This application claims priority to and the benefit of Japanese Patent Application No. 2003-282670 filed on Jul. 30, 2003 in the Japanese Intellectual Property Office, the entire content of which is incorporated herein by reference.
(a) Field of the Invention
The present invention relates to a plasma display panel (PDP) video processing circuit, a video display device using the video processing circuit, a video processing method, and a video display method using the video processing method.
(b) Description of the Related Art
Image qualities of PDPs such as brightness and contrast have been improved, and they have come to be used for large-screen flat displays.
AC PDPs use a subfield method for controlling lighting of pixels in order to represent gray scales.
An address period is inserted between the sustain periods of each subfield. This discontinuous lighting appears as if the lighting of each subfield is integrated and continuous because of an “afterimage effect” to human eyes. When the total amount of lighting is varied because subfields are combined with different weights, it is deemed to be a variation of brightness, which represents the gray scales.
However, this gray scale representation method causes a “contour noise” phenomenon, which occurs when displaying video with the subfield method. Contour noise occurs where a lighting scheme is greatly varied. In this instance, the lighting scheme represents a combination of different subfields.
A conventional method for detecting motion between frames and applying the gray scales with consecutive lighting schemes to the detected motion has been proposed in order to solve the contour noise problem by Kawahara Isao and Sekimoto Kunio, “Developments of suppressing dynamic false contour for fine PDP” in the annual image information media transactions, pp. 369-370, published in 2000. This method is effective in that the contour noise is reduced while maintaining the current display performance.
The dark portion and the bright portion are referred to as the contour noise. The unintended bright portion and the dark portion are displayed with a gray difference of 1 with gradually consecutive variation of the gray scales in the image. As such, this phenomenon substantially damages the quality of the video display.
Widths of the bright portion and the dark portion vary according to the speed of which the window moves, and the widths are generally widened as the window moves faster.
Human eyes follow the front portion (depicted by an arrow) of the moving window with the gray scale of 128/255, but a person who looks at the front portion initially sees the lighting of gray scale of 127 on the background because of the afterimage effect, and then sees the lighting of the window with the gray scale of 128, as shown in
As can be seen from
An opposite phenomenon occurs at the rear portion of the window, and the bright portion of
Generation frequencies of the contour noise are somewhat predictable. The generation of contour noise increases at the boundary of the gray scales with greatly varied light emission schemes, such as between the gray scales 7 and 8, and between the gray scales 15 and 16 from the subfield arrangement tables shown in
Accordingly, it is possible to effectively reduce the contour noise near the gray scales at which the contour noise is generated by detecting and processing the motion of the gray scales.
As shown in
The case of displaying the gray scale of 256 from the 8 subfields is partially illustrated in
Therefore, a field memory is used as shown in
This conventional contour noise reduction method adds some efficiency to the image display, but it may generate an opposite effect, which will now be described.
The results determined to “have motion” are reflected on the current field, and gray scales with consecutive light emission schemes are applied to the background's corresponding positions near the right and left portions in the window of
The combinations of the gray scale of the previous fields and the gray scale of the current fields of the area A are compared referring to
However, regarding the area B, the contour noise is not reduced since the previous field has the gray scale 8 having a light emission scheme with a gap even if the current field is represented with gray scales having consecutive light emission schemes. Because the previous field has already been displayed, it cannot be processed like area A to have gray scales with consecutive schemes.
The present invention provides a video processing circuit, a video display device using the video processing circuit, a video processing method, and a video display method using the video processing method for preventing generation of contour noise irrespective of varied directions of light emission schemes.
In one aspect of the present invention, a PDP video processing circuit includes a comparison circuit for receiving a first video signal and a second video signal which is delayed by a predetermined field, outputting a first motion detection result when a signal level of the first video signal is greater than a signal level of the second video signal, and outputting a second motion detection result when the signal level of the first video signal is less than the signal level of the second video signal. A first switching circuit is provided for receiving the first video signal, switching a lighted pattern according to the first motion detection result output by the comparison circuit, establishing a predetermined flag signal, and outputting a third video signal, which is delayed by a predetermined field. A second switching circuit is also provided for receiving the third video signal output by the first switching circuit, and switching a lighted pattern according to a second motion detection result output by the comparison circuit and the flag signal of the third video signal.
The comparison circuit of this embodiment compares the signal level of the first video signal with the signal level of the second video signal as a near value at which contour noise may be generated.
The first switching circuit converts the first video signal into a gray scale with consecutive light emission schemes to thus generate the converted video signal into multiple gray scales, establishes the flag signal, and outputs the third video signal delayed by the predetermined field, when the first motion detection result indicates existence of motion.
In one embodiment, the first switching circuit performs gray scale conversion and multiple gray scale processing on the pixel which indicates that the first motion detection result indicates motion.
The first switching circuit outputs the third video signal, which is generated by delaying the first video signal by a predetermined field, without establishing the flag signal when the first motion detection result indicates no existence of motion.
The second switching circuit outputs the third video signal without switching the lighted pattern when the second motion detection result indicates the existence or nonexistence of motion and the flag signal is established.
The second switching circuit switches the lighted pattern and outputs the third video signal when the second motion detection result indicates existence of motion and the flag signal is not established.
The second switching circuit outputs the third video signal without switching the lighted pattern when the second motion detection result indicates no existence of motion and the flag signal is not established.
The second switching circuit outputs the third video signal except the flag signal after switching the lighted pattern.
In still another aspect of the present invention, a PDP video processing method includes receiving a first video signal and a second video signal which is delayed by a predetermined field, outputting a first motion detection result when a signal level of the first video signal is greater than a signal level of the second video signal, and outputting a second motion detection result when the signal level of the first video signal is less than the signal level of the second video signal. This embodiment of the method further includes receiving the first video signal, switching a lighted pattern according to the first motion detection result, establishing a predetermined flag signal, and outputting a third video signal which is delayed by a predetermined field; and receiving the third video signal, and switching a lighted pattern according to the second motion detection result and the flag signal.
The signal level of the first video signal is compared with the signal level of the second video signal for a near value at which contour noise may be generated. The first video signal is converted into a gray scale with consecutive light emission schemes to thus generate the converted video signal into multiple gray scales, establishing the flag signal, and outputting the third video signal delayed by the predetermined field, when the first motion detection result indicates existence of motion.
The gray scale conversion and multiple gray scale processing is performed on a pixel that indicates that the first motion detection result has existence of motion.
The third video signal that is generated by delaying the first video signal by a predetermined field is output without establishing the flag signal when the first motion detection result indicates no existence of motion.
The third video signal is output without switching the lighted pattern when the second motion detection result indicates either the existence or nonexistence of motion and the flag signal is established.
The lighted pattern is switched and the third video signal is output when the second motion detection result indicates existence of motion and the flag signal is not established.
The third video signal is output without switching the lighted pattern when the second motion detection result indicates no existence of motion and the flag signal is not established.
The third video signal is output except the flag signal after switching the lighted pattern.
a), 13(b), and 13(c) show cases of the prior art combination of the gray scales 7 and 8 in the window of
To address one or more of the problems discussed above, in one embodiment of the present invention, a memory for two fields is used, a motion is detected, and a case for applying consecutive gray scales to the corresponding pixel of the current field and a case for applying the consecutive gray scales to the corresponding pixel of the previous field are adaptively switched with respect to the motion-detected pixels so that the contour noise is improved irrespective of motion directions.
A PDP video processing circuit according to the exemplary embodiment of the present invention will be described with reference to a drawing.
The video processing circuit 1 comprises a first delay circuit 10, a comparison circuit 20, a first gray scale number controlling/multiple gray scale processing circuit 30, a first switching circuit 40, a decision circuit 50, a second delay circuit 60, a second gray scale number controlling/multiple gray scale processing circuit 70, and a second switching circuit 80.
The first delay circuit 10 delays a video signal S1 input to the video processing circuit 1 by a predetermined number of fields (exemplified to be one field hereinafter), and outputs a video signal S3 (which is a video signal delayed by one field with reference to the video signal S1) to the comparison circuit 20.
In this embodiment, the video signal input to the first delay circuit 10 includes RGB (red/green/blue) digital data.
The comparison circuit 20 receives the video signals S1 and S3, and compares a signal level of the video signal S1 with a signal level of the video signal S3.
When the signal level of the video signal S1 is greater than the signal level of the video signal S3, the comparison circuit 20 outputs a motion detection result S4 to the first switching circuit 40, and when the signal level of the video signal S1 is less than the signal level of the video signal S3, the comparison circuit 20 outputs a motion detection result S5 to the decision circuit 50. Also, the comparison circuit 20 compares the signal level of the video signal S1 with the signal level of the video signal S3 of the first delay circuit 10 near a value at which contour noise is apt to be generated and which is preset according to a light emission scheme.
In detail, the comparison circuit 20 compares the input signal S1 with the output signal S3 of the first delay circuit 10 near a value at which contour noise is apt to be generated, and respectively outputs motion detection results S4 or S5 for showing the existence or nonexistence of motion when the signal level of the input signal S1 is greater than the signal level of the output signal S3. Thus, the light emission schemes can be varied in directions of both increasing and decreasing signal levels.
The first gray scale number controlling/multiple gray scale processing circuit 30 represents the video signal S1 by gray scales with discontinuous light emission schemes in a format of gray scales with continuous light emission schemes (such as the gray scale 7 of
In this instance, the gray scales with consecutive light emission schemes represent gray scales having the consecutive subfield numbers lighted (naught, 1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8) in a like manner of display gray scales 0, 1, 3, 7, 15, 31, 63, 127, and 255, shown in
The first switching circuit 40 receives the video signal S1, switches a lighted pattern according to the motion detection result S4 output by the comparison circuit 20, establishes a flag F1, outputs a video signal S6 delayed by one field by the second delay circuit 60 to the second gray scale number controlling/multiple gray scale processing circuit 70 and the second switching circuit 80, and outputs the flag F1 to the decision circuit 50.
In this instance, the switching of the lighted pattern is represented by the video signal S1, which is represented by the gray scales with discontinuous light emission schemes and the gray scales with continuous light emission schemes. The switching represents switching the video signal S2 in which the original gray scales are multiple gray scales with consecutive light emission schemes.
In detail, when the first gray scale number controlling/multiple gray scale processing circuit 30 outputs the gray-scale-converted and multi-gray-scale-processed video signal S2, the first switching circuit 40 establishes the flag F1 to the pixel in which the motion detection result S4 indicates existence of motion, and outputs a video signal S6. S6 is then delayed by one field by the second delay circuit 60 to generate S8.
When the motion detection result S4 indicates no existence of motion, the first switching circuit 40 does not establish the flag F1 and outputs the video signal S6 which is later delayed by one field by the second delay circuit 60.
In detail, the first switching circuit 40 receives the output signal S4 in the direction for increasing the signal level from among the output signals S4 and S5 of the comparison circuit 20. It then switches and outputs the video signals S1, which are input according to existence states of the output signal S4 and the output signal S2 of the first gray scale number controlling/multiple gray scale processing circuit 30. In this instance, the first switching circuit 40 outputs the video signals S2. The light emission schemes of the video signals S2 are made consecutive by the first gray scale number controlling/multiple gray scale processing circuit 30 and output by the first switching circuit 40 when the pixels are determined to have motion by the comparison circuit 20. When the pixels are not determined to have motion, the first switching circuit 40 outputs the original video signal S1.
In this instance, the first switching circuit 40 adds a predetermined flag bit to a video signal bit which is originally needed for the output video signal S6 by using the flag F1. The decision circuit 50 at the rear of the comparison circuit 20 indicates that the first gray scale number controlling/multiple gray scale processing circuit 30 is selected through the flag F1. The first switching circuit 40 establishes the flag F1 to the pixels for the first selected gray scale number controlling/multiple gray scale processing circuit 30, and outputs result signals.
The decision circuit 50 receives the motion detection result S5 output by the comparison circuit 20 and the flag F1 added to the video signal S6, and outputs a switching decision result S7 of the lighted pattern to the second switching circuit 80.
In detail, the decision circuit 50 receives the output signal S5 in the direction for decreasing the signal level from among the output signals S4 and S5 of the comparison circuit 20 and the flag F1 from among the output signal S6 of the second delay circuit 60. The decision circuit 50 then either outputs the output signal S5 of the comparison circuit 20 to the second switching circuit 80 according to existence states of the flag F1 (i.e., outputs a switching decision result S7) or outputs no signal (i.e., outputs no switching decision result S7).
In further detail, when the motion detection result S5 indicates existence of motion, and the flag F1 is established, the decision circuit 50 outputs no signal to the second switching circuit 80. When the motion detection result S5 indicates no existence of motion and the flag F1 is established, the decision circuit 50 outputs no signal to the second switching circuit 80 in a like manner.
When the motion detection result S5 indicates existence of motion, and the flag F1 is not established, the decision circuit 50 outputs the output signal S5 of the comparison circuit 20 as the switching decision result S7 to the second switching circuit 80.
When the motion detection result S5 indicates no existence of motion and the flag F1 is not established, the decision circuit 50 outputs no signal to the second switching circuit 80.
When the flag F1 is established, the second delay circuit 60 delays the video signal S6 input by the first switching circuit 40 by one field while the flag F1 is added in a like manner of the first delay circuit 10, and outputs a video signal S8 (which is generated by delaying the video signal S6 by one field) to the decision circuit 50, the second gray scale number controlling/multiple gray scale processing circuit 70, and the second switching circuit 80.
The second gray scale number controlling/multiple gray scale processing circuit 70 corresponds to the first gray scale number controlling/multiple gray scale processing circuit 30, and it receives the video signal except the flag F1 from the video signal S8 output by the second delay circuit 60. The second gray scale number controlling/multiple gray scale processing circuit 70 then represents the video signal with the gray scales having consecutive light emission schemes, and generates the original gray scale number into multiple gray scales with consecutive gray scales. The second gray scale number controlling/multiple gray scale processing circuit 70 then outputs a video signal S9, which is generated by converting the video signal S8 into gray scales with consecutive light emission schemes.
The second switching circuit 80 receives the video signal S8 which is generated by delaying the video signal S6 output by the first switching circuit 40 by one field in the second delay circuit 60. The second switching circuit 80 also receives the converted video signal S9 and the switching decision results S7, if it exists. The switching circuit 80 then switches a lighted pattern according to existence states of the switching decision result S7 output through the decision circuit 50.
As described, since the decision circuit 50 outputs no signal S7 to the second switching circuit 80, when the motion detection result S5 indicates existence of motion and the flag F1 is established, the second switching circuit 80 outputs the video signal S8 input by the second delay circuit 60 to the PDP display (not illustrated) without switching the lighted pattern, in this situation.
In a like manner, since the decision circuit 50 outputs no signal to the second switching circuit 80 when the motion detection result S5 indicates no existence of motion and the flag F1 is established, the second switching circuit 80 outputs the video signal S8 (input by the second delay circuit 60) to the PDP display without switching the lighted pattern, in this situation.
The decision circuit 50 outputs the output signal S5 of the comparison circuit 20 as a switching decision result S7 to the second switching circuit 80 when the motion detection result S5 indicates existence of motion and the flag F1 is not established. Thus, the second switching circuit 80 switches the lighted pattern and outputs a video signal S9, which is input by the second gray scale number controlling/multiple gray scale processing circuit 70 to the PDP display.
The decision circuit 50 outputs no signal to the second switching circuit 80 when the motion detection result S5 indicates no existence of motion and the flag F1 is established. Thus, the second switching circuit 80 outputs the video signal S8 that is input by the second delay circuit 60 to the PDP display without switching the lighted pattern. In this instance, the second switching circuit 80 outputs the video signals S8 and S9 excluding the flag F1 after switching the lighted pattern.
In detail, the second switching circuit 80 receives the video signals, except the flag, from among the output signal S8 of the second delay circuit 60 and the output signal S9 of the second gray scale number controlling/multiple gray scale processing circuit 70, and the output signal S7 of the decision circuit 50. The second switching circuit 80 outputs the output signal S9 of the gray scale number controlling/multiple gray scale processing circuit 70 when the decision circuit 50 outputs the output signal S7, and outputs the output signal S8 of the second delay circuit 60 when the decision circuit 50 outputs no signal.
An operation of the video processing circuit 1 according to the exemplary embodiment of the present invention will be described.
The case in which a signal variation on the motion of the current field is greater than the previous field, as given as A in
The case in which a signal variation on the motion becomes lesser, as shown in B in
When the signal variation is increased as shown by the portion A of
Also, when the first gray scale number controlling/multiple gray scale processing circuit 30 is selected, the video signal S6, to which the flag F1 is added, is output by the first switching circuit 40.
The video signal S6 output by the first switching circuit 40 is delayed by one field by the second delay circuit 60, and is output as a video signal S8 to the decision circuit 50, the second gray scale number controlling/multiple gray scale processing circuit 70, and the second switching circuit 80.
The decision circuit 50 receives the flag F1 added to the video signal S6, and outputs the switching decision result S7 of the lighted pattern to the second switching circuit 80. In this instance, the decision circuit 50 outputs no signal to the second switching circuit 80 (i.e., it does not output the switching decision result S7) when the flag F1 indicating a processed pixel is provided.
Therefore, the first gray scale number controlling/multiple gray scale processing circuit 30 outputs a once processed video signal to the PDP display through the second switching circuit 80.
With reference to the timing chart of
Next, as shown by the portion B of
Therefore, when the one-field-delayed output of the second delay circuit 60 has no flag, the second gray scale number controlling/multiple gray scale processing circuit 70 is selected, and the contour noise on the corresponding pixel is reduced.
That is, since the decision circuit 50 of the comparison circuit 20 outputs the motion detection result S5 and the first switching circuit 40 outputs no motion detection result S4, the first switching circuit 40 does not establish the flag F1, but selects the video signal S1.
The video signal S6 output by the first switching circuit 40 is delayed by one field by the second delay circuit 60, and is output as a video signal S8 to the decision circuit 50, the second gray scale number controlling/multiple gray scale processing circuit 70, and the second switching circuit 80.
The decision circuit 50 receives the motion detection result S5 from the comparison circuit 20, and outputs the switching decision result S7 of the lighted pattern to the second switching circuit 80.
For further description on this with reference to the timing chart of
In other words, since the portion B of
As a result, the contour noise is reduced irrespective of big or small signal variation as described in the relations of the gray scales of the previous field and the current field of the portion A of
Since the consecutive fields are processed in the actual video, it is also possible that the pixels, the signal variation of which has been determined to be changed from small to big, may be determined to be changed from big to small in the next field, and are then retroactively processed.
a) to 3(c) show screen variation in a time series manner, and the time proceeds in the direction from (a) to (c). As shown in
It is unnecessary to further process the processed pixels since the light emission schemes are represented with consecutive gray scales, and it is not desirable in the viewpoint of gray scale characteristics. Therefore, the above-described flag addition process and the decision circuit 50 are provided to the video processing circuit 1 to thus prevent double processing. That is, as shown in the (b) field of
The video signal S6 output by the first switching circuit 40 is delayed by one field by the second delay circuit 60, and is output as the video signal S8 to the decision circuit 50, the second gray scale number controlling/multiple gray scale processing circuit 70, and the second switching circuit 80.
The decision circuit 50 receives the flag F1 added to the video signal S6, and outputs the switching decision result S7 of the lighted pattern to the second switching circuit 80. In this instance, the decision circuit 50 outputs no signal to the second switching circuit 80 (i.e., does not output the switching decision result S7) when the flag F1 indicates the processed pixel is provided.
As shown in
Accordingly, the once processed video signal is passed through the second switching circuit 80 to the PDP display in the first gray scale number controlling/multiple gray scale processing circuit 30.
Since the comparison circuit 20 and the decision circuit 50 perform detection on the near known area of the gray scales at which the contour noise is generated, in this embodiment, they do not process the unknown area, thereby preventing generation of a load caused by unnecessary processing.
As described, the video processing circuit 1 receives the video signal S1 and the one-field-delayed video signal S3, outputs the motion detection result S4 when the signal level of the video signal S1 is greater than the signal level of the video signal S3 and outputs the motion detection result S5 when the signal level of the video signal S1 is less than the signal level of the video signal S3. The circuit 1 then establishes the flag F1 according to the motion detection result S4, and outputs the video signal S8. The video signal S8 is generated by delaying the video signal S6 obtained by switching the lighted pattern, by one field. The circuit 1 then switches the lighted pattern of the video signal S8 according to the motion detection result S5 and the flag F1, thereby preventing the generation of the contour noise irrespective of varied directions of the light emission schemes.
As described, a first video signal and a second video signal delayed by a predetermined field are received, a first motion detection result is output when a signal level of the first video signal is greater than that of the second video signal, a second motion detection result is output when the signal level of the first video signal is less than that of the second video signal. The first video signal is received to switch a lighted pattern according to the first motion detection result. A predetermined flag signal is established to output a third video signal delayed by a predetermined field, and the third video signal is received to switch the lighted pattern according to the second motion detection result and the flag signal. Thus, the generation of contour noise irrespective of varied directions of the light emission schemes is prevented in this embodiment.
Although exemplary embodiments of the present invention have been described in detail hereinabove, it should be clearly understood that many variations and/or modifications of the basic inventive concept taught herein, which may appear to those skilled in the art, will still fall within the spirit and scope of the present invention, as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-282670 | Jul 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6061100 | Ward et al. | May 2000 | A |
6717558 | Weitbruch et al. | Apr 2004 | B1 |
7071902 | Kawahara | Jul 2006 | B1 |
7102599 | Okuzawa et al. | Sep 2006 | B2 |
Number | Date | Country |
---|---|---|
1426915 | Jun 2004 | EP |
11-85102 | Mar 1999 | JP |
2004-4782 | Jan 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20050052355 A1 | Mar 2005 | US |