1. Field of the Invention
The present invention relates to a plasma display panel (PDP) for a plasma display device, and more particularly, to a PDP with a single-sided driving circuit structure.
2. Description of the Prior Art
Invented in 1897, the cathode ray tube (CRT) has been used for the vast majority of televisions and is still the most common display type today. In a CRT television a gun controlled by a video signal fires electron beams toward phosphors covering the surface of a vacuum tube, and an image is produced by lighting up different areas of the phosphor coating with different colors at different intensities. Though a simple and mature device, the CRT features several drawbacks such as bulky size, weight, and high power consumption. The high-voltage field, oscillating magnetic field, and X-rays generated by electrons hitting the screen have been regarded as hazardous for long-term use.
Recently flat panel display (FPDs) with their flat, thin form factor and high-resolution image quality are getting more and more attention and undergoing explosive growth in the consumer market. The major types of FPDs include the plasma display panel (PDP), the liquid crystal display (LCD), and the rear projection display, featuring several shared benefits (their flat, thin form factor and undistorted, fixed-pixel image rendering) and their own unique advantages. Among them PDP continues to best fill the needs of home theater enthusiasts seeking premium-quality large-screen display devices due to several inherent benefits of the technology: premium display quality with rich, accurate and lifelike colors; wide viewing angle with equivalently stunning brightness; high contrast in both light and dark rooms; and excellent motion handling and screen integrity over the long haul. As a result PDP technology remains the benchmark and de facto standard that consumers seek when considering the purchase of flat panel home theater display devices.
A typical PDP has two parallel sheets of glass, which enclose a gas mixture usually composed of neon and xenon that is contained in millions of tiny cells sandwiched in between the glass. Electricity, sent through an array of electrodes that are in close proximity to the cells, excites the gas, resulting in a discharge of ultraviolet light. The light then strikes a phosphor coating on the inside of the glass, which causes the emission of red, blue or green visible light. According to the driving methods, there are two kinds of plasma display device: an alternating current (AC) plasma display device and a direct current (DC) plasma display device. These are defined depending on whether the polarity of voltage applied to maintain discharge is varied with time or not. The AC plasma display device is the mainstream of this display technology because of lower power consumption and longer lifetime.
An AC plasma display device comprises a PDP having two glass substrates disposed opposite to each other and a circuit for controlling and driving the PDP. One of the two glass substrates has a plurality of address electrodes disposed in parallel, and the other glass substrate has a plurality of sustain electrodes disposed in parallel and perpendicular to the address electrodes. The sustain electrodes include a plurality of common electrodes (X-electrodes) and a plurality of scan electrodes (Y-electrodes). Display cells are formed between adjacent X-electrodes and Y-electrodes. The circuit part includes several driving circuits for supplying driving voltages to the electrodes of the substrate. The electrodes of the glass substrates are formed linearly in such a manner as to extend substantially across the substrates, and electrode terminals are formed at the ends of the glass substrates. The driving circuits are disposed on a chassis mounted on the outer surface of one of the glass substrates, whereby the driving circuits are disposed within an area occupied by the glass substrate having a large area, this helping prevent a further increase in the overall size of the plasma display device. In other words, the plane in which the electrode terminals of the glass substrate are disposed is different from the plane in which the driving circuits are disposed. Therefore the use of flexible printed circuits (FPCs) is reasonable and effective for connecting the electrode terminals of the glass substrate with the driving circuits on the chassis. A plurality of bonding pads are disposed on one end of a flexible printed circuit and connected to the electrode terminals of the glass substrate, while the other end of the FPC is connected to the driving circuits directly or via an intermediate circuit board connected to the driving circuit, with the intermediate portions of the FPC being bent.
The prior art PDP 20 has several drawbacks: The PDP 20 needs two FPCs and two driving circuits that increase manufacturing cost and lower production yield. Due to different locations at the opposite sides of the substrate, the two driving circuits receive signals with different amounts of delay from the control board and this largely influences PDP performance. Also, magnetic interference caused by driving circuits affects a larger area in this two-sided-FPC structure.
It is therefore an objective of the claimed invention to provide a PDP using a single FPC and a single-sided driving circuit structure, in order to solve the problems of the prior art.
The claimed invention discloses a plasma display panel (PDP) comprising a first substrate and a second substrate disposed opposite to each other, a plurality of first sustain electrodes and second sustain electrodes formed in parallel on the first substrate, a plurality of address electrodes formed on the second substrate, and a flexible printed circuit (FPC) having a plurality of bonding pads formed at one side of the FPC. The first sustain electrodes and the second sustain electrodes form a plurality of sustain electrode pairs, the first sustain electrodes having a plurality of first electrode terminals and the second sustain electrodes having a plurality of second electrode terminals formed on one end of the first substrate. The address electrodes extend in a direction intersecting the plurality of first sustain electrodes and second sustain electrodes. The plurality of bonding pads formed at one side of the FPC are coupled to the plurality of first electrode terminals and second electrode terminals.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
In the PDP 30 of the present invention, the X-electrode terminals 32 and the Y-electrode terminals 34 are formed at the same end of the glass substrate 14, which means each electrode pair has two electrode terminals formed on the same end of the glass substrate 14. As a result, only one FPC 36 is required for connection and only one driving circuit 72 is required for driving the PDP 30. The FPC 36 includes a plurality of bonding pads 66 connected to the X-electrode terminals 32 and the Y-electrode terminals 34. Thus, one end of the FPC 36 is coupled to the X-electrode terminals 32 and the Y-electrode terminals 34 of the glass substrate and the other end of the FPC 36 is coupled to the driving circuit 72 via the intermediate scan IC 70, with the intermediate portions of the FPC 36 being bent. A control board 60 sends signals to the driving circuit 72 for PDP operations. The functions of the X driving circuit 52 and the Y driving circuit 54 in the prior art PDP 20 are integrated into the driving circuit 72 of the present invention, so that only one driving circuit board is needed. Also, the FPC 36 can couple the X-electrodes 22 and the Y-electrodes 24 directly to the driving circuit 64 without the intermediate scan IC 70.
Compared to the prior art PDP 20, in the PDP 30 of the present invention only one FPC and one driving circuit are needed and thus the manufacturing cost can be lowered. Due to fewer FPCs and circuit boards required for producing a PDP of the present invention, the manufacturing process can be simplified and the production yield can be improved. The control board 60 only sends signals to the driving circuit 72, so the problem of different signal delays in the prior art can be solved. Also, since the driving circuit 72 is located at one side of the glass substrate instead of both sides, it contributes less magnetic interference to the PDP 30.
During PDP operation, if there is a large voltage difference between an X-electrode and a Y-electrode, existing moisture or small particles might result in arc discharges, burning down the electrodes. Undesired capacitive interactions between two adjacent electrodes, so-called cross talk, also affect PDP performance. To solve the problems of arc discharge and cross talk, the present invention can further include a dielectric layer plated on the bonding pads of the FPC on the glass substrate, the X electrode terminals, the Y electrode terminals, and the coupling path formed between the bonding pads and the electrode terminals. The dielectric layer is also plated between the X electrode terminals and the Y electrode terminals as shown in
Referring to
Please refer to
Compared to the prior, the present invention provides a PDP that only requires one FPC and one driving circuit. The present invention can lower manufacturing cost, simplify production flow, and improve the production yield. The present invention also solves the problems of signals with different delays from the control board to the driving circuits and the large magnetic interference contributed by the driving circuits at both sides of the glass substrate. In conclusion, the present invention features several advantages: low cost, simplified production flow, higher production yield, better PDP performance, and less magnetic interference.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5892492 | Osawa et al. | Apr 1999 | A |
6160605 | Murayama et al. | Dec 2000 | A |
6169363 | Mori et al. | Jan 2001 | B1 |
6507150 | Lin et al. | Jan 2003 | B1 |
20020027417 | Mori et al. | Mar 2002 | A1 |
20020041155 | Asami et al. | Apr 2002 | A1 |
20020190652 | Do et al. | Dec 2002 | A1 |
20050012729 | Shin et al. | Jan 2005 | A1 |
20050110406 | Jeong et al. | May 2005 | A1 |
20060049769 | Min | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
1233396 | Aug 2002 | EP |
05290742 | Nov 1993 | JP |
2001265242 | Sep 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060261736 A1 | Nov 2006 | US |