This application claims the benefit of Korean Patent Application No. 2006-29114, filed Mar. 30, 2006, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
Aspects of the present invention relate to a plasma display panel (PDP), and more particularly, to a PDP in which high luminance images can be formed at low voltage.
2. Description of the Related Art
Plasma display panels (PDPs) are flat display panels for forming images by exciting a fluorescent material using ultraviolet (UV) rays generated from a gas discharge. PDPs are regarded as next generation flat display panel due to their slim, large screens that display high resolution images. PDPs include pairs of sustain electrodes and dielectrics and a protection layer to protect the pairs of sustain electrodes.
To increase discharge efficiency of PDPs, the distance between the sustain electrodes of the pairs of sustain electrodes is increased as much as possible such that a discharge is effectively diffused in the discharge cells.
However, in conventional PDPs, when the distance between the sustain electrodes of the pairs of sustain electrodes is increased, the discharge is not diffused effectively due to barrier ribs which define the discharge cells. PDPs include barrier ribs disposed between the two substrates and have a predetermined space therebetween. Some of the barrier ribs extend in a direction parallel to the pairs of sustain electrodes, which are stripe-shaped. Accordingly, when the distance between the sustain electrodes is longer, the sustain electrodes are disposed near the upper portion of the barrier ribs, which are also stripe-shaped. As a result, the discharge between the sustain electrodes is blocked by the neighboring barrier ribs such that the discharge is not effectively diffused in the discharge cells.
Aspects of the present invention provide a plasma display panel (PDP) in which high luminance images can be formed at low voltage.
According to an aspect of the present invention, there is provided a PDP including first and second substrates which face each other with a predetermined space therebetween; a plurality of barrier ribs disposed between the first and second substrates, including longitudinal barrier ribs extending in a first direction and transverse barrier ribs having a height less than the longitudinal barrier ribs and connecting the longitudinal barrier ribs, the plurality of barrier ribs defining a plurality of discharge cells together with the first and second substrates; a plurality of pairs of sustain electrodes disposed on the first substrate, extending in a second direction to cross the longitudinal barrier ribs and corresponding to the discharge cells, each pair of the sustain electrodes including first and second sustain electrodes separated by a distance from each other; a plurality of address electrodes disposed on the second substrate to cross the pairs of sustain electrodes; and a fluorescent layer formed in each of the discharge cells.
The transverse barrier ribs may have a height about 10% to 50% lower than the height of the longitudinal barrier ribs.
The distance between the first and second sustain electrodes of each pair of the sustain electrodes may be greater than the height of the transverse barrier ribs.
The distance between the first and second sustain electrodes of each pair of the sustain electrodes may be greater than the height of the longitudinal barrier ribs.
The distance between the first and second sustain electrodes of each pair of the sustain electrodes may be greater than the height of the barrier ribs.
The first and second sustain electrodes of each pair of the sustain electrodes may be disposed to correspond to the upper portion of the transverse barrier ribs.
The first and second sustain electrodes of each pair of the sustain electrodes may further include first and second bus electrodes, respectively, and the first and second bus electrodes may be disposed to correspond to the upper portion of the transverse barrier ribs.
According to another aspect of the present invention, there is provided a PDP including first and second substrates which face each other with a predetermined space therebetween; a plurality of barrier ribs disposed between the first and second substrates, including longitudinal barrier ribs extending in a first direction and transverse barrier ribs connecting the longitudinal barrier ribs, the plurality of barrier ribs defining a plurality of discharge cells together with the first and second substrates; a plurality of pairs of sustain electrodes disposed on the first substrate, extending in a second direction to cross the longitudinal barrier ribs and correspond to the discharge cells, and each pair of the sustain electrodes including first and second sustain electrodes separated by a distance from each other; a plurality of address electrodes disposed on the second substrate to cross the pairs of sustain electrodes; and a fluorescent layer formed in each of the discharge cells, the fluorescent layer being formed to expose upper ends of sidewalls of the transverse barrier ribs in a direction from the second substrate towards the first substrate.
The distance between the first and second sustain electrodes of each pair of the sustain electrodes may be greater than the height of the barrier ribs.
The height of the fluorescent layers formed on the sidewalls of the transverse barrier ribs may be less than the height of the fluorescent layers formed on sidewalls of the longitudinal barrier ribs.
The distance between the first and second sustain electrodes of each pair of the sustain electrodes may be greater than the height of the transverse barrier ribs.
The first and second sustain electrodes of each pair of the sustain electrodes may be disposed to correspond to the upper portion of the transverse barrier ribs.
The first and second sustain electrodes of each pair of the sustain electrodes may further include first and second bus electrodes, respectively, and the first and second bus electrodes may disposed to correspond to the upper portion of the transverse barrier ribs.
According to another aspect of the present invention, there is provided a PDP including first and second substrates which face each other with a predetermined space therebetween; a plurality of barrier ribs disposed between the first and second substrates, including longitudinal barrier ribs extending in a first direction and transverse barrier ribs connecting the longitudinal barrier ribs, the plurality of barrier ribs defining a plurality of discharge cells together with the first and second substrates; a plurality of pairs of sustain electrodes disposed on the first substrate, extending in a second direction to cross the longitudinal barrier ribs and correspond to the discharge cells, and each pair of the sustain electrodes including first and second sustain electrodes separated by a distance from each other; a plurality of address electrodes disposed on the second substrate to cross the pairs of sustain electrodes; and a fluorescent layer formed in each of the discharge cells, in which the thickness of the fluorescent layer formed on sidewalls of the transverse barrier ribs is less than the thickness of the fluorescent layer formed on the second substrate.
The distance between the first and second sustain electrodes of each pair of the sustain electrodes may be greater than the height of the barrier ribs.
The first and second sustain electrodes of each pair of the sustain electrodes may be disposed to correspond to the upper portion of the transverse barrier ribs.
The first and second sustain electrodes of each pair of the sustain electrodes may further include first and second bus electrodes, respectively, and the first and second bus electrodes may be disposed to correspond to the upper portion of the transverse barrier ribs.
The PDP according to aspects of the present invention may further include a second dielectric layer to cover the address electrodes.
According to another aspect of the present invention, a plasma display panel is provided, including: first and second substrates which face each other with a predetermined space therebetween; a plurality of barrier ribs disposed between the first and second substrates, comprising longitudinal barrier ribs extending in a first direction and transverse barrier ribs connecting the longitudinal barrier ribs, the plurality of barrier ribs defining a plurality of discharge cells together with the first and second substrates; a plurality of pairs of sustain electrodes disposed on the first substrate, extending in a second direction to cross the longitudinal barrier ribs and correspond to the discharge cells, and each pair of the sustain electrodes comprising first and second sustain electrodes separated by a distance from each other; a plurality of address electrodes disposed on the second substrate to cross the pairs of sustain electrodes; and a fluorescent layer formed in each of the discharge cells, wherein the height of the fluorescent layer formed on sidewalls of the transverse barrier ribs is lower than the height of the longitudinal barrier ribs.
According to another aspect, the first sustain electrodes are disposed to correspond to the upper portion of the transverse barrier ribs, and the second sustain electrodes are disposed to correspond to the upper portion of adjacent transverse barrier ribs.
According to another aspect, the first and second sustain electrodes of each pair of the sustain electrodes further comprise first and second bus electrodes, respectively, and the first bus electrodes are disposed to correspond to the upper portion of the transverse barrier ribs, and the second sustain electrodes are disposed to correspond to the upper portion of adjacent transverse barrier ribs.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the aspects of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the aspects of the present invention by referring to the figures.
Referring to
The barrier ribs 124 define a plurality of discharge cells 126 together with the first and second substrates 111 and 121. The barrier ribs 124 include longitudinal barrier ribs 1241 and transverse barrier ribs 1242. The longitudinal barrier ribs 1241 are disposed to extend in a first direction (X direction of
The discharge cells 126 defined by the first and second substrates 111 and 121 and the barrier ribs 124 include pairs of sustain electrodes 114 including first and second sustain electrodes 112 and 113, respectively, which are separated from each other. That is, the PDP 100 includes pairs of sustain electrodes 114 which extend in a second direction (Y direction) to cross the longitudinal barrier ribs 1241 and correspond to the discharge cells 126. In
The first and second sustain electrodes 112 and 113 are used for a sustain discharge. The sustain discharge, which is used for forming an image on the PDP 100, occurs between the first and second sustain electrodes 112 and 113.
The first and second sustain electrodes 112 and 113 can be formed of a conductive metal such as Al or Cu. When light generated in the PDP 100 is emitted in a direction from the discharge cells 126 toward the pairs of sustain electrodes 114, in other words, when light is emitted through the first substrate 111, the pairs of sustain electrodes 114 may be formed to be transparent. To form transparent electrodes, a transparent material such as indium tin oxide (ITO) can be used.
The first and second sustain electrodes 112 and 113 may further include first and second bus electrodes 112a and 113a, respectively, when needed. Since transparent portions 112b and 113b of the first and second sustain electrodes 112 and 113 generally have a high resistance, the first and second bus electrodes 112a and 113a are included to prevent a voltage drop due to the high resistance. Accordingly, the first and second bus electrodes 112a and 113a may be formed of Ag, Cu, Au, or Al, which have low resistances and high conductivities. Also, the first and second bus electrodes 112a and 113a may include a black additive or have a multilayer structure including a layer formed of a black material, thereby improving contrast in the produced image.
The first and second sustain electrodes 112 and 113 are connected to a connection cable, which is disposed at the edge of the PDP 100, to be supplied with electricity. According to aspects of the present invention, only the first and second bus electrodes 112a and 113a may be connected to the connection cable, but the present invention is not limited thereto.
The pairs of sustain electrodes 114 are covered by a first dielectric layer 115 such that the first and second sustain electrodes 112 and 113 of the pairs of sustain electrodes 114 are electrically insulated from each other and cannot be damaged by charged particles colliding against the sustain electrodes 112 and 113. The first dielectric layer 115 may be formed of PbO, B2O3, or SiO2. When light generated in the PDP 100 is emitted through the first substrate 111, the first dielectric layer 115 may be formed of a transparent material.
Meanwhile, a protection layer 116 is further included to protect the first dielectric layer 115 during discharge. The protection layer 116 may be formed of PbO, B2O3, SiO2, MgO, or the like using a wet coating method such as dipping, spraying, spin coating, or the like. The protection layer 116 protects the first dielectric layer 115 and activates a discharge by a secondary emission.
In the PDP 100 illustrated in
As described above, at least one address electrode 122 in addition to two discharge electrodes (one pair of discharge electrodes), generally known as X and Y electrodes, can be further included in each of the discharge cells 126 of the PDP 100 to provide the address discharge and the sustain discharge. The address discharge occurs between the Y electrode and the address electrode 122. When the address electrodes 122 are disposed below the first and second sustain electrodes 112 and 113 as in the PDP 100 according to aspects of the current embodiment, one of the first or second sustain electrodes 112 or 113 may be the Y electrode and the other may be the X electrode. The address electrodes 122 can be formed of a conductive metal.
The address electrodes 122 can be disposed on the second substrate 121 to face the first substrate 111. A second dielectric layer 123 can be further included to cover the address electrodes 122 such that the address electrodes 122 can be prevented from being damaged by charged particles colliding against the address electrodes 122 during discharge. The second dielectric layer 123 may also be formed of a dielectric material which can induce the charged particles. Such a dielectric material may include PbO, B2O3, SiO2, or MgO.
A plurality of fluorescent layers 125 are formed in the discharge cells 126, more particularly, on the upper surface of the second dielectric layer 123 and on sidewalls of the barrier ribs 124. The fluorescent layers 125 are formed by coating one of the red, green, and blue color emitting materials and a fluorescent paste on the upper surface of the second dielectric layer 123 and on the sidewalls of the barrier ribs 124, and then drying and calcining the fluorescent layers 125. The fluorescent paste is a mixture of a solvent and a binder. The red-emitting fluorescent material may be Y(V, P)O4:Eu; the green-emitting fluorescent material may be Zn2SiO4:Mn, or YBO3:Tb; and the blue-emitting fluorescent material may be BAM:Eu.
In
The discharge gas is charged in the discharge cells 126. The discharge gas is, for example, a Ne—Xe gas including 5-15% Xe. When needed, at least a portion of Ne can be substituted with He. Other gases can also be used. Depending on circumstances, the inside of the discharge cells 126 can be maintained as a vacuum.
To improve discharge efficiency of the PDP 100, more specifically, to effectively diffuse the sustain discharge formed between the first and second sustain electrodes 112 and 113 in the discharge cells 126, the distance between the first and second sustain electrodes 112 and 113 of the pairs of sustain electrodes 114 may be increased to a maximum.
The distance d between the first and second sustain electrodes 112 and 113 of each pair of the sustain electrodes 114 may be greater than the height h of the transverse barrier ribs 1242 or greater than the height of the longitudinal barrier ribs 1241. Here, as the distance d between the first and second sustain electrodes 112 and 113 increases, the first and second sustain electrodes 112 and 113 of each pair of the sustain electrodes 114 can be disposed to correspond to the upper portion of the transverse barrier ribs 1242. Also, as the distance d between the first and second sustain electrodes 112 and 113 increases, the first and second bus electrodes 112a and 113a of each pair of the sustain electrodes 114 can be disposed to correspond to the upper portion of the transverse barrier ribs 1242. This also applies to embodiments to be described later.
The height h of the transverse barrier ribs 1242 is less than the height of the longitudinal barrier ribs 1241, as described above, so as to allow for the more effective diffusion of the discharge in the discharge cells 126. The efficiency of the diffusion of the discharge may be decreased due to blocking of a portion of the discharge between the first and second sustain electrodes 112 and 113 by the transverse barrier ribs 1242 which extend parallel to the first and second sustain electrodes 112 and 113. As such, the height h of the transverse barrier ribs 1242, in a direction (Z direction of
The following table shows relative values of luminance measured in front of a PDP when light from 40% of the total display area is emitted in relation to the height h of the transverse barrier ribs 1242 and the distance d between the sustain electrodes 114 when the longitudinal barrier ribs 1241 have a height of 120 μm. The height h of the transverse barrier ribs 1242 is varied from 120 μm to 50 μm when the distance d between the sustain electrodes 114 is varied from 110 μm to 180 μm.
As shown in the table above, when the distance d between sustain electrodes is fixed, luminance varies according to variation in the height h of the transverse barrier ribs 1242. For example, when the distance d between the sustain electrodes is 110 μm and the height h of the transverse barrier ribs is 120 μm (the same as the height of the longitudinal barrier ribs), the luminance is 340 cd/m2. As the height h of the transverse barrier ribs is lowered to 110 μm, 100 μm, and 80 μm, luminance is increased to 380 cd/m2, 410 cd/m2, and 410 cd/m2, respectively. As the height h of the transverse barrier ribs is further lowered to 70 μm, 60 μm, and 50 μm, luminance is decreased to 370 cd/m2, 360 cd/m2, and 330 cd/m2, respectively.
Accordingly, to improve luminance, the height h of the transverse barrier ribs is lowered but not beyond a certain limit. Referring to the table above, the largest increase in luminance, from 340 to 380 cd/m2, is observed when the height h of the transverse barrier ribs is decreased from 120 μm to 110 μm. And, the largest decrease in luminance, from 360 to 330 cd/m2, is observed when the height h of the transverse barrier ribs is decreased from 60 mm to 50 μm. As a result, when the height h of the longitudinal barrier ribs is 120 μm, the most efficient height of the transverse barrier ribs 1242 is about 60˜110 μm, which shows that the most efficient height of the transverse barrier ribs 1242 is about 10˜50% less than the height of the longitudinal barrier ribs 1241.
As the height h of the transverse barrier ribs 1242 is less than the height of the longitudinal barrier ribs 1241, the sustain discharge formed between the first and second sustain electrodes 112 and 113 is not blocked by the transverse barrier ribs 1242 and is diffused more effectively throughout the entire space of the discharge cells 126. Accordingly, higher luminance images can be formed on the PDP 100 at lower voltages.
In the PDP 100, the height of longitudinal barrier ribs 1241 may be equal to the height of transverse barrier ribs 1242, which connect the longitudinal barrier ribs 1241. However, in the PDP 100 according to aspects of the current embodiment, the fluorescent layers 125 disposed in discharge cells 126 are formed in a different shape from the shape of the fluorescent layers 125 in the PDP according to aspects of the previous embodiment. More specifically, the fluorescent layers 125 are formed to expose the upper ends of sidewalls 1242a (
In conventional PDPs, fluorescent layers are formed to cover sidewalls of transverse barrier ribs to the upper ends thereof. Accordingly, the thickness of the transverse barrier ribs together with the fluorescent layers near the first and second sustain electrodes is large when considering both thicknesses of the transverse barrier ribs and the fluorescent layers. As a result, a sustain discharge formed between the first and second sustain electrodes is blocked by the fluorescent layers and the transverse barrier ribs, and thus, the sustain discharge is not diffused efficiently throughout the discharge cells.
Referring back to
In
In the PDP 100, according to aspects of the current embodiment, the fluorescent layers 125 are formed on the sidewalls 1242a of the transverse barrier ribs 1242 not completely to the upper ends thereof in a direction from the second substrate 121 towards a first substrate 111. Additionally, the fluorescent layers 125 have a thickness t2 of the fluorescent layers 125 formed on the sidewalls 1242a of the transverse barrier ribs 1242 that is less than a thickness t1 of the fluorescent layers 125 formed on the second substrate 121 or the second dielectric 123. By forming the fluorescent layers 125 near the first and second sustain electrodes 112 and 113 thinner than the fluorescent layers 125 on other portions of the PDP 100, a sustain discharge formed between the first and second sustain electrodes 112 and 113 is not blocked by the neighboring fluorescent layers 125 and is diffused effectively and more efficiently into the discharge cells 126. Accordingly, discharge efficiency is improved and discharge voltage is lowered such that higher luminance images can be formed on the PDP 100 at lower voltages.
In the PDP, according to aspects of the present invention, higher luminance images can be formed at lower voltages.
Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0029114 | Mar 2006 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20040000873 | Moon | Jan 2004 | A1 |
20070228953 | Soh et al. | Oct 2007 | A1 |
20070228973 | Soh et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
2004-1645 | Jan 2004 | KR |
Number | Date | Country | |
---|---|---|---|
20070228959 A1 | Oct 2007 | US |