This application claims priority to and the benefit of Korean Patent Application No. 10-2004-0075405 filed in the Korean Intellectual Property Office on Sep. 21, 2004, the entire content of which is incorporated herein by reference.
1. Field of the Invention
The embodiments of the present invention relate to a plasma display panel. More particularly, the embodiments of the present invention relate to a plasma display panel in which noise sources around a gas exhaust port and a gas exhaust tube can be effectively suppressed.
2. Description of the Related Art
Generally, a plasma display panel (PDP) is formed by combining a front panel with a rear panel to contain a discharge gas in the space between the panels. The front panel includes a front substrate, display electrodes formed on a rear surface of the front substrate, a dielectric layer covering the display electrodes, and a protective layer. The rear panel includes a rear substrate, address electrodes formed on a front surface of the rear substrate laid out in a direction crossing the display electrodes, a dielectric layer covering the address electrodes, barrier ribs formed on the dielectric layer and partitioning discharge cells and a phosphor layer formed on the discharge cells.
The PDP is driven by generating a sustain discharge and a reset discharge after an address discharge. If a sustain pulse is applied to the display electrode, an electric field is generated by the display electrodes in each discharge cell. Discharge gas is excited to a plasma state in a high energy level by this electric field and is then stabilized to a low energy level. During this process, an ultraviolet ray is generated. This ultraviolet ray excites the phosphor layer to a high energy level. The phosphor layer emits visible light while it is being stabilized to a lower energy level, and thus a desired image can be generated.
The PDP is provided with a gas exhaust port and a gas exhaust tube at one side of the rear substrate. The exhaust port and the gas exhaust tube are required to exhaust air remaining between the front and rear panels after combining the two panels and to seal the panels after injecting a discharge gas into an inner space between the two panels. To meet these requirements, the gas exhaust port and the gas exhaust tube are configured to define a passageway within the plasma display panel, at a terminal connection region, i.e., a dummy region provided between a display region showing images and an interconnection region for connecting electrode terminals to a connector.
When the PDP is driven, a natural frequency of the PDP and a driving frequency of the PDP that is applied to the display electrodes from a driving circuit may create resonance conditions. Noises and vibrations can be generated by the resonance. Such noises and vibrations may be further amplified while passing through the gas exhaust port and the gas exhaust tube that are formed in the rear substrate.
The embodiments of the invention provide a plasma display panel that effectively suppresses noise transmitted through a gas exhaust port and tube formed in a rear panel of the display.
An exemplary plasma display panel according to an embodiment of the present invention includes a first panel, a second panel, a gas exhaust port and a gas exhaust tube. The first panel and the second panel are attached to each other such that discharge cells are formed therebetween and an image is generated through a gas discharge within the discharge cells. The gas exhaust port is formed near at least one edge of the first panel and defines a passageway communicating with the discharge cells. The gas exhaust tube is provided on the outside of the first panel in which the gas exhaust port is formed and communicates with the discharge cells via the gas exhaust port. The gas exhaust port and the gas exhaust tube are disposed such that the center lines of each are not aligned with one another other. The gas exhaust port and the gas exhaust tube are disposed such that the center lines of each are substantially parallel to one another.
The gas exhaust tube may include a tap part, one end of which is wider than the other end with the wider end attached to the first panel, and a neck part that extends from the tap part in a direction perpendicular to the first panel. The neck part may have a diameter that is less than a diameter of the tap part.
In one embodiment, an imaginary planar cross-sectional area defined by an extension of a perimeter line of the gas exhaust tube and an imaginary planar cross-sectional area defined by an extension of a perimeter line of the neck part may partially overlap one another. The discharge cells may be in fluid communication with the tap part via the gas exhaust port. The neck part may be in fluid communication with the tap part. The imaginary planar cross-sectional area of the gas exhaust port and the imaginary planar cross-sectional area of the neck part may partially overlapped with each other.
In another embodiment, an imaginary planar cross-sectional area defined by an extension of a perimeter line of the gas exhaust port and an imaginary planar cross-sectional area defined by an extension of a perimeter line of the gas exhaust tube may not overlap. The discharge cells may be in fluid communication with the tap part via the gas exhaust port. The neck part may be in fluid communication with the tap part. The imaginary planar cross-sectional area of the gas exhaust port and the imaginary planar cross-sectional area of the neck part may not overlap each other.
In one embodiment, the gas exhaust port and the gas exhaust tube may be disposed such that center lines of each are parallel with one another. A center line of the gas exhaust port may align with the neck part of the gas exhaust tube or to the tap part of the gas exhaust tube.
Imaginary planar cross-sectional area defined by the extension of perimeter lines of the gas exhaust port and the gas exhaust tube neck part may be defined with a circular shape. A distance between a center line of the gas exhaust port and a center line of the gas exhaust tube neck part may be less than a sum of a radius of the imaginary planar cross-sectional area of the gas exhaust port and a radius of the imaginary planar cross-sectional area of the gas exhaust tube neck part.
Imaginary planar cross-sectional areas defined by extension lines of the gas exhaust port and the gas exhaust tube neck part may be defined with a circular shape, and a distance between a center line of the gas exhaust port and a center line of the gas exhaust tube neck part may be greater than or equal to a sum of a radius of the imaginary planar cross-sectional area of the gas exhaust port and a radius of the imaginary planar cross-sectional area of the gas exhaust tube neck part.
Referring to
In one embodiment, the PDP includes sustain electrodes 3 and scan electrodes 5, which form display electrodes. The display electrodes are formed on an inner surface of the front substrate 2 that forms the front panel 200. Address electrodes 9 are formed on an inner surface of the rear substrate 1 that forms the rear panel 100. The sustain electrodes 3 and the scan electrodes 5 are formed on the inner surface of the front substrate 2 and are covered with a dielectric layer 11 and a protective layer 13. The address electrodes 9 are formed on the inner surface of the rear substrate 1, and covered with a dielectric layer 15. Barrier ribs 17 are formed on the dielectric layer 15 to partition the discharge cells 19. A phosphor layer 21 is formed in each of the discharge cells 19. The discharge cells 19 may be filled with a mixture of inert gases such as Neon (Ne) and Xenon (Xe). Because the display electrodes and the address electrodes 9 are formed to cross each other on either side of corresponding discharge cells 19, the discharge cells 19 can be selected by application of specific address electrodes 9 and display electrodes. In one embodiment, the barrier ribs 17 are formed as stripes that are laid out in one direction (i.e., y-axis direction in
When driving the PDP, an address discharge is generated during an address period by an address pulse applied to the address electrodes 9. A scan pulse is applied to the scan electrodes 5 to select the discharge cells 19 that are to be turned on. A sustain discharge is generated during a sustain period by a sustain pulse applied to the scan electrodes 5 and the sustain electrodes 3 to generate an image.
During a manufacturing process of a PDP, air remains in the discharge cells 19 formed between the front substrate 2 and the rear substrate 1 after they are combined with each other. After exhausting the air in the discharge cells 19, discharge gas is injected into the space and an injection passageway is then sealed. To achieve this process, as shown in
The front substrate 2 and the rear substrate 1 are to each other near the edges of each substrate by a glass frit 101. The gas exhaust port 23 acts as a passageway connecting a discharge space, i.e., the discharge cells 19 formed between the front substrate 2 and the rear substrate 1, to the outside of the PDP. The gas exhaust tube 25 is attached to an outer surface of the rear substrate 1 to communicate with the gas exhaust port 23 and extends away from the rear substrate 1. An inner space of the PDP is in fluid communication with the outside to allow the exhaustion of air and injection of discharge gas. After finishing the injection of the discharge gas, the gas exhaust tube 25 is sealed so that the inner space of the PDP is isolated from the outside.
The gas exhaust port 23 and the gas exhaust tube 25 are formed with an orientation (i.e., the z-axis direction in
As shown in
In one embodiment, center lines C1 and C2 of the gas exhaust port 23 and the gas exhaust tube 25 are not in line with each other, but instead deviate from each other. By orienting the center lines not to be in line with each other, noise wave W1 generated in the gas exhaust port 23 and noise wave W2 generated in the gas exhaust tube 25 have separate paths from each other during the driving of the PDP. Even though center lines C1 and C2 of the gas exhaust port 23 and the gas exhaust tube 25 do not line up with each other, a passageway connecting an inner space of the discharge cells 19, i.e., a discharge space, to the outside via the gas exhaust tube 25 and the gas exhaust port 23 is present. In this configuration, the gas exhaust tube 25 includes a tap part 25a and a neck part 25b.
The tap part 25a is formed such that the end attached to the rear substrate 1 is expanded to have a wider diameter, so that the tap part 25a can be attached to the rear substrate 1 while surrounding the opening of the gas exhaust port 23 that is formed in the rear panel 100. The neck part 25b is formed as an extension from the tap part 25a in a direction perpendicular to the rear panel 100. The neck part 25b forms a substantial portion of the gas exhaust tube 25. In one embodiment, the center line C2 of the gas exhaust tube 25 indicates a center line C2 of the neck part 25b. The neck part 25b is formed as an extension from the tap part 25a in a direction perpendicular to the rear substrate 1 with a diameter less than the diameter of the tap part 25a. The neck part 25b serves as a passageway to be connect to an external device during the gas exhaust process and the gas injection process. The neck part 25b is formed such that the noise wave W2 generated therein when driving the PDP does not align with the noise wave W1 generated in the gas exhaust port 23. Accordingly, propagation of noise generated in the gas exhaust port 23 to other portions of the PDP via the neck part 25b is suppressed.
Imaginary planar cross-sectional areas A1 and A2 are defined by extension of perimeter lines of the gas exhaust port 23 and the neck part 25b of the gas exhaust tube 25. These planar cross-sectional areas A1 and A2, as shown in
The discharge cells 19 within the PDP are in fluid communication to the tap part 25a of the gas exhaust tube 25 via the gas exhaust port 23. The neck part 25b of the gas exhaust tube 25 is in fluid communication with the tap part 25a. The planar cross-sectional area A1 defined by the extension of the perimeter line of the gas exhaust port 23 and the planar cross-sectional area A2 defined by the extension of the perimeter line of the neck part 25b partially overlap with each other.
The center line C1 of the gas exhaust port 23 may be aligned with the tap part 25a or the neck part 25b of the gas exhaust tube 25. In the first embodiment shown in
Overlapping between the structures is configured such that the noise wave W1 generated in the gas exhaust port 23 and the noise wave W2 generated in the neck part 25b partially overlap with each other, but do not completely overlap. As mentioned above, propagation of noise generated in the gas exhaust port 23 to other portions of the PDP via the neck part 25b is suppressed.
In the third embodiment of the present invention, imaginary planar cross-sectional areas A1 and A2 of the gas exhaust port 23 and the neck part 25b of the gas exhaust tube 25, as shown in
The discharge cells 19 within the PDP are connected to the tap part 25a of the gas exhaust tube 25 via the gas exhaust port 23. The neck part 25b of the gas exhaust tube 25 is connected to the tap part 25a. The imaginary planar cross-sectional areas A1 defined by the extension of the perimeter line of the gas exhaust port 23 and the imaginary planar cross-sectional area A2 formed by the extension of the perimeter line of the neck part 25b are completely spaced apart from each other, without any overlapping. The cross-sectional area A1 may remain within an imaginary planar cross-sectional area A3 defined by an extension of the perimeter line of the tap part 25a.
In the third embodiment, similar to the first embodiment, the center line C1 of the gas exhaust port 23 is aligned with the tap part 25b of the gas exhaust tube 25. However, in the third embodiment, a distance between the center line C1 of the gas exhaust port 23 and the center line C2 of the neck part 25b of the gas exhaust tube 25 is greater than or equal to a sum of a radius of the planar cross-sectional area A1 of the gas exhaust port 23 and a radius of the planar cross-sectional area A2 of the neck part 25b of the gas exhaust tube 25. In the second embodiment, a distance between the center line C1 of the gas exhaust port 23 and the center line C2 of the neck part 25b of the gas exhaust tube 25 is formed to be less than a sum of a radius of the planar cross-sectional area A1 of the gas exhaust port 23 and a radius of the planar cross-sectional area A2 of the neck part 25b of the gas exhaust tube 25.
The noise wave W1 generated in the gas exhaust port 23 and the noise wave W2 generated in the neck part 25b are completely separated. The propagation of noise generated in the gas exhaust port 23 to other portions of the PDP via the neck part 25b may be more effectively suppressed in comparison to the configurations of
Because the noise wave W1 generated in the gas exhaust port 23 and the noise wave W2 generated in the neck part 25b of the gas exhaust tube 25, as mentioned above, are partially or completely separated, noise echo effects generated by the gas exhaust port 23 and the tap part 25a of the gas exhaust tube 25 can be substantially decreased. Such a decrease of the noise echo effects can substantially decrease the amplification of noise caused by resonance at a natural frequency of the PDP and a driving frequency that is generated when driving the PDP. In one embodiment, noise can be decreased by minimizing the noise echo effects, rather than directly decreasing the noise generated around the gas exhaust port 23 and the gas exhaust tube 25.
In one embodiment, the gas exhaust port is formed in the rear panel, and the gas exhaust tube is formed around the gas exhaust port. In addition, according to some embodiments of the present invention, the center line of the gas exhaust tube and the center line of the gas exhaust port are formed to be deviated from each other, or the imaginary planar cross-sectional area defined by the extension of the perimeter line of the gas exhaust tube and the imaginary planar cross-sectional area defined by the extension of the perimeter line of the gas exhaust port are disposed to deviate from each other. The noise waves generated in the gas exhaust port and the noise waves generated in the gas exhaust tube deviate from each other and propagation of the noise generated in the gas exhaust port to other portions of the PDP via the gas exhaust tube can be suppressed.
In one embodiment, the neck part and the gas exhaust port are disposed to deviate from each other. The tap part of the gas exhaust tube is disposed between the neck part and gas exhaust port. The tap part of the gas exhaust tube can prevent the tube from acting as a generating source for noise echo effects between the neck part and the gas exhaust port. The amplification of noise due to a resonance of an inherent frequency of the PDP and a driving frequency generated while driving the PDP, i.e., a noise source, can be effectively suppressed.
While this invention has been described in connection with exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0075405 | Sep 2004 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6400078 | Van Bommel et al. | Jun 2002 | B1 |
Number | Date | Country |
---|---|---|
8-201784 | Aug 1996 | JP |
2000243315 | Sep 2000 | JP |
2001-325889 | Nov 2001 | JP |
2003-217463 | Jul 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20060061276 A1 | Mar 2006 | US |