This application claims the benefit of the Korean Patent Application No. 2003-0059506, filed on Aug. 27, 2003, which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a plasma display panel and a module thereof, and more particularly to a plasma display panel and a module thereof that is adaptive for reducing inductance as well as simplifying an assembly process of an integrated sustainer board.
2. Description of the Related Art
Recently, a plasma display panel (hereinafter, referred to as “PDP”) has been the center of attention as a flat panel display since it is easy to be made into a large-sized panel. The PDP generally displays a picture by controlling the gas discharge period of each pixel in accordance with digital video data. Such a PDP includes three electrodes as in
A discharge cell 30 shown in
Each of the sustain electrode pair 12A, 12B includes a transparent electrode and a metal electrode that is for compensating the high resistance of the transparent electrode. The sustain electrode pair 12A, 12B is divided into a scan electrode 12A and a sustain electrode 12B. The scan electrode 12A supplies a scan signal for address discharge and a sustain signal for sustain discharge, and the sustain electrode 12B supplies a sustain signal. The data electrode 20 is formed to cross the sustain electrode pair 12A, 12B. The data electrode 20 supplies a data signal for address discharge.
Electric charges generated by the discharge are accumulated at the upper dielectric layer 14 and the lower dielectric layer 22. The protective film 16 prevents the damage of the upper dielectric layer 14 caused by sputtering and increases the emission efficiency of secondary electrons. The dielectric layer 14, 22 and the protective film 16 enable to reduce the discharge voltage applied from the outside.
The barrier ribs 24 provide a discharge space together with the upper and lower substrates 10 and 18. And the barrier ribs 24 are formed in parallel to the data electrode 20 to prevent the ultraviolet ray generated by the gas discharge from leaking to adjacent cells. The phosphorus layer 26 is spread over the surface of the lower dielectric layer 22 and the barrier ribs 24 to generate red, green and blue visible rays. The discharge space is fully filled up with an inert gas such as He, Ne, Ar, Xe, Kr, a mixture discharge gas of the above gases or an excimer gas that can generate ultraviolet ray by discharge, for gas discharge.
The discharge cell 30 of such a structure sustains the discharge in a surface discharge by the sustain electrode pair 12A 12B after being selected as an opposite discharge by the data electrode 20 and the scan electrode 12A. Accordingly, a visible ray is emitted at the discharge cell 30 by having the phosphorus 26 emit light by the ultraviolet ray that is generated upon sustain discharge. In case of this, the discharge cell 30 controls a sustain discharge period, i.e., the number of sustain discharge, in accordance with the video data to realize the gray scale required for image display. And, the color of one pixel is realized by compounding three discharge cells where each of red, green and blue phosphorus 26 is coated.
The scan electrode lines Y1 to Ym supplies scan pulses and sustain pulses to make the discharge cells 30 scanned by lines and additionally to make discharge sustained at the discharge cells 30. The sustain electrode lines Z1 to Zm commonly supply sustain pulses to make discharge sustained at the discharge cells 30 along with the scan electrode lines Y1 to Ym. The data electrode lines X1 to Xn supply data pulses, which are synchronized with the scan pulses, by lines to make a specific discharge cells selected, wherein the selected discharge cells are to have discharge sustained in accordance with the logical value of the data pulse.
A typical method in such a PDP driving method is an Address and Display Separation ADS driving method in which the PDP is driven with one frame being divided into an address period and a display period, i.e., a sustain period. In the ADS driving method, one frame is divided into a plurality of subfields corresponding to each bit of video data, and each of the subfields is divided again into a reset period, an address period and a sustain period. In such a subfield, the reset period RPD is equal to the address period APD and the sustain period SPD is given a different weight value. Accordingly, the PDP expresses the gray scale corresponding to the video data by compounding the sustain periods during which discharge is sustained, in accordance with the video data.
As in
In the address period APD, scan pulses SP are supplied to the scan electrode lines Y1 to Ym by lines and data pulses DP are selectively supplied to the data electrode lines X1 to Xn in synchronization with the scan pulse SP. Accordingly, an address discharge is generated at the discharge cells to which the scan pulses SP and the data pulses DP are supplied, thus they become on-state where the wall charges are sufficiently formed for the next sustain discharge. But on the other hand, no address discharge is generated at the discharge cells to which no scan pulse SP and data pulse DP is supplied, thereby remaining at the off-state.
In the sustain period SPD, Y and Z sustain pulses SUSPy, SUSPz are alternately supplied to the scan electrode lines Y1 to Ym and the sustain electrode lines Z1 to Zm to make the state of the discharge cell determined in the address period APD sustained. More specifically, the discharge cells of on-state in which the wall charges are sufficiently formed in the address period APD remain at the on-state by discharge caused by the Y and Z sustain pulses SUSPy, SUSPz, and the discharge cells of off-state remain at the off-state without discharge.
In an erasure period EPD subsequent to the sustain period SPD, erasure pulses EP are supplied to the sustain electrode lines Z1 to Zm to cause an erasure discharge, thereby eliminating the wall charges existing at all the discharge cells 30.
In order to supply such driving waveforms to the PDP shown in
A PDP module shown in
The Y driving board 45 includes a scan driver board 44 to generate reset pulses RP and scan pulses SP shown in
The Z sustainer board 48 generates the bias pulse BP and the Z sustain pulse SUSz shown in
The data driver board 50 generates the data pulse DP shown in
The control board 42 generates X, Y, Z timing control signals. And the control board 42 supplies the Y timing control signal to the Y driving board 45 through a first conductive path 56, the Z timing control signal to the Z sustainer board 48 through a second conductive path 58, and the X timing control signal to the data driver board 50 through a third conductive path 60.
At this moment, each conductive path is any one of a flexible flat cable or a flexible printed cable.
When driving the PDP module with such a composition, a current path in the sustain period is as follows. Firstly, when the Y sustain pulse SUSPy is supplied to the scan electrode lines Y1 to Ym in the Y driving board 45, a first current path is “Y driving board 45→scan electrode line Y1 to Ym→panel capacitor→sustain electrode line Z1 to Zm→Z sustainer board 48→heat proof plate 64→Y driving board 45”. And when the Z sustain pulse SUSPz is supplied to the sustain electrode lines Z1 to Zm in the Z sustainer board 48, a second current path is “Z sustainer board 48→sustain electrode line Z1 to Zm→panel capacitor→scan electrode line Y1 to Ym→Y driving board 45→heat proof plate 64→Z sustainer board 48”.
However, the PDP module shown in
The PDP module shown in
The PDP 70 has a structure where an upper plate 90 and a lower plate 92 are bonded to form a gas discharge space. Herein, the scan electrode lines Y1 to Ym and the sustain electrode lines Z1 to Zm are formed in parallel in the upper plate 90 as shown in
The heat proof plate 86 enables the heat generated at the PDP 70 to be easily emitted to the outside. For this, the heat proof plate 86 is installed to overlap the rear surface of the PDP 70 on the whole.
The control board 72 generates X, Y, Z timing control signals. And the control board 72 supplies the Y and Z timing control signal to the Y-Z integrated board 100 through a first conductive path 76, and the X timing control signal to the data driver board 80 through a second conductive path 78.
The data driver board 80 generates data pulses DP, as shown in
The Y-Z integrated board 100 includes a scan driver board 73, a Y-Z sustainer board 74 and a connector 75 to connect the two boards 73, 74 with each other.
The scan driver board 73, as shown in
Herein, the Y conductive path 82 is connected to the scan driver board 73 and the Y pad area 94 of the PDP 70, as shown in
The Y-Z sustainer board 74, as shown in
Herein, the Z conductive path 84, as shown in
In this way, the Y conductive path 82 is connected to the scan driver board 73 and the Z conductive path 84 is connected to the Y-Z sustainer board 74. Herein, the Y conductive path 82 is connected to the front surface(on the basis of PDP 70) or the rear surface of the scan driver board 73, and the Z conductive path 82 is connected to the front surface or the rear surface of the Y-Z sustainer board 74.
In case that the PDP module with such a configuration is driven, the current path is as follows in the sustain period SPD. Firstly, when the Y-Z sustainer board 74 supplies the Y sustain pulse SUSPy to the scan electrode lines of the PDP 70, a first current path is “Y-Z sustainer board 74→connector→scan driver board 73→Y conductive path 82→scan electrode line→panel capacitor→sustain electrode line→Z conductive path 84→Y-Z sustainer board 74”. And, when the Y-Z sustainer board 74 supplies the Z sustain pulse SUSPz to the sustain electrode lines of the PDP 70, a second current path is “Y-Z sustainer board 74→Z conductive path 84→sustain electrode line→panel capacitor→scan electrode line→Y conductive path 82→scan driver board 73→connector 75→Y-Z sustainer board 74”
At this moment, each conductive path is any one of a flexible flat cable or a flexible printed cable.
In such a PDP module, the Z conductive path 84 might easily give electromagnetic interference EMI to the control board 72 and the power source board (not shown) or be affected by it. Due to this, it is possible that the inductance of the Z conductive path 84 increases. Accordingly, when the Y-Z sustainer board 74 and sustain electrode lines are connected by use of that long Z conductive path 84, an electromagnetic shielding protective film should be used to reduce noise or inductance. But, there is a problem that such a protective film can be easily torn off in an assembly process.
Accordingly, it is an object of the present invention to provide a plasma display panel and a module thereof that is adaptive for reducing inductance as well as simplifying an assembly process of an integrated sustainer board.
In order to achieve these and other objects of the invention, a plasma display panel module according to an aspect of the present invention includes a plasma display panel having scan electrode lines, sustain electrode lines and data electrode lines formed at a display area, a common electrode line formed at a non-display area to be commonly connected to the sustain electrode lines, a first pad formed at the non-display area to be connected with the scan electrode lines, and a second pad formed at a non-display area of any one of an upper plate or a lower plate to be connected to the common line; an integrated driving board to drive the scan electrode lines and the sustain electrode lines, a first conductive path connected between the integrated driving boards and the first pad; and a second conductive path connected between the integrated driving board and the second pad.
In the plasma display panel module, the second pad is formed to be linearly connected to any one of the upper side or lower side of the integrated driving board.
In the plasma display panel module, the common electrode line includes a first common electrode line formed at one side of the plasma display panel to be commonly connected to the sustain electrode lines; and a second common electrode line formed at the upper side of the plasma display panel to be connected to the one side of the first common electrode line.
In the plasma display panel module, the first and second common electrode lines are formed at the same substrate.
In the plasma display panel module, the first and second common electrode lines are not formed at the same substrate.
In the plasma display panel module, the plasma display panel further includes a connecting part to connect the first common electrode line with the second common electrode line.
In the plasma display panel module, the connecting part is any one of a flexible flat cable or a flexible printed cable.
In the plasma display panel module, the first and second pads are formed at the same substrate.
In the plasma display panel module, the first and second pads are not formed at the same substrate.
In the plasma display panel module, the first and second conductive paths are any one of a flexible flat cable or a flexible printed cable.
In the plasma display panel module, the integrated driving board includes a scan driver board to generate a scan pulse which is to be supplied to the scan electrode lines; an integrated sustainer board to generate a first sustain pulse which is to be supplied to the san electrode lines and a second sustain pulse which is to be supplied to the sustain electrode lines; and a connector to connect the scan driver board with the integrated sustainer board.
The plasma display panel module further includes a heat proof plate to emit heat from the plasma display panel; a data driver board to generate a data pulse which is to be supplied to the data electrode lines; a control board to supply a corresponding signal to each of the scan driver board, the integrated board and the data driver board; and a power source board to supply required power to each of the boards.
A plasma display panel according to another aspect of the present invention includes a plurality of scan electrode lines, a plurality of sustain electrode lines and a plurality of data electrode lines formed at a display area; a common electrode line formed at a non-display area to be commonly connected to the sustain electrode lines; a first pad formed at the non-display area to be connected to the scan electrode lines; and a second pad formed at the non-display area of any one of the upper side or the lower side of the panel to be connected to the common electrode line.
The common electrode line includes a first common electrode line formed at one side of the plasma display panel to be commonly connected to the sustain electrode lines; and a second common electrode line formed at the upper side of the plasma display panel to be connected to the one side of the first common electrode line.
The first and second common electrode lines are formed at the same substrate.
The first and second common electrode lines are not formed at the same substrate.
The plasma display panel further includes a connecting part to connect the first common electrode line with the second common electrode line.
The connecting part is any one of a flexible flat cable or a flexible printed cable.
The first and second pads are formed at the same substrate.
The first and second pads are not formed at the same substrate.
These and other objects of the invention will be apparent from the following detailed description of the embodiments of the present invention with reference to the accompanying drawings, in which:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
With reference to
Referring to
The PDP 170, as shown in
The heat proof plate 186 enables the heat generated at the PDP 170 to be easily emitted to the outside. For this, the heat proof plate 186 is installed to overlap the rear surface of the PDP 170 on the whole.
The control board 172 generates X, Y, Z timing control signals. And the control board 172 supplies the Y and Z timing control signal to the Y-Z integrated board 200 through a first conductive path 176, and the X timing control signal to the data driver board 180 through a second conductive path 178.
The data driver board 180 generates data pulses DP, as shown in
The Y-Z integrated board 200 includes a scan driver board 173, a Y-Z sustainer board 174 and a connector 175 to connect the two boards 173, 174 with each other.
The scan driver board 173, as shown in
Herein, the Y conductive path 182 is connected to the scan driver board 173 and the first area 194 of the upper plate 190 of the PDP 170, as shown in
The Y-Z sustainer board 174, as shown in
Herein, the Z conductive path 184, as shown in
In this way, the Y conductive path 182 is connected to the scan driver board 173 and the Z conductive path 184 is connected to the Y-Z sustainer board 174. Herein, the Y conductive path 182 is connected to the front surface (on the basis of PDP 170) or the rear surface of the scan driver board 173, and the Z conductive path 182 is connected to the front surface or the rear surface of the Y-Z sustainer board 174.
In case that the PDP module with such a configuration is driven, the current path is as follows in the sustain period SPD. Firstly, when the Y-Z sustainer board 174 supplies the Y sustain pulse SUSPy to the scan electrode lines of the PDP 170, a first current path is “Y-Z sustainer board 174→connector 175→scan driver board 173→Y conductive path 182→scan electrode line→panel capacitor→sustain electrode line→the first common electrode line 191A→the second and third common electrode lines 191B, 191C→Z conductive path 184→Y-Z sustainer board 174”. And, when the Y-Z sustainer board 174 supplies the Z sustain pulse SUSPz to the sustain electrode lines of the PDP 170, a second current path is “Y-Z sustainer board 174→Z conductive path 184→the second and third common electrode lines 191B, 191C→the first common electrode line 191A→sustain electrode line→panel capacitor→scan electrode line→Y conductive path 182→scan driver board 173→connector 175→Y-Z sustainer board 174”
At this moment, each conductive path is any one of a flexible flat cable or a flexible printed cable.
In the PDP module, the first to third common electrode lines 191A, 191B, 191C commonly connected to the sustain electrode lines can have an effect that electromagnetic interference EMI with the control board 172 and the power board (not shown) is shielded by the heat proof plate 186. Also, the Y conductive path 182 and the Z conductive path 184 are connected to one side of the PDP 170, thereby simplifying its assembly process. However, even though the length of the Z conductive path 184 used when connecting the Z pad 197 with the Y-Z sustainer board 174 is shortened, it has a certain length, thus the inductance in the path increases to reduce energy recovery efficiency. Accordingly, the PDP module is limited as shown in
Referring to
The PDP 270, as shown in
Further, a common area 296 is provided at a non-display area of one side of the upper plate 290 so that a first common electrode line 291A is formed to be commonly connected to the sustain electrode lines. A Z pad area 294B is provided at a non-display area of the upper side of the upper plate 290 so that a second common electrode line 291B is formed to be connected to one side of the first conimon electrode line 291A. And a Z pad 297 is formed to be connected to the second common electrode line 29 lB. Herein, the Z pad 297 is formed at the upper side of the upper plate 290, which is non-display area, to be connected to the Y-Z integrated board 300 in the shortest distance. And, a Y pad area 294A is provided in the non-display area of the other side of the upper plate 290. In the Y pad area 294A, a Y pad 295 is formed to be connected to the scan electrode lines. And, an X pad area (not shown) is provided at one side of the lower plate 292 and an X pad (not shown) is formed to be connected to the data lines. The upper plate 290 and lower plate 292 are bonded to have the Y pad area 294A, the Z pad area 294B, the common area 296 and the X pad area (not shown) exposed.
The heat proof plate 286 enables the heat generated at the PDP 270 to be easily emitted to the outside. For this, the heat proof plate 286 is installed to overlap the rear surface of the PDP 270 on the whole.
The control board 272 generates X, Y, Z timing control signals. And the control board 272 supplies the Y and Z timing control signal to the Y-Z integrated board 300 through a first conductive path 276, and the X timing control signal to the data driver board 280 thorough a second conductive path 278.
The data driver board 280 generates data pulses DP, as shown in
The Y-Z integrated board 300 includes a scan driver board 273, a Y-Z sustainer board 274 and a connector 275 to connect the two boards 273, 274 with each other.
The scan driver board 273, as shown in
Herein, the Y conductive path 282 is connected to the scan driver board 273 and the Y pad area 294A of the upper plate 290 of the PDP 270, as shown in
The Y-Z sustainer board 274, as shown in
Herein, the Z conductive path 284, as shown in
In this way, the Y conductive path 282 is connected to the scan driver board 273 and the Z conductive path 284 is connected to the Y-Z sustainer board 274. Herein, the Y conductive path 282 is connected to the front surface(on the basis of PDP 270) or the rear surface of the scan driver board 273, and the Z conductive path 282 is connected to the front surface or the rear surface of the Y-Z sustainer board 274.
In case that the PDP module with such a configuration is driven, the current path is as follows in the sustain period SPD. Firstly, when the Y-Z sustainer board 274 supplies the Y sustain pulse SUSPy to the scan electrode lines of the PDP 270, a first current path is “Y-Z sustainer board 274→connector 275→scan driver board 273→Y conductive path 282→scan electrode line→panel capacitor→sustain electrode line→the first common electrode line 291A→the second common electrode lines 291B→Z conductive path 284→Y-Z sustainer board 274”. And, when the Y-Z sustainer board 274 supplies the Z sustain pulse SUSPz to the sustain electrode lines of the PDP 270, a second current path is “Y-Z sustainer board 274→Z conductive path 284→the second common electrode lines 291B→the first common electrode line 291A→sustain electrode line→panel capacitor→scan electrode line→Y conductive path 282→scan driver board 273→connector 275→Y-Z sustainer board 274”
At this moment, each conductive path is any one of a flexible flat cable or a flexible printed cable.
In the PDP module, the first and second common electrode lines 291A, 2915 commonly connected to the sustain electrode lines can have an effect that electro-magnetic interference EMI with the control board 272 and the power board (not shown) is shielded by the heat proof plate 286.
Also, the Z pad 297 is formed at the Z pad area 294B of the upper side of the non-display area of the PDP upper plate 290 to be connected the Z conductive path 284 with the Y-Z sustainer board in the shortest distance, thereby the inductance decrease to increase energy recovery efficiency. In addition, the Y conductive path 282 and the Z conductive path 284 are connected in the shortest distance to enable its assembly process simplified.
On the other hand, when the second common electrode line 291B is formed at the lower side of the PDP upper plate 290, the Z pad 297 connected to the second common electrode line 291B can be formed at the lower side of the PDP upper plate 290 to be connected with the Y-Z sustainer board 274 in the shortest distance.
Referring to
The PDP 370, as shown in
A Z pad area 394B is provided at the non-display area of the upper side of the upper plate 390, and a second common electrode line 391B connected with one side of the first common electrode line 391A is formed and a Z pad 397 connected to the second common electrode line 391B is formed. Herein, the Z pad 337 is formed at the upper side of the lower plate 392, which is a non-display area and is connected with the Y-Z integrated board 400 in the shortest distance. And, an X pad area (not shown) is provided at one side of the lower plate 392 and an X pad (not shown) is formed to be connected to the data lines. The upper plate 390 and lower plate 392 are bonded to have the Y pad are 394A, the common are 396 and the X pad area (not shown) exposed.
The heat proof plate 386 enables the heat generated at the PDP 370 to be easily emitted to the outside. For this, the heat proof plate 386 is installed to overlap the rear surface of the PDP 370 on the whole.
The control board 372 generates X, Y, Z timing control signals. And the control board 372 supplies the Y and Z timing control signal to the Y-Z integrated board 400 through a first conductive path 376, and the X timing control signal to the data driver board 380 through a second conductive path 378.
The data driver board 380 generates data pulses DP, as shown in
The Y-Z integrated board 400 includes a scan driver board 373, a Y-Z sustainer board 374 and a connector 375 to connect the two boards 373, 374 with each other.
The scan driver board 373, as shown in
The Y-Z sustainer board 374, as shown in
Herein, the Z conductive path 384, as shown in
In this way, the Y conductive path 382 is connected to the scan driver board 373 and the Z conductive path 384 is connected to the Y-Z sustainer board 374. Herein, the Y conductive path 382 is connected to the front surface(on the basis of PDP 370) or the rear surface of the scan driver board 373, and the Z conductive path 382 is connected to the front surface or the rear surface of the Y-Z sustainer board 374.
In case that the PDP module with such a configuration is driven, the current path is as follows in the sustain period SPD. Firstly, when the Y-Z sustainer board 374 supplies the Y sustain pulse SUSPy to the scan electrode lines of the PDP 370, a first current path is “Y-Z sustainer board 374→connector 375→scan driver board 373→Y conductive path 382→scan electrode line→panel capacitor→sustain electrode line→the first common electrode line 391A→connecting part 398→the second common electrode line 391B→Z conductive path 384→Y-Z sustainer board 374”. And, when the Y-Z sustainer board 374 supplies the Z sustain pulse SUSPz to the sustain electrode lines of the PDP 370, a second current path is “Y-Z sustainer board 374→Z conductive path 384→the second common electrode line 391B→connecting part 398→the first common electrode line 391A→sustain electrode line→panel capacitor→scan electrode line→Y conductive path 382→scan driver board 373→connector 375→Y-Z sustainer board 374”
At this moment, each conductive path is any one of a flexible flat cable or a flexible printed cable.
In the PDP module, the second common electrode line 391B formed at the lower plate 392 can have an effect that electro-magnetic interference EMI with the control board 372 and the power board (not shown) is shielded by the heat proof plate 386.
Also, the Z pad 397 is formed at the upper side, which is the non-display area, of the PDP lower plate 392 to connect the Z conductive path 384 with the Y-Z sustainer board 374 in the shortest distance, thus the inductance is reduced to increase energy recovery efficiency. At the same time, it assembly process can be simplified by connecting the Y conductive path 382 and the Z conductive path 384 with the PDP 370.
As described above, the plasma display panel and the module thereof according to the embodiment of the present invention integrates the Y sustain circuit and the Z sustain circuit into one board to simplify the configuration of circuit board. Especially, the plasma display panel and the module thereof according to the embodiment of the present invention forms the common electrode lines commonly connected to the sustain electrode lines at the non-display area of the upper plate or the lower plate of the plasma display panel, and forms the Z pad connected to the common electrode lines at the non-display area of the upper side of the upper plate or the upper side of the lower plate of the plasma display panel to be connected with the Y-Z sustainer board in the shortest distance, thereby reducing the inductance to increase energy recovery efficiency. Also, the Y pad and the Z pad are formed to be connected with the Y-Z sustainer board in the shortest distance so that its assembly process can be simplified.
Although the present invention has been explained by the embodiments shown in the drawings described above, it should be understood to the ordinary skilled person in the art that the invention is not limited to the embodiments, but rather that various changes or modifications thereof are possible without departing from the spirit of the invention. Accordingly, the scope of the invention shall be determined only by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2003-0059506 | Aug 2003 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5369338 | Kim | Nov 1994 | A |
6118214 | Marcotte | Sep 2000 | A |
6559815 | Kang et al. | May 2003 | B1 |
6621234 | Itoh et al. | Sep 2003 | B2 |
6677664 | Inoue et al. | Jan 2004 | B2 |
6750937 | Karasawa et al. | Jun 2004 | B2 |
6989817 | Tajima | Jan 2006 | B2 |
7091665 | Nomoto et al. | Aug 2006 | B2 |
7321345 | Choi et al. | Jan 2008 | B2 |
20020043621 | Aitken | Apr 2002 | A1 |
20020154075 | Sato et al. | Oct 2002 | A1 |
20040232838 | Masuda et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
1279458 | Jan 2001 | CN |
1 065 694 | Jan 2001 | EP |
10-2004-0088939 | Oct 2004 | KR |
WO 03003400 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050078059 A1 | Apr 2005 | US |