Affinito, J.D., et al., “Vacuum Deposition of Polymer Electrolytes on Flexible Substrates,” “Proceedings of the Ninth International Conference on Vacuum Web Coating,” Nov. 1995 ed R. Bakish, Bakish Press 1995, p. 20-36. |
Vossen, J.L., et al., Thin Film Processes, Academic Press, 1978, Part II, Chapter 11-1, Glow Discharge Sputter Deposition, p. 12-63; Part IV, Chapter IV-1, Plasma Deposition of Inorganic Compounds and Chapter IV-2 Glow Discharge Polymerization, p. 335-397. |
Penning, F.M., Electrical Discharges in Gasses, Gordon and Breach Science Publishers, 1965, Chapters 5-6, p. 19-35, and Chapter 8, p. 41-50. |
Affinito, J.D., et al, “High Rate Vacuum Deposition of Polymer Electrolytes,” Journal Vacuum Science Technology A 14(3), May/Jun. 1996. |
Inoue et al., Fabrication of a Thin Film of MNA by Vapour Deposition, Proc. Jpn. Congr. Mater. Res., vol. 33, p. 177-9, 1990. |
Affinito, J.D. et al., “PML/Oxide/PML Barrier Layer Performance Differences Arising From Use of UV or Electron Beam Polymerization of the PML Layers,” Thin Solid Films, Elsevier Science S.A., vol. 308-309, Oct. 31, 1997, pp. 19-25. |
Gustafsson, G. et al, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature, vol. 357, Jun. 11, 1992, pp. 447-479. |
Affinito, J.D. et al., “Polymer-Oxide Transparent Barrier Layers,” SVC 39th Annual Technical Conference, Vacuum Web Coating Session, 1996, pp. 392-397. |
Affinito, J.D. et al, “PML/Oxide/PML Barrier Layer Performance Differences Arising From Use of UV or Electron Beam Polymerization of the PML Layers,” SVC 40th Annual Technical Conference, 1997, pp. 19-25. |
Wong, C.P., “Recent Advances in IC Passivation and Encapsulation: Process Techniques and Materials,” Polymers for Electronic and Photonic Applications, AT&T Bell Laboratories, 1993, pp. 167-209. |
De Gryse, R. et al., Sputtered Transparent Barrier Layers, pp. 190-198 (no date available). |
Tropsha et al., “Activated Rate Theory Treatment of Oxygen and Water Transport through Silicon Oxide/Poly(ethylene terephthalate) Composite Barrier Structures,” J. Phys. Chem B 1997, pp. 2259-2266. |
Tropsha et al., “Combinatorial Barrier Effect of the Multilayer SiOx Coatings on Polymer Substrates,” 1997 Society of Vacuum Coaters, 40th Annual Technical Conference Proceedings. |
Phillips et al., “Evaporated Dielectric Colorless Films on PET and OPP Exhibiting High Barriers Toward Moisture and Oxygen,” Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings (1993), pp. 293-300. |
Chahroudi, “Transparent Glass Barrier Coatings for Flexible Film Packaging,” Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings (1991), pp. 130-133. |
Yamada et al., “The Properties of a New Transparent and Colorless Barrier Film,” Society of Vacuum Coaters, 38th Annual Technical Conference Proceedings (1995), pp. 28-31. |
Shi, M.K., et al., Plasma treatment of PET and acrylic coating surfaces-I. In situ XPS measurements, Journal of Adhesion Science and Technology, Mar. 2000, 14(12), pp. 1-28. |
Shi, M.K., et al., In situ and real-time monitoring of plasma-induced etching PET and acrylic films, Plasmas and Polymers, Dec. 1999, 4(4), pp. 1-25. |
Affinito, J.D., et al., Vacuum Deposited Conductive Polymer Films, The Eleventh International Conference on Vacuum Web Coating, no earlier than Feb. 1998, pp. 200-213. |
Mahon, J.K., et al., Requirements of Flexible Substrates for Organic Light Emitting Devices in Flat Panel Display Applications, Society of Vacuum Coaters, 42nd Annual Technical Conference Proceedings, 1999, pp. 456-459. |
Affinito, J.D. et al., “Molecularly Doped Polymer Composite Films for Light Emitting Polymer Applications Fabricated by the PML Process” 1998 Society of Vaccum Coaters, 41st Annual Technical Conference Proceedings (1998), pp. 220-225. |