Plasma display panel having sealing structure

Information

  • Patent Grant
  • 7019461
  • Patent Number
    7,019,461
  • Date Filed
    Monday, April 28, 2003
    21 years ago
  • Date Issued
    Tuesday, March 28, 2006
    18 years ago
Abstract
An AC plasma display panel has a pair of panels disposed in spaced opposed relation, and each having a plurality of electrodes formed on an opposed surface thereof and mostly covered with a dielectric layer; and a sealing member which seals the periphery of the pair of panels. The electrodes each has a portion uncovered with the dielectric layer, and the sealing member is disposed in contact with the uncovered portions of the electrodes. With this arrangement, the discharge space can be kept gas-tightly sealed by the sealing member without communication with the outside of the display panel which may otherwise occur due to the presence of voids on opposite sides and surfaces of the electrodes.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is related to Japanese patent application No. 2002-133997 filed on May 9, 2002, whose priority is claimed under 35 USC § 119, the disclosure of which is incorporated by reference in its entirety.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a plasma display panel and, more particularly, to an AC plasma display panel having a sealing structure for isolating a discharge space from an external environment.


2. Description of the Related Art


A conventional AC plasma display panel will be described with reference to FIGS. 6 to 8. FIG. 6 is a partial perspective view illustrating a plasma display panel of triode surface discharge type known as a typical AC panel, and FIGS. 7(A) and 7(B) are a top view and a sectional view, respectively, illustrating major portions of a front panel of the plasma display panel. FIG. 8 is a sectional view illustrating major portions of the plasma display panel.


As shown, the conventional plasma display panel of triode surface discharge type includes a front panel 101 having pairs of main electrodes 111 for display discharge and a rear panel having address electrodes 121 for address discharge. A discharge gas of a xenon/neon gas mixture is filled in a discharge space defined between the front panel 101 and the rear panel 102. A sealing member 103 is provided between the front panel 101 and the rear panel 102 around a display region ES for sealing the discharge space from an external environment.


The main electrodes 111 in each pair are arranged in parallel adjacent relation on an inner surface of a glass substrate 112 of the front panel 101. One of the main electrodes 111 in each pair serves as a scan electrode for causing address discharge cooperatively with any of the address electrodes 121. The main electrodes 111 each include a transparent electrode 111a and a bus electrode 111b, and are covered with a dielectric layer 113 having a thickness of about 30 μm. A protective film 114 of MgO having a thickness of several thousands angstroms is provided on the surface of the dielectric layer 113.


The address electrodes 121 are arranged in intersecting relation to the main electrode pairs 111 on an inner surface of a glass substrate 122 of the rear panel 102, and covered with a dielectric layer 123 having a thickness of about 10 μm. Barrier ribs 124 each having a height of 150 μm are provided in a striped configuration between the address electrodes 121 on the dielectric layer 123, so that the barrier ribs 124 and the address electrodes 121 are arranged in alternating relation.


Next, an explanation will be given to how to produce the plasma display panel. For preparation of the front panel 101, the transparent electrodes 111a are first formed on the glass substrate 112 by a sputtering method. Then, Cr, Cu and Cr films are sequentially formed over the transparent electrodes 111a on the glass substrate 112, and a resist pattern is formed on the Cr, Cu and Cr films, which are in turn etched for formation of the bus electrodes 111b in association with the transparent electrodes 111a. Thus, the main electrode pairs 111 are formed. Then, SiO2 is deposited on the glass substrate 112 formed with the main electrode pairs 111 by a gas-phase method such as a CVD method for formation of the dielectric layer 113. Finally, MgO is deposited on the dielectric layer 113 by a vacuum vapor deposition method for formation of the protective film 114.


After the rear panel 102 is prepared, the front panel 101 and the rear panel 102 are combined in the following manner. A sealing glass paste is applied on the dielectric layer 113 of the front panel 101 around the display region ES by a dispenser method (this state is shown in FIGS. 7(A) and 7(B) which illustrate the front panel 101 in plan and in section, respectively). Then, the front panel 101 and the rear panel 102 are combined in opposed relation, and heat-treated. In the heat treatment, the glass paste is baked for formation of the sealing glass member 103. Thus, the discharge space is sealed (see FIG. 8).


Although the formation of the dielectric layer 113 is achieved by depositing SiO2 by the gas-phase method (e.g., the CVD method) in the aforesaid method, a ZnO-based frit glass is otherwise employed as a material for the dielectric layer 113a. In a prior art, a lead-containing frit glass (e.g., a PbO-based frit glass) is also used for the formation of the dielectric layer 113, but the lead-containing frit glass has recently become obsolete from the viewpoint of environmental issues and recycling.


When the bus electrodes 111b are formed in association with the transparent electrodes 111a by sequentially forming the Cr, Cu and Cr films over the transparent electrodes 111a on the glass substrate 112 of the front panel 101, forming a resist pattern on the Cr, Cu and Cr films, and etching the Cr, Cu and Cr films in the production of the conventional AC plasma display panel having the aforesaid construction, the bus electrodes 111b are liable to overhang. This makes it impossible to properly cover the bus electrodes 111b with the dielectric layer 113 formed by the gas-phase method (e.g., the CVD method). Hence, there is a possibility that voids are present on opposite sides of the bus electrodes 111b. If the front panel 101 is prepared by forming the protective film 114 on the dielectric layer 113 with the voids present on the opposite sides of the bus electrodes 111b and the plasma display panel is produced by combining the thus prepared front panel 101 and the rear plate 102, sealing the front panel 101 and the rear panel 102 by the sealing glass member 103 and filling the discharge gas in the discharge space, the discharge space is likely to communicate with the outside of the panel through the voids present on the opposite sides of the bus electrodes 111b. Therefore, the discharge space cannot be kept gas-tightly sealed. Further, where the dielectric layer 113 is formed of a PbO-free frit glass, the adhesion between the dielectric layer 113 and the bus electrodes 111b is poor. Therefore, voids are likely to be present between the dielectric layer 113 and the bus electrodes 111b.


SUMMARY OF THE INVENTION

To solve the aforesaid drawbacks, the present invention is directed to an AC plasma display panel having a discharge space kept gas-tightly sealed without suffering from the influence of voids present on the opposite sides and surfaces of electrodes.


In accordance with the present invention, there is provided an AC plasma display panel, which comprises: a pair of panels disposed in spaced opposed relation, and each having a plurality of electrodes formed on an opposed surface thereof and mostly covered with a dielectric layer; and a sealing member which seals the periphery of the pair of panels; wherein the electrodes each have a portion uncovered with the dielectric layer, and the sealing member is disposed in contact with the uncovered portions of the electrodes. In the present invention, the electrodes are each partly uncovered with the dielectric layer, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, no voids are present on the opposite sides and surfaces of the electrodes, so that a discharge space defined between the panels can be kept gas-tightly sealed by the sealing member without communication with the outside of the display panel which may otherwise occur due to the presence of voids on the opposite sides and surfaces of the electrodes. Thus, the plasma display panel can ensure proper display by stable electric discharge for a long period of time.


In the inventive plasma display panel, the dielectric layer has a cut-away portion formed in a peripheral region thereof, and the sealing member contacts the uncovered portions of the electrodes via the cut-away portion of the dielectric layer. In this case, the cut-away portion is not formed on the peripheral edge of the dielectric layer but in the peripheral region of the dielectric layer, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, the discharge space can be kept gas-tightly sealed by the scaling member, and portions of the dielectric layer located on longitudinally opposite ends of the electrodes can easily be etched.


In the inventive plasma display panel, the dielectric layer is composed of a lead-free frit glass. In this case, the electrodes are mostly covered with the dielectric layer of the lead-free frit glass, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, the discharge space can be kept gas-tightly sealed by the sealing member. Further, no lead-based pollutant is generated when the plasma display panel is scrapped.


In the inventive plasma display panel, the electrodes each comprise a plurality of thin electrode films. In this case, the electrodes each comprising the plurality of thin electrode films are provided on the panel and mostly covered with the dielectric layer, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, the discharge space can be kept gas-tightly sealed by the sealing member, even if voids are present between the electrodes and the dielectric layer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1(A) and 1(B) are a top view and a sectional view, respectively, illustrating major portions of a front panel of a plasma display panel according to a first embodiment of the present invention;



FIG. 2 is a sectional view illustrating major portions of the plasma display panel according to the first embodiment;



FIGS. 3(A) and 3(B) are a top view and a sectional view, respectively, illustrating major portions of a front panel of a plasma display panel according to a second embodiment of the present invention;



FIG. 4 is a sectional view illustrating major portions of the plasma display panel according to the second embodiment;



FIG. 5 is a sectional view illustrating major portions of a plasma display panel according to a modification of the first embodiment;



FIG. 6 is a partial perspective view illustrating a plasma display panel of triode surface discharge type known as a typical AC panel;



FIGS. 7(A) and 7(B) are a top view and a sectional view, respectively, illustrating major portions of a front panel of the plasma display panel shown in FIG. 6; and



FIG. 8 is a sectional view illustrating major portions of the plasma display panel shown in FIG. 6.





DETAILED DESCRIPTION OF THE INVENTION

First Embodiment


A plasma display panel according to a first embodiment of the present invention will hereinafter be described with reference to FIGS. 1(A), 1(B) and 2. FIGS. 1(A) and 1(B) are a top view and a sectional view, respectively, illustrating major portions of a front panel of the plasma display panel according to this embodiment, and FIG. 2 is a sectional view illustrating major portions of the plasma display panel according to this embodiment.


As shown, the plasma display panel according to this embodiment includes a front panel 1 having pairs of main electrodes 11 for display discharge, and a rear panel 2 having address electrodes 21 for address discharge, like the conventional plasma display panel. The front panel 1 and the rear panel 2 are disposed in spaced opposed relation, and a sealing glass member 3 is provided between the front panel 1 and the rear panel 2 in direct contact with the electrodes without intervention of a dielectric layer 13 to define a sealed discharge space.


The main electrodes 11 in each pair are arranged in parallel adjacent relation on an inner surface of a glass substrate 12 of the front panel 1. One of the main electrodes 11 in each pair serves as a scan electrode for causing address discharge cooperatively with any of the address electrodes 21. The main electrodes 11 each include a transparent electrode 11a and a bus electrode 11b, and are mostly covered with the dielectric layer 13, which has a thickness of about 30 μm. A protective film 14 of MgO having a thickness of several thousands angstroms is provided on the surface of the dielectric layer 13.


The address electrodes 21 are arranged in intersecting relation to the main electrode pairs 11 on an inner surface of a glass substrate 22 of the rear substrate 2, and covered with a dielectric layer 23 having a thickness of about 10 μm. Barrier ribs 24 each having a height of 150 μm are provided in a striped configuration between the address electrodes 21 on the dielectric layer 23, so that the barrier ribs 24 and the address electrodes 21 are arranged in alternating relation.


The sealing glass member 3 is disposed between the front panel 1 and the rear panel 2 around a display region ES, and kept in contact with the main electrodes 11 on the front panel 1. Even if air bubbles are present in the dielectric layer 13, the discharge space can be kept gas-tightly sealed.


Next, an explanation will be given to how to form the front panel 1, how to form the rear panel 2, and how to combine the front panel 1 and the rear panel 2 in the production of the plasma display panel according to this embodiment.


First, the transparent electrodes 11a are formed on the major surface of the glass substrate 12 of the front panel 1. The formation of the transparent electrodes 11a is achieved by forming a tin oxide film and an indium/tin oxide film on the entire glass substrate 12 by a sputtering method and patterning these films by a photolithography method.


Then, the bus electrodes 11b are formed on the glass substrate 12 formed with the transparent electrodes 11a. The formation of the bus electrodes 11b is achieved by forming Cr, Cu and Cr films over the glass substrate 12 by a sputtering method and patterning these films into a predetermined configuration by a photolithography method in substantially the same manner as the formation of the transparent electrodes 11a. The transparent electrodes 11a and the bus electrodes 11b formed on the glass substrate 12 constitute the main electrode pairs 11.


Then, the dielectric layer 13 is formed on the glass substrate 12 formed with the main electrode pairs 11 by a plasma CVD method. In the plasma CVD method, a predetermined substance is deposited on an object by generating a plasma. The dielectric layer 13 is not formed on the entire glass substrate 12 of the front panel 1, but formed as covering a portion of the glass substrate 12 excluding longitudinally opposite end portions of the bus electrodes 11b as shown in FIG. 1(A) for electrical connection between the bus electrodes and an external power source. Alternatively, the formation of the dielectric layer 13 may be achieved by once forming a dielectric film on the entire surface of the glass substrate, and etching off portions of the dielectric film overlying the longitudinally opposite end portions of the bus electrodes 11b. Then, the protective film 14 of MgO is formed on the dielectric layer 13 by a vacuum vapor deposition method. Thus, the front panel 1 is prepared.


Subsequently, the address electrodes 21 are formed on the glass substrate 22 of the rear panel 2 in substantially the same manner as in the preparation of the front panel 1. The formation of the address electrodes 21 is achieved by any of various methods hitherto proposed. Exemplary methods include a pattern printing method in which an electrode material (e.g., Ag) is deposited on a substrate by printing, a chemical etching method in which an electrode material is applied on the entire substrate, then baked and chemically etched, and a lift-off method in which a dry film photoresist is applied on the entire substrate and then patterned.


The dielectric layer 23 is formed on the glass substrate 22 formed with the address electrodes 21 in substantially the same manner as in the formation of the dielectric layer 13 on the front panel 1. Then, the barrier ribs 24 are formed on the dielectric layer 23 formed on the glass substrate 22. The formation of the barrier ribs 24 is achieved typically by applying a low-melting-point glass paste as a barrier rib material over the glass substrate 22, applying a dry film photoresist on the resulting glass paste layer, exposing and etching the dry film photoresist, and sand-blasting the glass paste layer into a predetermined rib pattern by removing portions of the glass paste layer exposed from openings of the photoresist. Alternatively, any other methods hitherto proposed may be employed for the formation of the barrier ribs 24. In turn, fluorescent layers 25 are formed between the barrier ribs 24 on the glass substrate 22. Thus, the rear panel 2 is prepared.


For combining the front panel 1 and the rear panel 2, a sealing glass paste is applied on the front panel 1 around the display region ES by a dispenser method as shown in FIGS. 1(A) and 1(B). Thus, the glass paste directly contacts portions of the bus electrodes 11b not covered with the dielectric layer 13. Thereafter, the front panel 1 and the rear panel 2 are combined in opposed relation, and then subjected to a heat treatment. By the heat treatment, the glass paste is baked for formation of the sealing glass member 3. Thus, the discharge space defined between the front and rear panels is sealed by the sealing glass member 3 (see FIG. 2).


After the front panel 1 and the rear panel 2 are combined, the discharge space defined between the front and rear panels is evacuated and then filled with a discharge gas such as a Ne/Xe gas mixture. Thus, the plasma display panel is produced.


In the plasma display panel according to this embodiment, the sealing glass member 3 covers the end portions of the bus electrodes 11b where voids are otherwise likely to occur on the opposite sides and surfaces of the bus electrodes 11b. Therefore, the discharge space can be kept gas-tightly sealed without communication with the outside of the plasma display panel which may otherwise occur due to the presence of the voids on the opposite sides and surfaces of the bus electrodes 11b. Thus, the plasma display panel can ensure stable electric discharge for display for a long period of time.


Second Embodiment


Although the plasma display panel according to the first embodiment is constructed such that the opposite end portions of the bus electrodes 11b are not covered with the dielectric layer 13 and the sealing glass member 3 is provided in direct contact with the opposite end portions of the bus electrodes 11b, a plasma display panel according to a second embodiment of the present invention is constructed such that apertures β are formed in the dielectric layer 13 to partly expose the opposite end portions of the bus electrodes 11b and the sealing glass member 3 is provided as filling the apertures β as shown in FIGS. 3(B) and 4. Thus, the sealing glass member 3 is disposed on the opposite end portions of the bus electrodes 11b, and portions 13′ of the dielectric layer 13 are still present on the opposite end portions of the bus electrodes 11b. Therefore, the discharge space can be kept gas-tightly sealed by the sealing glass member 3, and the dielectric layer portions 13′ disposed on the opposite end portions of the bus electrodes 11b can easily be etched.


In accordance with a modification of the first embodiment, as shown in FIG. 5, the sealing glass member 3 may be spaced apart from the dielectric layer 13, while directly contacting the bus electrodes 11b.


In the plasma display panel according to the first embodiment, the sealing glass member 3 is disposed in direct contact with the bus electrodes 11b. Similarly, the sealing glass member 3 may directly contact the address electrodes 21 without intervention of the dielectric layer 23.


EXAMPLE 1

Cr, Cu and Cr films were formed on a front panel 1 by the sputtering method, and patterned for formation of bus electrodes 11b. Then, SiO2 was deposited to a thickness of 5.0 μm over the bus electrodes 11b under the following conditions by the plasma CVD method by means of a plasma CVD device of parallel plate type to form a dielectric layer 13 in a region as shown in FIG. 2. Subsequently, MgO was deposited to a thickness of 1.0 μm on the dielectric layer 13 by the vapor deposition method to form a protective film 14.


















Introduced gas and flow rate:
SiH4/900 sccm



Introduced gas and flow rate:
N2O/9000 sccm



Radio frequency output:
2.0 kW



Substrate temperature:
400° C.



Vacuum degree:
3.0 Torr










Then, a glass paste having a softening point of 430° C. was applied in a region of a sealing glass member 3 as shown in FIG. 2 by the dispenser method, and baked at 500° C. The front panel 1 and a rear panel 2 were baked at 450° C. to be combined in opposed relation. Then, a discharge space defined between the front panel and the rear panel was evacuated, and a Ne/Xe gas mixture was filled in the discharge space. Thus, a plasma display panel was produced.


A high-temperature high-humidity test was performed on the plasma display panel at 120° C. at 2 atm at 100% RH for 12 hours, while the electric discharge characteristics of the plasma display panel were evaluated. As a result, no variation was observed in the electric discharge characteristics.


EXAMPLE 2

After bus electrodes 11b were formed on a front panel 1 in the same manner as in Example 1, a ZnO—B2O3—Bi2O3 hybrid frit glass was deposited to a thickness of 30 μm over the but electrodes 11b to form a dielectric layer 13 in a region as shown in FIG. 2. Then, MgO was deposited to a thickness of 1.0 μm on the dielectric layer 13 by the vapor deposition method to form a protective film 14.


Then, a glass paste having a softening point of 430° C. was applied in a region of a sealing glass member 3 as shown in FIG. 2 by the dispenser method, and baked at 500° C. The front panel 1 and a rear panel 2 were baked at 450° C. to be combined in opposed relation. Then, a discharge space defined between the front panel and the rear panel was evacuated, and a Ne/Xe gas mixture was filled in the discharge space. Thus, a plasma display panel was produced.


A high-temperature high-humidity test was performed on the plasma display panel at 120° C. at 2 atm at 100% RH for 12 hours, while the electric discharge characteristics of the plasma display panel were evaluated. As a result, no variation was observed in the electric discharge characteristics.


EXAMPLE 3

An Ag paste was applied on a front panel 1 for formation of bus electrodes 11b, and then SiO2 was deposited to a thickness of 5.0 μm over the bus electrodes 11b under the following conditions by means of a plasma CVD device of parallel plate type to form a dielectric layer 13 in a region as shown in FIG. 2. Subsequently, MgO was deposited to a thickness of 1.0 μm on the dielectric layer 13 by the vapor deposition method to form a protective film 14.


















Introduced gas and flow rate:
SiH4/900 sccm



Introduced gas and flow rate:
N2O/9000 sccm



Radio frequency output:
2.0 kW



Substrate temperature:
400° C.



Vacuum degree:
3.0 Torr










Then, a glass paste having a softening point of 430° C. was applied in a region of a sealing glass member 3 as shown in FIG. 2 by the dispenser method, and baked at 500° C. The front panel 1 and a rear panel 2 were baked at 450° C. to be combined in opposed relation. Then, a discharge space defined between the front panel and the rear panel was evacuated, and a Ne/Xe gas mixture was filled in the discharge space. Thus, a plasma display panel was produced.


A high-temperature high-humidity test was performed on the plasma display panel at 120° C. at 2 atm at 100% RH for 12 hours, while the electric discharge characteristics of the plasma display panel were evaluated. As a result, no variation was observed in the electric discharge characteristics.


COMPARATIVE EXAMPLE

After bus electrodes 11b were formed on a front panel 1 in the same manner as in Example 1, SiO2 was deposited to a thickness of 5.0 μm over the bus electrodes 11b under the following conditions by means of a plasma CVD device of parallel plate type to form a dielectric layer 13 in a region as shown in FIG. 8. Subsequently, MgO was deposited to a thickness of 1.0 μm on the dielectric layer 13 by the vapor deposition method to form a protective film 14.


















Introduced gas and flow rate:
SiH4/900 sccm



Introduced gas and flow rate:
N2O/9000 sccm



Radio frequency output:
2.0 kW



Substrate temperature:
400° C.



Vacuum degree:
3.0 Torr










Then, a glass paste having a softening point of 430° C. was applied in a region of a sealing glass member 3 as shown in FIG. 8 by the dispenser method, and baked at 500° C. The front panel 1 and a rear panel 2 were baked at 450° C. to be combined in opposed relation. Then, a discharge space defined between the front panel and the rear panel was evacuated, and a Ne/Xe gas mixture was filled in the discharge space. Thus, a plasma display panel was produced.


A high-temperature high-humidity test was performed on the plasma display panel at 120° C. at 2 atm at 100% RH for 12 hours, while the electric discharge characteristics of the plasma display panel were evaluated. As a result, a discharge voltage was increased and some pixels were unlit in edge portions of the plasma display panel.


In the present invention, as described above, the electrodes are each partly uncovered with the dielectric layer, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, no voids are present on the opposite sides and surfaces of the electrodes, so that the discharge space can be kept gas-tightly sealed by the sealing member without communication with the outside of the display panel which may otherwise occur due to the presence of voids on the opposite sides and surfaces of the electrodes. Thus, the plasma display panel can ensure proper display by stable electric discharge for a long period of time.


In the present invention, the cut-away portion is not formed on the peripheral edge of the dielectric layer but in the peripheral region of the dielectric layer, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, the discharge space can be kept gas-tightly sealed by the sealing member, and portions of the dielectric layer located on longitudinally opposite ends of the electrodes can easily be etched.


In the present invention, the electrodes are mostly covered with the dielectric layer of the lead-free frit glass, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, the discharge space can be kept gas-tightly sealed by the sealing member. Further, no lead-based pollutant is generated when the plasma display panel is scrapped.


In the present invention, the electrodes each comprising the plurality of thin electrode films are provided on the panel and mostly covered with the dielectric layer, and the sealing member directly contacts the uncovered portions of the electrodes. Therefore, the discharge space can be kept gas-tightly sealed by the sealing member, even if voids are present between the electrodes and the dielectric layer.

Claims
  • 1. An AC plasma display panel comprising: a pair of panels disposed in spaced opposed relation, at least one of which has a plurality of display electrodes formed on an opposed surface thereof, the plurality of display electrodes being mostly covered with a dielectric layer; anda sealing member which seals the pair of panels outside a display region;wherein the plurality of display electrodes have ends laying outside the display region and uncovered with the dielectric layer, and the sealing member is partially located on the dielectric layer and is disposed in contact with the uncovered ends of the electrodes, andthe plurality of display electrodes each comprises a transparent electrode and a bus electrode, the bus electrode having an end extending outside the display region to form a terminal.
  • 2. A plasma display panel as set forth in claim 1, wherein the bus electrode of each display electrode comprises a layered thin electrode film in which a plurality of thin electrode films are layered.
  • 3. A plasma display panel as set forth in claim 2, wherein the dielectric layer comprises CVD layer.
  • 4. A plasma display panel as set forth in claim 1, wherein the dielectric layer comprises CVD layer.
  • 5. An AC plasma display panel comprising: a pair of panels disposed in spaced opposed relation, and each having a plurality of electrodes formed on an opposed surface thereof and mostly covered with a dielectric layer; anda sealing member which seals the periphery of the pair of panels;wherein the electrodes each has a portion uncovered with the dielectric layer, and the sealing member is disposed in contact with the uncovered portions of the electrodes, andthe dielectric layer has a cut-away portion formed in a peripheral region thereof, and the sealing member contacts the uncovered portions of the electrodes via the cut-away portion of the dielectric layer.
  • 6. A plasma display panel as set forth in claim 5, wherein the dielectric layer is composed of a lead-free frit glass.
  • 7. A plasma display panel as set forth in claim 6, wherein the dielectric layer comprises CVD layer.
  • 8. A plasma display panel as set forth in claim 5, wherein the plurality of display electrodes each comprises a transparent electrode and a bus electrode, the bus electrode having an end extending outside a display region to form a terminal.
  • 9. A plasma display panel as set forth in claim 8, wherein the bus electrode of each display electrode comprises a layered thin electrode film in which a plurality of thin electrode films are layered.
  • 10. A plasma display panel as set forth in claim 9, wherein the dielectric layer comprises CVD layer.
  • 11. A plasma display panel as set forth in claim 8, wherein the dielectric layer comprises CVD layer.
  • 12. A plasma display panel as set forth in claim 5, wherein the dielectric layer comprises CVD layer.
  • 13. An AC plasma display panel comprising: a pair of panels disposed in spaced opposed relation, at least one of which has a plurality of display electrodes formed on an opposed surface thereof, the plurality of display electrodes being mostly covered with a dielectric layer; anda sealing member which seals the pair of panels outside a display region,wherein the plurality of display electrodes have ends laying outside the display region and being uncovered with the dielectric layer, and the sealing member is partially located on the dielectric layer and is disposed in contact with the uncovered ends of the electrodes, the uncovered ends of the electrodes being formed by cutting away a portion in a peripheral region of the dielectric layer, andthe plurality of display electrodes each comprises a transparent electrode and a bus electrode, the bus electrode having an end extending outside the display region to form a terminal.
  • 14. A plasma display panel as set forth in claim 13, wherein the bus electrode comprises a layered thin electrode film in which a plurality of thin electrode films are layered.
  • 15. A plasma display panel as set forth in claim 14, wherein the dielectric layer comprises a CVD layer.
  • 16. A plasma display panel as set forth in claim 13, wherein the dielectric comprises a CVD layer.
Priority Claims (1)
Number Date Country Kind
2002-133997 May 2002 JP national
US Referenced Citations (6)
Number Name Date Kind
4423356 Sato et al. Dec 1983 A
4843281 Mendelsohn Jun 1989 A
5977708 Amatsu et al. Nov 1999 A
6232717 Oida et al. May 2001 B1
6354899 Moore Mar 2002 B1
6600265 Ebihara et al. Jul 2003 B1
Related Publications (1)
Number Date Country
20030209983 A1 Nov 2003 US