The present invention relates to a method for manufacturing a plasma display panel.
Among flat panel displays (FPDs), a plasma display panel (hereinafter referred to as a PDP) is capable of performing a high-speed display and easy to increase in size, thus having been in widespread commercial use in fields of a video display device, a publicity display device, and the like.
A typical AC-driven surface discharge type PDP adopts a triode structure, being a structure in which two glass substrates, a front panel and a rear panel, are opposed to each other with a predetermined spacing therebetween. The front panel is configured of: display electrodes made up of striped scan electrodes and sustain electrodes formed on a glass substrate; a dielectric layer covering the display electrodes and working as a capacitor for accumulating electric charges; and a protective film having a thickness of the order of 1 μm and formed on the dielectric layer. Meanwhile, the rear panel is configured of: a plurality of address electrodes formed on a glass substrate; a primary dielectric layer covering the address electrodes; barrier ribs formed thereon; and phosphor layers applied inside display cells, formed by the barrier ribs, for emitting lights in red, green and blue respectively.
The front panel and the rear panel are sealed in an airtight manner with electrode-formed surface sides thereof opposed to each other, and a discharge space partitioned by the barrier ribs is filled with discharge gas of Neon (Ne) and Xenon (Xe) at a pressure of 53 kPa to 80.0 kPa. The PDP realizes a colored image display in such a manner that video signal voltages are selectively applied to the display electrodes for discharging, and ultra-violet rays generated by the discharging excite the phosphor layers of the respective colors for emission of lights in red, green, and blue (see Patent Document 1).
In such a PDP, the protective layer formed on the dielectric layer of the front panel has functions including protection of the dielectric layer from ion impact caused by the discharge and emission of primary electrons for generating address discharge. The protection of the dielectric layer from ion impact is an important function for preventing a rise of a discharge voltage, and the emission of primary electrons for generating the address discharge is an important function for preventing an erroneous address discharge that cause flickers on images.
For the purpose of increasing the number of primary electrons emitted from the protective layer to reduce flickers on images, an attempt has been made such as addition of silicon (Si) or aluminum (Al) to magnesium oxide (MgO).
In recent years, with the progress of high definition in televisions, there has been a demand in market for a full HD (high-definition, 1920×1080 pixels, progressive display) PDP at lower cost with lower power consumption and higher luminance. Since characteristics of electron emission from the protective layer determine an image quality of a PDP, controlling the electron emission characteristics is a critically important issue.
[Patent Document 1] Unexamined Japanese Patent Publication No. 2007-48733
A method for manufacturing a PDP in accordance with the present invention is a method for manufacturing a PDP having a front panel which is formed with a dielectric layer so as to cover a display electrode formed on a substrate and is formed with a protective layer on the dielectric layer, and
a rear panel which is opposed to the front panel so as to form a discharge space and is formed with an address electrode in a direction intersecting with the display electrode as well as being provided with a barrier rib partitioning the discharge space, the method including a step of forming a protective layer, which forms the protective layer of the front panel, wherein the step of forming a protective layer includes: a step of forming a primary film, which deposits and forms a primary film on the dielectric layer; and a step of forming aggregated particles of metal oxide particles, which applies to the primary film a metal oxide paste containing aggregated particles of metal oxide particles, an organic resin component, and diluting solvent, and then fires the metal oxide paste, to attach a plurality of aggregated particles of the metal oxide particles to the primary film, and in the step of forming aggregated particles, a metal oxide paste is used in which a content of the aggregated particles of the metal oxide particles is not larger than 1.5 vol %, the organic resin component contains ethyl cellulose, and a content of the organic resin component is in a range of 8.0 vol % to 20.0 vol %.
According to such a manufacturing method, the metal oxide paste excellent in dispersion, printability, and flammability allows discrete and uniform attachment of the aggregated particles of the metal oxide particles within the surface of the primary film, thereby to uniform a coverage distribution within the surface.
This results in provision of a PDP that improves the electron emission characteristics, while having electric charge retention characteristics, and is capable of achieving both a high image quality and low cost as well as a low voltage, so as to realize a PDP with high-definition/high-luminance display performance as well as with low power consumption.
An embodiment of the present invention is described below with reference to the drawings.
On rear glass substrate 11 of rear panel 10, multiple belt-like address electrodes 12 are arranged in parallel with one another in a direction intersecting at right angles with scan electrodes 4 and sustain electrodes 5 of front panel 2, and these are covered by primary dielectric layer 13. Further, barrier ribs 14 each having a predetermined height and partitioning discharge space 16 are formed on primary dielectric layer 13 between address electrodes 12. Phosphor layers 15 are formed in grooves between barrier ribs 14. Phosphor layers 15 emit light respectively in red, blue and green with ultraviolet rays. A discharge cell is formed in a position where scan electrode 4 and sustain electrode 5 intersect with address electrode 12, so as to serve as a pixel for colored display.
Next, a configuration of protective layer 9, as a characteristic of the PDP in the present invention, is described. As shown in
The coverage in this context is expressed by a ratio of an area “a”, attached with aggregated particles 92, to a discharge cell area “b” in an area of one discharge cell, which is obtained through an expression: coverage (%)=a/b×100. A method for the calculation in the case of actual measurement is, for instance, as follows: an image of an area corresponding to one discharge cell partitioned by barrier ribs 14 is photographed with a camera, and the photographed image after trimmed into dimensions of one cell of x×y is then binarized into data in black and white. Thereafter, based upon the binarized data, the area “a” of a black area due to aggregated particles 92 is calculated, to obtain the coverage through the foregoing expression: a/b×100.
Next, a method for manufacturing the PDP is described. First, as shown in
Subsequently, a dielectric paste is applied with a die-coating method or the like onto front glass substrate 3 so as to cover scan electrodes 4, sustain electrodes 5, and black stripe (light proof layer) 7, thereby forming a dielectric paste layer (dielectric material layer). The dielectric paste layer is then fired and hardened, to form dielectric layer 8 covering scan electrodes 4, sustain electrodes 5, and black stripe (light proof layer) 7. In addition, the dielectric paste is a paint containing binder, solvent, and a dielectric material such as glass powder.
Furthermore, primary film 91 made of magnesium oxide (MgO) containing aluminum (Al) as an impurity is formed on dielectric layer 8 with a vacuum deposition method.
The foregoing steps allow forming predetermined structural elements (scan electrodes 4, sustain electrodes 5, black stripe (light proof layer) 7, dielectric layer 8, primary film 91), except for aggregated particles 92, on front glass substrate 3.
Next, manufacturing steps for forming protective layer 9 of PDP 1 are described with reference to
Subsequently, in metal oxide paste film forming step A3, aggregated particles 92, formed by aggregating magnesium oxide (MgO) crystal particles to be the metal oxide particles, are discretely attached and formed onto primary film 91. In this step used is a metal oxide paste obtained by kneading aggregated particles 92 of the magnesium oxide (MgO) crystals with an organic resin component and diluting solvent. This metal oxide paste is applied onto primary film 91 by a screen-printing method or the like, to form a metal oxide paste film.
It is to be noted that the metal oxide paste used in the present invention is detailed later. Further, as a method for forming a metal oxide paste film onto an unfired primary film, other than the screen-printing method, a spraying method, a spin-coating method, a die-coating method, a slit-coating method, or the like can also be used.
Next, in drying step A4, the metal oxide paste film is dried. In firing step A5, primary film 91 formed in primary film deposition step A2 and the metal oxide paste film dried in drying step A4 are heated and fired at a temperature of several hundred degrees. In this firing step A5, the solvent and the resin component remaining in the metal oxide paste film are removed, so that protective layer 9 with aggregated particles 92 of the magnesium oxide (MgO) crystals attached onto primary film 91 can be formed.
These metal oxide paste film forming step A3, drying step A4 and firing step A5 are steps for forming the aggregated particles of the metal oxide particles.
In addition, although magnesium oxide (MgO) is taken as an example as primary film 91 in the above description, primary film 91 is required to have high sputtering withstanding performance for protecting dielectric layer 8 from ion impact, and may not necessarily have high electric charge retention capability, or high electron emission performance.
In a conventional PDP, there has often been the case of forming a protective layer chiefly made of magnesium oxide (MgO) in order to satisfy both the electron emission performance and the sputtering withstanding performance above a certain level. However, in the present invention, aggregated particles 92 of the metal oxide crystals chiefly control the electron emission performance. For this reason, primary film 91 is not at all necessarily magnesium oxide (MgO), and another material more excellent in sputtering withstanding performance, such as aluminum oxide (Al2O3), may be used without any problem.
Further, although aggregated particles 92 of magnesium oxide (MgO) crystals are used as aggregated particles 92 of the metal oxide crystals in the foregoing description, aggregated particles of another metal oxide particles may also be used. Moreover, also with use of aggregated particles made of a metal oxide having high electro emission performance as with magnesium oxide (MgO), such as a metal oxide of strontium (Sr), calcium (Ca), barium (Ba), or aluminum (Al), a similar effect can be obtained. Hence the kind of the aggregated particles is not particularly restricted to magnesium oxide (MgO).
The foregoing steps allow forming scan electrodes 4, sustain electrodes 5, light proof layer 7, dielectric layer 8, primary film 91, and aggregated particles 92 of magnesium oxide crystals, on front glass substrate 3.
In the meantime, rear panel 10 is formed as follows. First, a metal film is formed on the entire surface of rear glass substrate 11 with a method for screen-printing a past containing a silver (Ag) material onto rear glass substrate 11, or some other method. Thereafter, with a method for patterning by means of the photolithography method, or the like, a material layer (not shown) to be a constituent for address electrodes 12 is formed, which is then fired at a predetermined temperature, to form address electrodes 12. A dielectric paste is then applied onto rear glass substrate 11, formed with address electrodes 12, with the die-coating method or the like so as to cover address electrodes 12, thereby forming a dielectric paste layer (not shown). The dielectric paste layer is then fired, to form primary dielectric layer 13. It should be noted that the dielectric paste is a paint containing binder, solvent, and a dielectric material such as glass powder.
A paste for barrier rib formation, containing a material for barrier ribs, is then applied onto primary dielectric layer 13, and patterned into a predetermined shape, to form a barrier rib material layer, which is then fired to form barrier ribs 14. Here, as a method for patterning the paste for barrier rib formation applied onto primary dielectric layer 13, the photolithography method or a sand-blasting method can be employed. Subsequently, a phosphor paste containing a phosphor material is applied onto primary dielectric layer 13 between adjacent barrier ribs 14 and side surfaces of barrier ribs 14, and then fired, to form phosphor layer 15. The foregoing steps allow completely forming rear panel 10, having the predetermined structural elements, on rear glass substrate 11.
In this manner, front panel 2 and rear panel 10, provided with the predetermined structural elements, are opposed to each other such that scan electrodes 4 intersect at right angles with address electrodes 12, the peripheries of front panel 2 and rear panel 10 are sealed with glass frit, and discharge space 16 is filled with discharge gas containing Neon (Ne), Xenon (Xe), and the like, to completely form PDP 1.
Next described is the metal oxide paste for forming the layer attached with aggregated particles 92 of the metal oxide particles onto primary film 91 in metal oxide paste film forming step A3 of the method for manufacturing PDP 1 in the present invention. In particular, results of experiments conducted for verifying a mass-production stability effect of the metal oxide paste are described. Types of chemicals used, as well as conditions of numerical values such as amounts of those chemicals, given in the following description are merely exemplary, and the present invention is not restricted thereto.
The metal oxide paste for forming the layer attached with the aggregated particles of the metal oxide particles are prepared in accordance with compositions shown in Table 1.
Composition Nos. 101 to 106 are formed as follows: a powder of aggregated particles of magnesium oxide (MgO) crystals (0.2 vol %) is used as the metal oxide, and butyl carbitol (68.93 vol % to 57.84 vol %) and terpineol (23.66 vol % to 19.85 vol %) are used as the diluting solvent. Further, ethyl cellulose (available from Nisshin Kasei Co., Ltd.) having a viscosity of a molecular weight grade of 4 cP (7.21 vol % to 22. 11 vol %) is used as the organic resin component. The metal oxide powder, butyl carbitol, terpineol, and ethyl cellulose are dispersed and mixed uniformly with a three-roll mill, to prepare a metal oxide paste.
Composition Nos. 107 to 111 are formed as follows: butyl carbitol (68.93 vol % to 63.01 vol %) and terpineol (23.66 vol % to 21.63 vol %) are used as the diluting solvent. Ethyl cellulose having a viscosity of a molecular weight grade of 10 cP (7.21 vol % to 15.16 vol %) is used as the organic resin component. The other material used is the same as in Composition Nos. 101 to 106.
Composition Nos. 112 to 116 are formed as follows: butyl carbitol (71.32 vol % to 66.88 vol %) and terpineol (24.48 vol % to 22.96 vol %) are used as the diluting solvent. Ethyl cellulose having a viscosity of a molecular weight grade of 100 cP (4.00 vol % to 9.96 vol %) is used as the organic resin component. The other material used is the same as in Composition Nos. 101 to 106.
Composition Nos. 117 to 122 are formed as follows: butyl carbitol (71.46 vol % to 66.88 vol %) and terpineol (24.53 vol % to 22.96 vol %) are used as the diluting solvent. Ethyl cellulose having a viscosity of a molecular weight grade of 200 cP (3.81 vol % to 9.96 vol %) is used as the organic resin component. The other material used is the same as in Composition Nos. 101 to 106.
It is to be noted that, although ethyl cellulose is used as the organic resin component listed in Table 1, other than that, a cellulose derivative such as hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose phtalate, or hydroxypropyl methylcellulose acetate can also be used.
Further, although diethylene glycol monobutyl ether (butyl carbitol) and terpineol are used as the diluting solvent listed in Table 1, other than those, the following can also be used singly or in combination of two or more of them: ethylene glycol mono-methyl ether, ethylene glycol mono-ethyl ether, propylene glycol mono-methyl ether, propylene glycol mono-ethyl ether, diethylene glycol mono-methyl ether, diethylene glycol mono-ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol mono-methyl ether acetate, propylene glycol mono-ethyl ether acetate, 2-methoxybutyl acetate, 3-methoxybutyl acetate, 4-methoxybutyl acetate, 2-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, 3-ethyl-3-methoxybutyl acetate, 2-ethoxybutyl acetate, 4-ethoxybutyl acetate, 4-propoxybutyl acetate, 2-methoxypentyl acetate, or the like.
Moreover, according to need, a paste can be added with dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, or tributyl phosphate as a plasticizer, and glycerop mono-oleate, sorbitan sesquio-leate, homogenol (product name by Kao Corporation), alkyl-allyl based phosphate or the like as a dispersant.
Verification is conducted on printability in application of the metal oxide paste prepared as described above onto front glass substrate 3 formed with scan electrodes 4, sustain electrodes 5, black stripe (light proof layer) 7, dielectric layer 8, and primary film 91, using the screen-printing method.
The knocking in this context means that in the screen-printing, a squeegee does not smoothly operate but vertically quivers on a screen plate as if getting snagged thereon.
As seen from
Further, a coverage of aggregated particles 92 with respect to a substrate where the knocking has occurred is measured, to find an internal surface variation not smaller than about 10%, and hence aggregated particles 92 of the magnesium oxide (MgO) crystals cannot be uniformly formed over the entire surface. On the other hand, a coverage of aggregated particles 92 with respect to a substrate where the knocking has not occurred is measured, to find an internal surface variation within about 6%, and hence aggregated particles 92 can be formed uniformly over the entire surface.
It should be noted that the “internal surface variation” in this context refers to a value obtained by calculating a standard deviation a and an average value M of a coverage obtained with the foregoing coverage measuring method on each of 54 points inside the substrate surface, and dividing σ by the average value. In other words, this is expressed by: internal surface variation=σ/M×100(%).
It is found from the above that in order for a paste with a content of metal oxide particles being not larger than 1.5 vol % to have favorable printability without occurrence of the knocking, a content of the organic resin component needs to be not smaller than 8.0 vol %.
Meanwhile, in the manufacturing steps for forming protective layer 9 in
As described above employed is a metal oxide paste containing the aggregated particles of the metal oxide particles, the organic resin component and the diluting solvent, with a content of the aggregated particles of the metal oxide particles being not larger than 1.5 vol % and a content of the organic resin component being 8.0 vol % to 20.0 vol %. It is thereby possible to provide a paste suitable for the printability and capable of preventing deterioration in discharge characteristics due to residues of the organic resin component.
It should be noted that, as described above, in PDP 1 in the embodiment of the present invention, the coverage of aggregated particles 92 of the magnesium oxide (MgO) crystals is desirably in the range of 2% to 12% in view of discharge characteristics of PDP 1. Since the coverage is determined at this time based upon a film thickness of the metal oxide paste film, a content of aggregated particles 92 in the metal oxide paste is preferably in a range of 0.01 vol % to 1.5 vol % based upon a film thickness range of a film formable by the screen-printing.
Next described is a result of studies of the organic resin component in the metal oxide paste for screen-printing used in the present invention. It is to be noted that types of chemicals used, as well as conditions of numerical values such as amounts of those chemicals, given in the following description are merely exemplary, and the present invention is not restricted thereto.
The metal oxide paste for forming the layer attached with the aggregated particles of the metal oxide particles are prepared in accordance with compositions shown in Table 2.
Composition No. 201 is formed as follows: a powder of aggregated particles of magnesium oxide (MgO) crystals (0.2 vol %) is used as the metal oxide, and butyl carbitol (66.8 vol %) and terpineol (23.0 vol %) are used as the diluting solvent. Further, ethyl cellulose (10.0 vol %) is used as the organic resin component. The metal oxide powder, butyl carbitol, terpineol, and ethyl cellulose are dispersed and mixed uniformly with a three-roll mill, to prepare a metal oxide paste.
Composition No. 202 is formed using hydroxypropyl cellulose (10.0 vol %) as the organic resin component. The other materials are the same as in Composition No. 201.
Composition No. 203 is formed using hydroxypropylmethyl cellulose acetate phtalate (10.0 vol %) as the organic resin component. The other materials are the same as in Composition No. 201.
It is to be noted that, although ethyl cellulose (EC), hydroxypropyl cellulose (HPC), and hydroxypropylmethyl cellulose acetate phtalate (HPMCAP) are used as the organic resin components listed in Table 2, other than those, another cellulose derivative such as hydroxyethyl cellulose or hydroxypropyl methylcellulose acetate can also be used.
As seen from
On the other hand, as for each of hydroxypropyl cellulose (HPC) and hydroxypropylmethyl cellulose acetate phtalate (HPMCAP), the viscosity rises immediately after preparation of the paste, and in verification of the printability, it is found that a metal oxide layer cannot be formed over the entire surface and is thus not suitable for pasting for screen-printing.
Here, ethyl cellulose (EC) is resistant to thickening and gelation as compared with hydroxypropyl cellulose (HPC) and hydroxypropylmethyl cellulose acetate phtalate (HPMCAP). This is because, as compared with hydroxypropyl cellulose (HPC) and hydroxypropylmethyl cellulose acetate phtalate (HPMCAP), ethyl cellulose (EC) contains relatively small amounts of a hydroxyl group and a carboxyl group, and even when the aggregated particles of the metal oxide particles are added, ions eluted from such aggregated particles and the hydroxyl group and the carboxyl group of the organic resin compounds are not apt to form a three-dimensional network by ion-crosslinking.
As described above, in a metal oxide paste with a content of the aggregated particles of the metal oxide particles being not larger than 1.5 vol %, a content of the organic resin component is in the range of 8.0 to 20.0 vol % and the organic resin component contains ethyl cellulose (EC), so that a metal oxide paste suitable for the printability can be provided.
Next described is a result of the case of adding a viscosity stabilizer containing a hydroxyl group in the metal oxide paste for screen-printing used in the present invention. It is to be noted that types of chemicals used, as well as conditions of numerical values such as amounts of those chemicals, given in the following description are merely exemplary, and the present invention is not restricted thereto.
The metal oxide paste for forming the layer attached with the aggregated particles of the metal oxide particles are prepared in accordance with compositions shown in Table 3.
Composition No. 301 is formed as follows: a powder of aggregated particles of magnesium oxide (MgO) crystals (0.2 vol %) is used as the metal oxide, and butyl carbitol (66.8 vol %) and terpineol (23.0 vol %) are used as the diluting solvent. Further, ethyl cellulose (10.0 vol %) is used as the organic resin component. The metal oxide powder, butyl carbitol, terpineol, and ethyl cellulose are dispersed and mixed uniformly with a three-roll mill, to prepare a metal oxide paste.
Composition No. 302 is formed using butyl carbitol (66.5 vol %) and terpineol (22.8 vol %) as the diluting solvent. Further, ethyl alcohol (0.5 vol %) is added as the viscosity stabilizer. The other materials are the same as in Composition No. 301.
As seen from
On the other hand, since the viscosity of the paste not added with the viscosity stabilizers rises gradually after preparation of the paste, in verification of the printability, it is found that separability from the plate becomes worse gradually on the first day, the third day, and the fifth day after preparation of the paste, causing a significant change in film thickness as well as coverage.
Specifically, in the paste not added with the viscosity stabilizer, due to a hydroxyl group contained in a minute amount in the paste such as solvent, after preparation of the paste, a three-dimensional network is formed by ion-crosslinking with ions gradually eluted from the aggregated particles of the metal oxide particles, causing an increase in viscosity. As opposed to this, in the paste added with the viscosity stabilizer containing a hydroxyl group, the hydroxyl group of the added stabilizer and ions eluted from the metal oxide powder are forcefully ion-crosslinked, to prevent an increase in viscosity with elapsed time, resulting in improvement in stability of the viscosity.
As described above, in a metal oxide paste with a content of the aggregated particles of the metal oxide particles being not larger than 1.5 vol %, a content of the organic resin component is in the range of 8.0 vol % to 20.0 vol %, ethyl cellulose is contained in the organic resin component, and the viscosity stabilizer containing a hydroxyl group is further added, so that a metal oxide paste further suitable for the printability can be provided.
Next described are results of experiments conducted for verifying an effect of the PDP in the embodiment of the present invention.
First, samples of PDPs having protective layers with different configurations are made. Sample 1 is a PDP formed with a protective layer made only of a magnesium oxide (MgO) film, Sample 2 is a PDP formed with a protective layer made only of magnesium oxide (MgO) doped with an impurity such as aluminum (Al) or silicon (Si), and Sample 3 is the PDP in accordance with the present invention in which aggregated particles of the metal oxide particles are attached onto the primary film made of magnesium oxide (MgO) so as to be distributed almost uniformly over the entire surface.
These PDPs respectively having the protective layers of three kinds of configurations are studied for the electron emission performance and electric charge retention performance thereof.
It is to be noted that the electron emission performance is a numerical value that indicates a larger amount of electrons emitted when being a larger value, and is expressed by means of an amount of primary electrons emitted, which is determined based upon a surface condition and a type and a state of gas in discharge. Although, the amount of primary electrons emitted can be measured with a method for measuring an amount of an electron-current emitted from the surface through irradiation of the surface with ions or an electron beam, it is difficult to evaluate the surface of the front panel without breakage therein. Therefore, as described in Unexamined Japanese Patent Publication No. 2007-48733, first, a numerical value as a guide of easiness of discharge occurrence, referred to as statistical delay time, is measured among delay time in discharge. Subsequently, an inverse value of the measured value is integrated, to give a numerical value linearly corresponding to the amount of primary electrons emitted, so that evaluation is performed here using this numerical value. This delay time in discharge means the time of a discharge delay which is a delay in discharge from rising of a pulse, and a main factor for the discharge delay is considered to be that the initial electrons to serve as a trigger at the start of discharge are resistant to emitting from the surface of the protective layer into the discharge space.
Further, as a reference of the electric charge retention performance, a voltage value of a voltage (hereinafter referred to as a Vscn lighting voltage) to be applied to scan electrodes is used, which is required for suppressing an electric charge emission phenomenon in the case of producing a PDP. In other words, higher electric charge retention performance is shown at a lower Vscn lighting voltage. This allows driving at a lower voltage also in panel designing for a PDP, so that a component with a smaller withstanding voltage and a smaller capacity can be employed as a power supply and each electric component. In currently existing products, an element having a withstanding voltage of the order of 150 V is employed as a semiconductor switching element such as a metal-oxide semiconductor field-effect transistor (MOSFET) for sequentially applying a scan voltage to a panel, and the Vscn lighting voltage is preferably suppressed to not larger than 120 V in consideration of variations due to a temperature.
In Sample 3 where aggregated particles 92 of the magnesium oxide (MgO) crystals are formed on primary film 91 of magnesium oxide (MgO) so as to be almost uniformly distributed over the entire surface, the Vscn lighting voltage can be set to not larger than 120 V in evaluation of the electric charge retention. Furthermore, as for the electron emission performance, a favorable characteristic of not smaller than 6 can be obtained.
In other words, in general, the electron emission capability and the electric charge retention capability of a protective layer of a PDP conflict with each other. For instance, changing a film forming condition for the protective layer or doping an impurity such as aluminum (Al), silicon (Si), or barium (Ba) into the protective layer to form a film can improve the electron emission performance, but the Vscn lighting voltage also rises as a side effect.
According to the present invention, it is possible to form a protective layer that can satisfy both the electron emission capability and the electric charge retention capability for a PDP having tendencies to be increased in number of scanning lines and reduced in cell size with the progress of high definition.
Next, a particle diameter of aggregated particles 92 used in Sample 3 is described. It is to be noted that in the following description, the particle diameter means an average particle diameter, and the average particle diameter means a volume cumulative average diameter (D50).
As shown in
Incidentally, in order to increase the number of electrons emitted inside the discharge cell, the number of aggregated particles per unit area on the protective layer is desirably larger. On the other hand, the experiment conducted by the present inventors reveals that in the presence of aggregated particles 92 in a portion corresponding to the top of the barrier rib of the rear panel closely in contact with the protective layer of the front panel, the top of the barrier rib breaks and its material falls on the phosphor layer, leading to occurrence of a phenomenon that the corresponding cell is not normally turned on and off. Since this phenomenon of breakage in barrier rib is not apt to occur unless aggregated particles 92 are present in the portion corresponding to the top of the barrier rib, the probability of occurrence of the breakage in barrier rib becomes higher with increase in number of aggregated particles to be attached.
As thus described, in the PDP having the protective layer formed using the metal oxide paste for screen-printing in accordance with the present invention, the electron emission capability is a characteristic of not smaller than six, and the electric charge retention capability is a Vscn lighting voltage of not larger than 120 V. Accordingly, as the protective layer of the PDP having tendencies to be increased in number of scanning lines and reduced in cell size with the progress of high definition, it is possible to satisfy both the electron emission capability and the electric charge retention capability, thereby to realize a PDP with high-definition/high-luminance display performance as well as with low power consumption.
Incidentally, in the PDP in the present invention, as described above, aggregated particles 92 of the magnesium oxide (MgO) crystals are attached so as to be distributed at a coverage in the range of 2% to 12% over the entire surface. This derives from results of the studies conducted by the present inventors by making the samples with changed coverage of aggregated particles 92 to study characteristics of the samples. In other words, it is found that the Vscn lighting voltage becomes larger and worse with increase in coverage of aggregated particles 92, whereas the Vscn lighting voltage becomes smaller with decrease in coverage.
Repeated experiments and studies based upon these results lead to finding that the coverage of aggregated particles 92 is preferably not larger than 12% for sufficiently exerting the effect by attachment of aggregated particles 92 as described above.
Meanwhile, reducing a variation in panel discharge characteristics requires the presence of aggregated particles 92 of the magnesium oxide (MgO) crystals in each discharge cell, which requires aggregated particles 92 to be attached onto primary film 91 so as to be distributed almost uniformly over the entire surface. However, it is found that a variation in coverage within the surface tends to become larger in the case of the coverage being smaller, thus resulting in a larger variation in aggregated particles 92 in an attached state between the discharge cells. It is found from the result of the experiments conducted by the present inventors that attaching particles 92 so as to have a coverage of not smaller than 4% can suppress the internal surface variation at not larger than about 4%. Further, it is found that also in the case of attaching aggregated particles 92 so as to have a coverage of not smaller than 2%, the internal surface variation can be suppressed at the order of about 6%, which practically causes no problem.
In accordance with these results, in the present invention, it is desirable to attach aggregated particles 92 so as to have a coverage in the range of 2% to 12%, and further desirable to attach aggregated particles 92 so as to have a coverage in the range of 4% to 12%.
As thus described, the present invention is useful in realization of a PDP with high-definition/high-luminance display performance as well as with low power consumption.
Number | Date | Country | Kind |
---|---|---|---|
2008-170073 | Jun 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/002663 | 6/12/2009 | WO | 00 | 3/18/2010 |