
as not to be influenced by the discharge and so as to extend in the row direction. Each vertical portion
99
3
is integrated with the first parallel portion
97
1
, the second parallel portion
97
2
, and the parallel portion
99
1
and extends in the column direction perpendicular to the first parallel portion
97
1
, the second parallel portion
97
2
and the parallel portion
99
1
, an upper face of an end portion of each vertical portion
97
3
is electrically in contact with the lower face of the first parallel portion
97
1
. Similarly, the sub-electrode portion
96
b
is made up of metal films such as thick films of silver, or thin films of aluminum or copper and is provided with a first parallel portion
100
1
, a second parallel portion
100
2
, a plurality of vertical portions
100
3
formed for respective display cells
12
. Also, the bus electrode portion
98
b
is made up of metal films such as thick films of silver, or thin films of aluminum or copper, is integrated with the sub-electrode portion
96
b
and is provided with a parallel portion
101
1
, and a plurality of vertical portions
101
2
formed over the division wall
13
. The sub-electrode portion
96
a
and the sub-electrode portion
96
b
are in a line-ymmetric relationship in which a center axis of the discharge gap
94
is used as a symmetry line, and therefore, no detailed explanations of the sub-electrode portion
96
b
will given. Similarly, the bus electrode portion
98
a
and the bus electrode portion
98
b
are in a line-ymmetric relationship in which a center axis of the discharge gap
94
is used as a symmetry line, and therefore, no detailed explanations of the bus-electrode portion
96
b
will given.
Widths of the first parallel portion
97
1
and the first parallel portion
100
1
, widths of the second parallel portion
97
2
and the second parallel portion
100
2
, widths of the vertical portion
97
3
and the vertical portion
100
3
are 1 μm to 50 μm, preferably, 1 μm to 30 μm. In the fifth embodiment, both of an interval between the main electrode portion
95
a
and the second parallel portion
97
2
, and an interval between the second parallel portion
97
2
and the first parallel portion
97
1
are 30 μm to 140 μm. Similarly, both of an interval between the main electrode portion
95
b
and the second parallel portion
100
2
, and an interval between the second parallel portion
100
2
and the first parallel portion
100
1
are 30 μm to 140 μm. Also, both of an interval between the parallel portion
99
1
and the parallel portion
100
2
, forming the bus electrode portion
98
a
and the bus electrode portion
98
b
are preferably 30 μm to 60 μm to reduce the resistance values of the main electrode portion
95
a
and the main electrode portion
95
b
of which conductivity is low.
Additionally, the main electrode portion
95
a
and the main electrode portion
95
b
, the sub-electrode portion
96
a
and the sub-electrode portion
96
b
, the bus electrode portion
98
a
and the bus electrode portion
98
b
, and a dielectric layer (not shown) and a protection layer (not shown) which may be sequentially formed on a lower face of the front insulation substrate
92
(not shown) on which no main electrode portion
95
a
and no main electrode portion
95
b
, no sub-electrode portion
96
a
and no sub-electrode portion
96
b
, and no bus electrode portion
98
a
and no bus electrode portion
98
b
are formed are similar to those of a conventional PDP, and therefore, no explanations of those will be given. Also, a data electrode, a dielectric layer, a division wall, and three kinds of fluorescent layers (all not shown) which are sequentially formed on the back insulation substrate (not shown), and discharge gas to be filled up in a discharge gas space (not shown) are similar to those of the conventional PDP, and therefore, no explanations of those will be given. Also, a method of forming the sustaining electrode
93
a
and the sustaining electrode
93
b
and the bus electrode portion
98
a
and the bus electrode portion
98
b
included in the PDP
91
is approximately similar to that of the first embodiment except that a pattern shape in patterning of a photosensitive silver paste
43
(shown in
FIG. 2E
) since shapes of the sub-electrode portion
96
a
and the sub-electrode
96
b
are different from those of the sub-electrode portion
36
a
(shown in
FIG. 1
) and the sub-electrode portion
36
b
(shown in
FIG. 1
) and the bus electrode portion
98
a
and the bus electrode portion
98
b
are provided. Therefore, no explanations of the method will be given.
As described above, with the configuration of the fifth embodiment, since the bus electrode portion
98
a
and the bus electrode portion
98
b
are provided, the following effects can be obtained in addition to those of the first embodiment. Since the resistance values of the main electrode portion
95
a
and the main electrode portion
95
b
of which each conductivity is low are reduced by the parallel portion
99
1
and the parallel portion
100
1
included in the bus electrode portion
98
a
and the bus electrode portion
98
b
, it is unnecessary to reduce the resistance values by the first parallel portion
97
1
and the first parallel portion
100
1
. With this structure, it is unnecessary to make the widths of the first parallel portion
97
1
and the first parallel portion
100
1
larger to diffuse the discharge into the first parallel portion
97
1
and the first parallel portion
100
1
. Therefore, since it is possible to reduce the area of metal film which is not transparent and intercepts visible lights in comparison with the first embodiment, it is possible to make luminance higher and to improve luminous efficiency more.
It is thus apparent that the present invention is not limited to the above embodiments but may be changed and modified without departing from the scope and spirit of the invention.
For example, the first embodiment, as shown in
FIG. 2A
to
FIG. 2F
, shows the method in which the sub-electrode portion
36
a
and the sub-electrode portion
36
b
are formed after the main electrode portion
35
a
and the main electrode portion
35
b
are formed. The present invention is not limited to this, and the main electrode portion
35
a
and the main electrode portion
35
b
may be formed after the sub-electrode portion
36
a
and the sub-electrode portion
36
b
are formed. Other embodiments are similar to this.
Also, the first embodiment shows the method in which the sub-electrode portion
36
a
and the sub-electrode portion
36
b
are formed by patterning the photosensitive silver paste
43
. However, the present invention is not limited to this, and the sub-electrode portion
36
a
and the sub-electrode portion
36
b
(both shown in
FIG. 1
) may be formed by annealing after patterning the photosensitive silver paste
43
(shown in FIG.
2
E). Other embodiments are similar to this. When the sub-electrode portion
36
a
and the sub-electrode portion
36
b
are formed by patterning of the photosensitive silver paste
43
, there are advantages in that the process can be made simpler than and use rate of materials can be more improved than a case in which the sub-electrode portion
36
a
and the sub-electrode portion
36
b
are formed by patterning the photosensitive silver paste
43
.
Also, if only there is no discrepancy in the object and the structures, all embodiments can be diverted one another. For example, the bus electrode portion
98
a
and the bus electrode portion
98
b
may be integrated with sub-electrode portions in another embodiment.
Claims
- 1. A plasma display panel comprising:plural surface discharge electrode pairs extending in a first direction at predetermined intervals from each other, each of said plural surface discharge electrode pairs comprising a pair of sustaining electrodes with a discharge gap therebetween, each of said sustaining electrodes comprising, a stripe-shaped main electrode that is a transparent conductive thin film and that has a first side facing the discharge gap, and a sub-electrode that is a metal film electrically connected to said main electrode, said sub-electrode having a width narrower than a width of said main electrode, said sub-electrode being spaced from said main electrode at a second side of said main electrode opposite the first side.
- 2. The panel of claim 1, wherein said sub-electrode comprises a first portion parallel to and spaced from said main electrode and a second portion parallel to said first portion, said second portion being between and spaced from said first portion and said main electrode.
- 3. The panel of claim 2, wherein said sub-electrode further comprises a third portion that extends from said first portion to said main electrode and that electrically connects said first and second portions to each other and to said main electrode.
- 4. The panel of claim 3, further comprising a pair of divisional walls extending in a second direction perpendicular to the first direction, a space between said divisional walls defining a display cell, and wherein said third portion extends in the second direction and bisects the space between said divisional walls.
- 5. The panel of claim 4, wherein said sub-electrode further comprises a fourth portion that extends in the second direction from said first portion to said main electrode and that electrically connects said first and second portions to each other and to said main electrode, and wherein said fourth portion is aligned with one of said divisional walls.
- 6. The panel of claim 5, wherein said fourth portion has a width no wider than a width of the one of said divisional walls with which said fourth portion is aligned.
- 7. The panel of claim 5, wherein said fourth portion has a width no wider than one half a width of the one of said divisional walls with which said fourth portion is aligned.
- 8. The panel of claim 2, wherein said second portion has a width of 1 μm to 50 μm.
- 9. The panel of claim 2, wherein said second portion has a width of 1 μm to 30 μm.
- 10. The panel of claim 3, wherein said third portion has a width of 1 μm to 50 μm.
- 11. The panel of claim 3, wherein said third portion has a width of 1 μm to 30 μm.
- 12. The panel of claim 3, wherein said main electrode has a projection extending from the second side and wherein said third portion is connected to said projection.
- 13. The panel of claim 12, further comprising a pair of divisional walls extending in a second direction perpendicular to the first direction, a space between said divisional walls defining a display cell, wherein said third portion extends in the second direction and bisects the space between said divisional walls, and wherein said projection is midway between said divisional walls.
- 14. The panel of claim 12, wherein said projection has a length of 30 μm to 60 μm and a width of 30 μm to 60 μm.
- 15. The panel of claim 1, wherein said sub-electrode comprises a first portion parallel to and spaced from said main electrode, a second portion that extends from said first portion to said main electrode and connects said first portion to said main electrode, and a third portion connected to said first portion and separated from said second portion and from said main electrode, said portion having a first cross piece that extends toward said main electrode and a second cross piece that crosses said first cross piece and is parallel to said first portion.
- 16. The panel of claim 15, further comprising a pair of divisional walls extending in a second direction perpendicular to the first direction, a space between said divisional walls defining a display cell, wherein said first cross piece extends in the second direction and bisects the space between said divisional walls and wherein said second portion is aligned with one of said divisional walls.
- 17. The panel of claim 16, wherein said second portion has a width no wider than a width of the one of said divisional walls with which said second portion is aligned.
- 18. The panel of claim 16, wherein said second portion has a width no wider than one half a width of the one of said divisional walls with which said second portion is aligned.
- 19. The panel of claim 2, further comprising a bus electrode with a first bus electrode part that is parallel to and spaced from said first portion on a side of said first portion opposite said second portion and a second bus electrode part that connects said first bus electrode part to said first portion.
- 20. The panel of claim 1, wherein said main electrode has a width of 30 μm to 100 μm.
- 21. The panel of claim 1, wherein said main electrode has a width of 40 μm to 80 μm.
- 22. The panel of claim 12, wherein said first portion and said second portion each have a width of 30 μm to 100 μm.
- 23. The panel of claim 12, wherein said first portion and said second portion each have a width of 40 μm to 80 μm.
- 24. The panel of claim 2, wherein said first portion has a width of 30 μm to 60 μm.
- 25. The panel of claim 2, wherein a space between said main electrode and said first portion is 30 μm to 140 μm and wherein a space between said second portion and said first portion is 30 μm to 140 μm.
- 26. A method of making a plasma display panel, comprising the steps of:forming on a substrate plural surface discharge electrode pairs extending in first direction at predetermined intervals from each other, each of the plural surface discharge electrode pairs having a pair of sustaining electrodes with a discharge gap therebetween, each of the sustaning electrodes having a stripe-shaped main electrode that is a transparent conductive thin film and that has a first side facing the discharge gap; coating photo-sensitive silver paste on the substrate; and exposing and developing the photosensitive silver paste, patterning the developed silver paste, and annealing the patterned silver paste to form a sub-electrode that is electrically connected to the main electrode, the sub-electrode having a width narrower than a width of the main electrode the sub-electrode being spaced from the main electrode at a second side of the main electrode opposite the first side.
- 27. A method of making a plasma display panel, comprising the steps of:forming on a substrate plural surface discharge electrode pairs extending in a first direction at predetermined intervals from each other, each of the plural surface discharge electrode pairs having a pair of sustaining electrodes with a discharge gap therebetween, each of the sustaining electrodes having a striped-shaped main electrode that is transparent conductive thin film and that has a first side facing the discharge gap; coating silver paste on the substrate; and patterning the silver paste and annealing the patterned silver paste to form a sub-electrode that is electrically connected to the main electrode, the sub-electrode having a width narrower than a width of the main electrode, the sub-electrode being spaced from the main electrode at a second side of the main electrode opposite the first side.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2001-191765 |
Jun 2001 |
JP |
|
US Referenced Citations (10)
Number |
Name |
Date |
Kind |
6157128 |
Namiki et al. |
Dec 2000 |
A |
6195070 |
Shinoda et al. |
Feb 2001 |
B1 |
6411033 |
Mori et al. |
Jun 2002 |
B1 |
6445120 |
Kim et al. |
Sep 2002 |
B1 |
6489722 |
Yoshida et al. |
Dec 2002 |
B1 |
6492770 |
Amemiya et al. |
Dec 2002 |
B2 |
6495957 |
Kurogi et al. |
Dec 2002 |
B2 |
6513819 |
Oliver et al. |
Feb 2003 |
B1 |
6583560 |
Amemiya |
Jun 2003 |
B1 |
6714175 |
Shimada et al. |
Mar 2004 |
B1 |
Foreign Referenced Citations (3)
Number |
Date |
Country |
8-22772 |
Jan 1996 |
JP |
11-202831 |
Jul 1999 |
JP |
3036496 |
Feb 2000 |
JP |