Information
-
Patent Grant
-
6731256
-
Patent Number
6,731,256
-
Date Filed
Thursday, November 14, 200222 years ago
-
Date Issued
Tuesday, May 4, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
-
International Classifications
-
Abstract
A plasma display panel (PDP) comprises a front substrate, a rear substrate, an addressing electrode, a common electrode, a first scan electrode, a second scan electrode, a first sustain electrode, and a second sustain electrode. The front substrate and a rear substrate are disposed apart in parallel, wherein a gas is filled there between. The addressing electrode positioned on the front substrate and the common electrode is positioned on the rear substrate and is orthogonal to the address electrode. The first scan electrode and the second scan electrode are positioned on the rear substrate, and are respectively at the first side and the second side of the common electrode. The first sustain electrode and the second sustain electrode are positioned on the rear substrate, and are respectively at the first side and the second side of the common electrode. A first pixel unit is defined by the address electrode, the common electrode, the first scan electrode, and the first sustain electrode. A second pixel unit is defined by the address electrode, the common electrode, the second scan electrode, and the second sustain electrode. A priming voltage is applied across the first scan electrode and the common electrode in an erasing period. Whether the first pixel unit is in bright status or not is determined by the address electrode and the first scan electrode in an addressing period. A plasma in the first pixel unit is driven by the first scan electrode, the first sustain electrode back and forth so as to sustain the bright status.
Description
This application incorporates by reference Taiwan application Serial No. 090128874, filed Nov. 21, 2001.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates in general to a plasma display panel (PDP), and in particular, to a PDP with low firing voltage.
2. Description of the Related Art
The plasma display panel (PDP) has a great potential in the big-size flat display panel market. A conventional PDP usually requires a high firing voltage to transform an ionized gas into plasma. Driving the PDP at high voltage not only requires expensive driving and control components, but may also damages the components thus shortening their life spans.
FIG. 1
illustrates a cross-sectional view of the PDP
100
according to a conventional method. The PDP
100
includes a front substrate
102
and a rear substrate
104
. The spacing between the front substrate
102
and the rear substrate
104
is filled with a mixture of inert gases. The rear substrate
102
has a plurality of sustain electrodes
108
and scan electrodes
110
, which are arranged alternately and in parallel thereon. The front substrate
104
has an address electrode
106
, which is orthogonal to the sustain electrode
108
and the scan electrode
110
. Moreover, a dielectric layer
114
is positioned on the rear substrate
104
, and is covered by a protective layer
116
. A fluorescent layer
118
used for producing fluorescent light is positioned on the address electrode
106
.
The PDP
100
also has a plurality of pixel units
122
, and each pixel unit
122
includes an address electrode
106
, a sustain electrode
108
, and a scan electrode
110
. When the voltage across the sustain electrode
108
and the scan electrode
110
is larger than the firing voltage, the electric field between these two electrodes causes the gas to transform into spatial charges. Then, the spatial charges are transformed into plasma by applying a voltage across the address electrode
106
and the scan electrode
110
, and whether the generated wall charges have a sufficient density or not to light the plasma is also determined. The wall charges density is the critical factor in maintaining the pixel units in the bright (on) state or in the dark (off) state. If it is decided not to maintain the pixel unit in the bright state, the spatial charges of the pixel unit are quickly restored to gas. If it is decided to maintain the pixel unit in the bright state, the sustain electrode
108
and the scan electrode
110
drive the plasma in the pixel unit back and forth for continuous radiating ultraviolet rays. When ultraviolet rays are radiated to the fluorescent layer
118
, the fluorescence will gleam and the gleamed light emitted by the pixel unit will be seen by the user through the transparent rear substrate
104
.
The sustain electrode
108
includes an opaque electrode
124
made by Cr/Cu/Cr or other high conductivity material, and a transparent electrode
126
composed of the ITO. Similarly, the scan electrode
110
includes an opaque electrode
128
composed of Cr/Cu/Cr or other high conductivity material, and a transparent electrode
130
made by the ITO. The material of Cr/Cu/Cr has the characteristics of high conductivity and not being pervious to light. The material of ITO, though being pervious to part of the visible light, has larger resistance and is difficult in manufacturing.
The firing voltage is proportional to the voltage across the sustain electrode
108
and the scan electrode
110
, and corresponds to the gap between those two. Therefore, the transparent electrodes
126
,
130
are respectively used as sustain electrode
108
and the scan electrode
110
in order to decrease the gap and the firing voltage as well. However, the transparent electrodes
126
,
130
also consume larger energy owing to the large resistance and decrease the luminescence efficiency by absorbing part of the visible light. Furthermore, the difficulty in manufacturing for the transparent electrodes
126
,
130
decreases the yield of the PDP
100
.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide a plasma display panel (PDP) has low firing voltage, high illuminating efficiency, and high contrast without using the transparent electrode.
The PDP of the present invention comprises a front substrate, a rear substrate, an addressing electrode, a common electrode, a first scan electrode, a second scan electrode, a first sustain electrode, and a second sustain electrode. The front substrate and a rear substrate are disposed apart in parallel, wherein a gas is filled there between. The addressing electrode positioned on the front substrate and the common electrode is positioned on the rear substrate and is orthogonal to the address electrode. The first scan electrode and the second scan electrode are positioned on the rear substrate, and are respectively at the first side and the second side of the common electrode. The first sustain electrode and the second sustain electrode are positioned on the rear substrate, and are respectively at the first side and the second side of the common electrode. A first pixel unit is defined by the address electrode, the common electrode, the first scan electrode, and the first sustain electrode. A second pixel unit is defined by the address electrode, the common electrode, the second scan electrode, and the second sustain electrode. A priming voltage is applied across the first scan electrode and the common electrode in an erasing period. Whether the first pixel unit is in bright status or not is determined by the address electrode and the first scan electrode in an addressing period. A plasma in the first pixel unit is driven by the first scan electrode, the first sustain electrode back and forth so as to sustain the bright status.
BRIEF DESCRIPTION OF THE DRAWINGS
Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The description is made with reference to the accompanying drawings in which:
FIG. 1
(Prior Art) illustrates a cross-sectional view of the plasma display panel (PDP) according to a conventional method.
FIG. 2
illustrates a cross-sectional view of the PDP with low firing voltage according to a preferred embodiment of the present invention.
FIG. 3
illustrates the timing chart used for driving the PDP of
FIG. 2
according to one embodiment of the present invention.
FIGS. 4A
to
4
F illustrate the distribution of plasma in the first pixel unit, the second pixel unit, and the third pixel unit at different timings, wherein the applied voltages VS
1
, VS
2
, VS
3
, VS
4
, VS
5
are all equal.
FIG. 5
illustrates the timing chart used for driving the PDP according to another embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 2
illustrates a cross-sectional view of the plasma display panel (PDP)
200
with low firing voltage according to a preferred embodiment of the present invention. The PDP
200
includes a front substrate
202
and a rear substrate
204
, which are disposed apart. The spacing between the front substrate
202
and the rear substrate
204
is filled with gas. The front substrate
202
has an address electrode A. The rear substrate
204
has common electrodes C
1
, C
2
, being orthogonal to the address electrode A, and a first scan electrode D
1
and a second electrode D
2
, being respectively positioned at the left side and right side of the common electrode C
1
. The rear substrate
204
further has a first sustain electrode X
1
and a second sustain electrode X
2
, which are respectively at the left side of the first scan electrode D
1
and right side of the second scan electrode D
2
.
The PDP
200
includes a first pixel unit
222
and a second pixel unit
224
. The first pixel unit
222
is defined by the address electrode A, the common electrode C
1
, the first scan electrode D
1
, and the first sustain electrode X
1
. The second pixel unit
224
is defined by the address electrode A, the common electrode C
1
, the second scan electrode D
2
, and the second sustain electrode X
2
. The PDP
200
can further includes a third pixel unit
226
, which is defined by the address electrode A, the common electrode C
2
, the second sustain electrode X
2
, and a third scan electrode D
3
.
FIG. 3
illustrates the timing chart used for driving the PDP of
FIG. 2
according to one embodiment of the present invention. The driving process of the PDP includes three periods: an erasing period T
1
, an addressing period T
2
, and a sustaining period T
3
.
In the erasing period T
1
, the voltages of same waveforms are applied to all pixel units. Here, the first pixel unit
222
is used as the example. Firstly, an erasing pulse of voltage (Vs+Vw) is applied to the first scan electrode D
1
in order to remove the wall charges in the first pixel unit
222
. Then, a pulse of −Vy is applied across the first scan electrode D
1
and the common electrode C
1
in order to produce the priming there between. In this way, the gas is ionized and becomes the spatial charges. Next, a positive pulse, increasing gradually with time, is applied to the first scan electrode D
1
so as to induce a self-erase of the protective layer
216
. Therefore, the accumulations of wall charges are equalized between all pixel units. Finally, a pulse of voltage −Vy is applied across the first scan electrode D
1
and the common electrode C
1
in order to make the gas become spatial charges and the wall charges again.
In the addressing period T
2
, the voltages applied to the address electrode and the all scan electrodes are determined by the image data to be displayed. The voltage, applied to the address electrode A and the first scan electrode D
1
, determine whether the first pixel unit
222
is in the bright status or not.
The sustaining period T
3
includes a period T
3
a
and some periods T
3
b
, which respectively completes the pre-sustaining discharge operation and the repetitive main-sustaining discharge operations. In the sustaining period T
3
, the common electrode C
1
, the first scan electrode D
1
, and the first sustaining electrode X
1
drive the plasma in the first pixel unit
222
back and forth for maintaining the displaying status.
During the period T
3
a
, a first pre-sustaining voltage VS
1
is applied across the common electrode C
1
and the first scan electrode D
1
. For instance, the pre-sustaining discharge operation is implemented by step (a
1
) and step (a
2
). In step (a
1
), a voltage of −VS
1
is applied to the first scan electrode D
1
at timing t
1
so as to produce the first pre-sustaining pulse
305
across the common electrode C
1
and the first scan electrode D
1
. In the step (a
2
), a voltage of VS
1
is applied to the common electrode C
1
at timing t
2
in order to produce the first pre-sustaining pulse
306
across the common electrode C
1
and the first scan electrode D
1
.
During the period T
3
b
, a voltage of VS
2
is first applied to the sustain electrode X
1
from the timing t
3
to timing t
4
so as to produce a second pre-sustaining pulse
308
across the sustain electrode X
1
and the common electrode C
1
. Next, the common electrode C
1
, the first scan plasma D
1
, and the first sustain electrode X
1
drive the plasma in the first pixel unit
222
back and forth by orderly applying voltages of VS
3
, VS
4
. Such that the discharging efficiency, illuminating efficiency, and the occupation space of the plasma are increased. The voltage of VS
3
is applied to the first scan electrode D
1
from the timing t
4
to timing t
5
so as to produce a first sustaining pulse
310
across the first scan electrode D
1
and the first sustain electrode X
1
. Before the voltage of VS
3
is vanished, the voltage of VS
4
is applied to the common electrode C
1
for producing a second sustaining pulse
312
across the common electrode and the first sustain electrode X
1
.
Then, the first scan electrode D
1
is restored to a zero level in order to produce a zero voltage across the first scan electrode D
1
and the first sustain electrode X
1
. Afterwards, a voltage of VS
5
is applied to the sustain electrode X
1
so as to produce a third sustaining pulse
314
across the sustain electrode X
1
and the common electrode C
1
, and across the sustain electrode X
1
and the first scan electrode D
1
as well. Finally, the processes of producing pulses
308
,
310
,
312
and
314
, during the main-sustaining periods T
3
b
, are repeated, and their respective voltages VS
2
, VS
3
, VS
4
, and VS
5
can be equal or un-equal.
FIGS. 4A
to
4
F illustrates the distribution of plasma in the first pixel unit
222
, the second pixel unit
224
, and the third pixel unit
226
at different timings, wherein the applied voltages VS
1
, VS
2
, VS
3
, VS
4
, VS
5
are all equal. In the following description, only the plasma in the first pixel unit
222
is remarked.
FIG. 4A
shows the plasma is formed upon the first scan electrode D
1
after the addressing period T
2
.
FIG. 4B
shows that plasma is distributed between the common electrode C
1
and the first scan electrode D
1
at timing t
2
, which is produced by the first pre-sustaining pulse
306
across the common electrode C
1
and the first scan electrode D
1
.
FIG. 4C
shows the plasma being distributed all over the first pixel unit
222
, between the common electrode C
1
and the first sustain electrode X
1
, at timing t
3
by applying the second pre-sustaining pulse
308
across the common electrode C
1
and the first sustain electrode X
1
. In FIG.
4
B and
FIG. 4C
, the firing voltages can be decreased by decreasing the gap between the first scan electrode D and the common electrode C.
FIG. 4D
shows the plasma being distributed between the first scan electrode D
1
and the first sustain electrode X
1
at timing t
4
by applying the first sustaining pulse
310
across the first scan electrode D
1
and the first sustain electrode X
1
.
FIG. 4E
shows the plasma being distributed between the common electrode C
1
and the first sustain electrode X
1
at timing t
5
by applying the voltage of VS across the common electrode C
1
and the first sustaining electrode X
1
. In FIG.
4
D and
FIG. 4E
, the generated plasma is sustained in the first pixel unit
222
by first applying the voltage of VS to the first scan electrode D
1
then to the common electrode C
1
, such that the generated plasma will not diminish owing to the spatial diffusion.
FIG. 4F
shows the plasma being distributed towards the first sustain electrode X
1
at timing t
6
by applying a voltage of VS across the first sustain electrode X
1
and the common electrode C
1
. Finally, the bright status of the first pixel unit
222
is kept by driving the plasma back and forth.
FIG. 5
illustrates the timing chart used for driving the PDP according to another embodiment of the present invention. Compared with the embodiment of
FIG. 3
, the embodiment of
FIG. 5
applies the same voltages to the first scan electrode D
1
and the common electrode C
1
during the period T
3
b
. Firstly, a voltage VS
3
′ is applied to the first scan electrode D
1
and the common electrode C
1
so as to produce a first sustaining pulse
502
across the first scan electrode D
1
and the first sustain electrode X
1
, and across the common electrode C
1
and the first sustain electrode X
1
as well. Then, a voltage VS
5
′ is applied to the first sustain electrode X
1
so as to produce a third sustaining pulse
504
across the first sustain electrode X
1
and the first scan electrode D
1
, and across the first sustain electrode X
1
and the common electrode C
1
as well.
From the above description, there are some advantages in the present invention. First, the distances from scan electrode D
1
to common electrode C
1
, and from scan electrode D
2
to common electrode C
1
are adjustable, and can be shorter than that between two adjacent transparent electrodes. Therefore, the firing voltage of the present invention is smaller than that of the conventional method, and accordingly the power consumption is lowered. Second, the interferences between pixel units can be avoid by adjusting the widths of the common electrode and the sustain electrodes.
Third, the electrodes of the present invention can be only composed of the Cr/Cu/Cr, such that the manufacturing process of the present invention is simplified and the yield is improved. Fourth, the transparent electrode of ITO is not used in the present invention, and the area transmitted by the light is increased. Fifth, the priming process, as well as the erasing process, occurs merely within the area between the common electrode and the scan electrode. In this way, the small erasing area decreases the background brightness and increases the contrast.
Sixth, the black matrix
233
of CrOx, positioned below the electrode
232
of Cr/Cu/Cr, can reduce reflectivity that the exterior light reflected by the electrode
232
of Cr/Cu/Cr. Compared with the independent manufacturing of the conventional method, the black matrix
233
of CrOx and the electrode
232
of Cr/Cu/Cr can be formed at the same time in the present invention, which simplifies the fabrication and improves the yield. Finally, compared with the discharging space enclosed between the transparent electrodes for the conventional method, the discharging space of the present invention expands in the whole pixel unit, and thus the illuminating efficiency is increased.
While the invention has been described by way of example and in terms of the preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Claims
- 1. A plasma display panel (PDP) comprising:a front substrate and a rear substrate disposed apart in parallel, wherein a discharge gas is filled there between; an address electrode positioned on said front substrate; a common electrode positioned on said rear substrate and orthogonal to said address electrode; a first scan electrode and a second scan electrode positioned on said rear substrate, said first scan electrode and said second scan electrode respectively at the first side and the second side of said common electrode; a first sustain electrode and a second sustain electrode positioned on said rear substrate, said first sustain electrode and said second sustain electrode respectively at the first side and the second side of said common electrode; wherein said address electrode, said common electrode, said first scan electrode, and said first sustain electrode defines a first pixel unit, and said address electrode, said common electrode, said second scan electrode, and said second sustain electrode defines a second pixel unit; and wherein a priming voltage is applied across said first scan electrode and said common electrode in an erasing period, whether said first pixel unit is in bright status or not is determined by said address electrode and said first scan electrode in an addressing period, a plasma in said first pixel unit is driven by the common electrode, said first scan electrode, said first sustain electrode back and forth so as to sustain said first pixel unit being in bright status.
- 2. The PDP according to claim 1, wherein said first scan electrode is positioned between said common electrode and said first sustain electrode.
- 3. The PDP according to claim 1, wherein said first scan electrode is composed of opaque material of Cr/Cu/Cr.
- 4. The PDP according to claim 1, wherein said first scan electrode is nearer to said common electrode than said first sustain electrode.
- 5. The PDP according to claim 1, wherein said first sustain electrode is composed of opaque material of Cr/Cu/Cr.
- 6. A method for driving a plasma display panel (PDP), said PDP having a front substrate and a rear substrate disposed apart in parallel, wherein a gas is filled there between; an addressing electrode positioned on said front substrate; a common electrode positioned on said rear substrate and orthogonal to said address electrode; a first scan electrode and a second scan electrode positioned on said rear substrate and orthogonal to said address electrode, said first scan electrode and said second scan electrode respectively at the first side and the second side of said common electrode; a first sustain electrode and a second sustain electrode positioned on said rear substrate and orthogonal to said address electrode, said first sustain electrode and said second sustain electrode respectively at the first side and the second side of said common electrode, wherein said address electrode, said common electrode, said first scan electrode, and said first sustain electrode defines a first pixel unit, and said address electrode, said common electrode, said second scan electrode, and said second sustain electrode defines a second pixel unit, said method comprising:applying a first pre-sustain pulse across said common electrode and said first scan electrode in a sustaining period; applying a second pre-sustain pulse across said common electrode and said first sustain electrode in said sustaining period; and driving a plasma in said first pixel unit by said common electrode, said first scan electrode and said first sustain electrode so as to sustain the bright status of said first pixel unit.
- 7. The method according to claim 6, wherein said first scan electrode is positioned between said common electrode and said first sustain electrode.
- 8. The method according to claim 6, wherein said first scan electrode is composed of opaque material of Cr/Cu/Cr.
- 9. The method according to claim 6, wherein said first scan electrode is nearer to said common electrode than said first sustain electrode.
- 10. The method according to claim 6, wherein said first sustain electrode is composed of opaque material of Cr/Cu/Cr.
- 11. The method according to claim 6, wherein the step of applying a first pre-sustain pulse comprising:applying a negative voltage to said first sustain electrode and a positive voltage to said common electrode so as to produce a first pre-sustain pulse across said common electrode and said first scan electrode; and applying a positive voltage to said common electrode so as to produce a first pre-sustain pulse across said common electrode and said first scan electrode.
- 12. The method according to claim 6, wherein the step of applying a second pre-sustain pulse comprising:applying a positive voltage to said first sustain electrode so as to produce a second pre-sustain pulse across said common electrode and said first scan electrode.
- 13. The method according to claim 6, wherein the driving step comprising:applying a first sustain pulse across said first scan electrode and said first sustain electrode; applying a second sustain pulse across said common electrode and said first sustain electrode; applying a zero voltage across said first scan electrode and said first sustain electrode; and applying a third sustain pulse across said first sustain electrode and said first scan electrode, and across said first sustain electrode and said common electrode as well.
- 14. The method according to claim 6, wherein the driving step comprising:applying a first sustain pulse across said first scan electrode and said first sustain electrode, and across said common electrode and said first sustain electrode as well; applying a third sustain pulse across said first sustain electrode and said first scan electrode, and across said first sustain electrode and said common electrode as well.
- 15. A method for driving a plasma display panel (PDP), said PDP having a front substrate and a rear substrate disposed apart in parallel, wherein a gas is filled there between; an addressing electrode positioned on said front substrate; a common electrode positioned on said rear substrate and orthogonal to said address electrode; a first scan electrode and a second scan electrode positioned on said rear substrate, said first scan electrode and said second scan electrode respectively at the first side and the second side of said common electrode; a first sustain electrode and a second sustain electrode positioned on said rear substrate, said first sustain electrode and said second sustain electrode respectively at the first side and the second side of said common electrode, wherein said address electrode, said common electrode, said first scan electrode, and said first sustain electrode defines a first pixel unit, and said address electrode, said common electrode, said second scan electrode, and said second sustain electrode defines a second pixel unit, said method comprising:applying a first pre-sustain pulse across said common electrode and said first scan electrode so as to executing a pre-sustain discharge process; applying a second pre-sustain pulse across said first sustain electrode and said common electrode in said sustaining period so as to executing said pre-sustain discharge process; and driving a plasma in said first pixel unit back and forth by said common electrode, said first scan electrode and said sustain electrode so as to sustain the bright status of said first pixel unit and executing a main-sustain discharge process.
Priority Claims (1)
Number |
Date |
Country |
Kind |
090128874 |
Nov 2001 |
TW |
|
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
6448947 |
Nagai |
Sep 2002 |
B1 |
6504519 |
Ryu et al. |
Jan 2003 |
B1 |