Plasma gas throat assembly and method

Information

  • Patent Grant
  • 10138378
  • Patent Number
    10,138,378
  • Date Filed
    Wednesday, January 21, 2015
    9 years ago
  • Date Issued
    Tuesday, November 27, 2018
    5 years ago
Abstract
A method and apparatus for making carbon black having increased surface area, reduced grit and/or reduced extract levels. A plasma gas is flowed into a plasma forming region to form a plasma. The plasma then flows through a throat region which is narrower than the plasma forming section, which is connected to a separate carbon black forming region. This causes the plasma to accelerate and become turbulent prior to the exit point in the throat region. The carbon black forming feedstock is injected into the turbulence created by the throat region at a point above, at or near the exit point, resulting in the formation of a carbon black in the separate carbon black forming region. The throat region and/or injector region can be cooled, e.g., water plasma gas cooled.
Description
TECHNICAL FIELD

The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to effect chemical changes.


BACKGROUND

There are many processes that can be used and have been used over the years to produce carbon black. The energy sources used to produce such carbon blacks over the years have, in large part, been closely connected to the raw materials used to convert hydrocarbon containing materials into carbon black. Residual refinery oils and natural gas have long been a resource for the production of carbon black. Energy sources have evolved over time in chemical processes such as carbon black production from simple flame, to oil furnace, to plasma, to name a few. Because of the high temperatures involved, the high flow rates used for both energy and feedstock, and the difficulties involved with trying to control the properties of products resulting from such complex processes, there is a constant search in the art for ways to not only produce such products in more efficient and effective ways, but to improve the properties of the products produced as well.


The systems described herein meet the challenges described above while accomplishing additional advances as well.


BRIEF SUMMARY

A method of making carbon black is described by flowing a plasma gas into a plasma forming region and forming a plasma. The plasma is flowed through a throat region which is connected to a carbon black forming region. The throat region is narrower than the plasma forming region causing the plasma to accelerate and become turbulent prior to the exit point of the throat if not already turbulent in the plasma forming region. A carbon black forming feedstock is injected into the throat region, resulting in the formation in the carbon black forming region of a carbon black with increased surface area, reduced grit and/or reduced extract levels.


Embodiments of the invention include: the method described above where the throat and/or carbon black forming feedstock injecting region is cooled in the area of the carbon black forming feedstock injection; the method described above where the region is cooled by water cooling; the method described above where the region is cooled by preheating the gas fed to the plasma chamber; the method described above where the throat region has a center section and the carbon black forming feedstock is injected radially inwards towards the center section; the method described above where the throat region has a center section and the carbon black forming feedstock is injected radially outwards away from the center section; the method described above where the throat region has a center section and a wall section and the carbon black forming feedstock is injected with an axial component either from the center or from the wall of the throat; the method described above where the carbon black feedstock is injected within about + to about −5 diameters of the throat; the method described above where the throat is wider at the plasma entry point than at the plasma exit point and the feedstock is injected at or near the plasma exit point. The carbon black product produced by this process is also described.


An apparatus for making carbon black is also described containing a plasma forming section having a plasma gas forming entry port, plasma forming electrodes, and a formed plasma exit port in fluid flow communication with a separate carbon black forming section. A throat section connects the plasma forming section to the carbon black forming section. The throat section is narrower than the plasma forming section causing the plasma to accelerate and become turbulent, or maintain or increase turbulence, prior to the exit point of the throat section. The throat section also contains a carbon black forming feedstock injector.


Additional embodiments include: the apparatus described above where the throat section is wider at the plasma entry point then at the plasma exit point; the apparatus described above where the throat section contains one or more throat and/or injector cooling channels; the apparatus described above where the cooling channels are water cooling channels; the apparatus described above where the cooling channels are plasma gas cooling channels which preheat the gas and feed it to the plasma chamber; the apparatus described above where the carbon black forming feedstock injector is removable; the apparatus described above where the throat section is removable; the apparatus described above where the throat section has a center region and the carbon black forming feedstock injector has one or more injectors pointing radially inwards towards the center region; the apparatus described above where the throat section has a center region and the carbon black forming feedstock injector comprises one or more injectors within the center region pointing radially outwards away from the center region; the apparatus described above where the throat section has a center section and a wall section and the carbon black forming feedstock injector has an axial component pointing either away from the center or away from the walls of the throat section; the apparatus described above where one or more of the carbon black forming feedstock injectors is positioned at or near the throat exit, so as to inject the feedstock into the turbulence generated by the throat section and/or its discharge; the apparatus described above where the one or more injectors is positioned just after and in close proximity or next to the throat section exit.


These, and additional embodiments, will be apparent from the following descriptions.





BRIEF DESCRIPTION OF THE DRAWING

The FIGURE shows a schematic representation of a typical apparatus described herein.





DETAILED DESCRIPTION

The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.


Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.


As described herein, the use of a constriction or throat section between the plasma section and carbon black reaction section causes plasma gas to accelerate to at least transitional and preferably turbulent flow conditions before the injection of the carbon black feedstock, e.g., natural gas. This reduces plasma-feedstock mixing length, and the rapid mixing caused by the turbulence increases surface area and reduces grit and extract in the carbon black formed. The throat region and the natural gas or other feedstock injector assembly can be either individually cooled, e.g., water-cooled or plasma gas cooled, or cooled together in order to reduce the heat load on the injectors, and in so doing help prevent coking on the injector and in the throat. While stock injectors can be used, typically the injectors will be customized so as to optimize the benefits imparted by the throat design. The injectors are typically made of steel, stainless steel, copper, other metals, and ceramics. The throat materials can be made of the same materials used in the plasma and reactor sections, water cooled metals, graphite, ceramic, etc.


In one embodiment, the carbon black generating feedstock is injected just downstream of the narrowest portion of the throat. So, for example, in the apparatus described herein, one or more of the carbon black forming feedstock injectors is positioned at or just after the throat exit, so that the one or more injectors injects the feedstock into the turbulent eddies generated by the throat or the increased turbulence generated at or near its discharge.


While the throat may be wider at the plasma entry point than at the plasma exit point as described herein, the throat may also have a cylindrical section of a constant diameter, that is typically smaller than in the plasma generation region. However, the increased turbulence in the throat region is most important, and that the feedstock gets injected into a partially or fully turbulent throat, which will typically be narrower than the plasma formation region. As long as the desired turbulence is achieved in the throat region, even if the plasma technology generates the plasma in a similar sized or narrower plasma formation region, the desired carbon black with improved properties can be produced.


When sloped, he slope of the throat can be any angle to achieve the turbulence desired, e.g., about 10° to about 90°. For example, the throat could have an entrance angle of about 20° to minimize recirculation, and a discharge angle large enough to get separation of the flow from the wall (typically greater than about 15°, for example, about 45°). The plasma chamber dimensions are set to give a stable plasma flow and other design parameters for making the plasma. The throat then accelerates the gas velocity. The primary goal is to achieve turbulence.


Briefly, the feedstock that can be used can be preferably methane or natural gas. Methane is the majority component of natural gas, wherein methane comprises 85% or greater of the natural gas by mass. The other components can comprise ethane, propane, and other higher molecular weight hydrocarbons in addition to other impurities. Additionally, other hydrocarbon feedstocks can be used such as ethane, propane, ethylene, acetylene, oil, pyrolysis fuel oil (pfo) as non-limiting examples. Combinations of these feedstocks can also be used as suitable carbon black feedstock material for this process.


The natural gas (or other feedstock) injector can be a removable subassembly that allows, for example, for inspection or injector nozzle replacement during operation. The entire throat assembly can also be removable. This would enable swapping the assembly for one of different dimensions and so change the mixing conditions or injector arrangements, as well as to enable replacement of damaged equipment, or just to withdraw damaged equipment out of the hottest part of the process so as to limit any additional damage during cool down of the system. In that regard, possible injector arrangements can be multiple injectors pointing radially inwards toward the central region of the throat, or a central injector with multiple jets pointing radially outwards from the central region of the throat. Injection of the gas with an axial component will reduce the shear rate at the point of injection, but may be desirable due to mechanical constraints, to reduce grit or other quality concerns.


Typically plasma-based reactor designs do not separate the reactor into a plasma region and a reactor region. The injection of natural gas in these systems is typically done into a large open volume area with plasma gas flowing slowly inwards from the top and a large circulating black cloud of reacting gas filling this volume area. The mixing of plasma gas and natural gas in such an arrangement is poorly controlled as the recirculation patterns may drive some natural gas towards the hot plasma while some other fraction of the natural gas will be forced towards cooler parts of the reactor. The product generated would also have a wide range of residence times within the reactor.


As described herein, the reactor is separated into two sections or zones, a plasma zone and a reactor zone, with natural gas or other feedstock injection taking place in the area in-between. The throat is used not only to separate the two regions but to accelerate the plasma gas so that more intense mixing can take place in a smaller region. The throat is therefore defined as the narrowest section between the plasma zone and the reactor zone. The length of the throat can be several meters or as small as about 0.5 to about 2 millimeters. The narrowest point of the throat is defined as the most narrow diameter of the throat +20%. Any cross-section that is within 10% of the most narrow cross-section is deemed to be within the scope of the throat. Preferable injection points into the reactor are about 5 diameters upstream of the throat and about 5 diameters downstream of the throat. One diameter is defined as the diameter of the throat at the most narrow point of the throat. Optionally the injection can occur within about +/−2 diameters or about +/−1 diameter of the throat.


Compared to the open volume approach, the mixing lengths and times are much shorter and time-temperature history of the natural gas (or other feedstock) is much more controlled resulting in a narrower distribution of time temperatures for the injected feedstock. This results in increased surface area as well as reduced grit and extract levels in the carbon black product produced.


In an open reactor, injectors are exposed to the relatively low temperatures of the reactor “cloud.” In this throat design, the injectors are exposed to plasma gas at, e.g., 3000° C., as well as high radiation heat flux from a high temperature throat wall that has been heated to similar temperatures. This would typically cause injector and wall coking as well as pose challenges in terms of the survivability of these parts. Water cooling of the exposed surfaces of the injectors as well as the surrounding surfaces (the interior of the throat) will reduce the radiative and convective heat fluxes, reducing surface temperatures and so prevent or reduce coking and allow the parts to survive the high temperature bulk flow conditions. Cooling channels or other contact areas can be designed into/onto these parts to accomplish such cooling. It is also possible to provide such cooling by recycling the gas to be used in the plasma chamber by preheating the gas fed to the plasma chamber.


It is also possible to capture many of the product quality improvements without subjecting the injectors to the full throat temperature, for example by placing the injectors downstream of the throat where they would see the lower reactor temperature, but injecting the natural gas or other feedstock in a way so that it gets carried or swept into the highly turbulent throat discharge. For example, the injectors could inject the natural gas or feedstock into the potential core of the throat discharge.


The mere separation of the reactor into a plasma region and a reactor region would not realize all of the advantages described herein. Even with a throat-like constriction separating the two regions, if the natural gas or other feedstock material is injected outside, e.g., below the throat region, into the open volume of the reactor region, while an improvement over the completely open reactor approach, the plasma-feedstock mixing cannot be as well controlled as with injection in the throat. Injectors outside the throat area are also subjected to relatively low temperatures as they interact with the cloud of reacting gas.


As mentioned above, in order to provide better flexibility in the type of injectors and injection methods used, the (e.g., water or plasma gas) cooled throat and/or the injector subassembly can be designed as removable modules (rather than pieces that are integrated into the reactor design, requiring more significant effort to remove or reconfigure them). This can provide for such things as: the removal and inspection of the injectors, for example, even while the reactor is at operating temperature and/or full of plasma forming gas such as hydrogen; the replacement of injector tips, for example, to change injection velocity even while the reactor is at operating temperature and/or full of plasma forming gas such as hydrogen; switching between central injectors (e.g., “stinger”) and radial injectors; etc.


Referring to the FIGURE, which is a schematic representation of one typical system described herein, conventional plasma gas (11) such as oxygen, nitrogen, argon, helium, air, hydrogen, etc. (used alone or in mixtures of two or more) is injected into a plasma forming area (12) containing conventional plasma forming electrodes (10) (which are typically made of copper, tungsten, graphite, molybdenum, silver etc.). The thus-formed plasma then enters into the throat or constricted region (15) causing the increased velocity and turbulence described above. It is at this point that the carbon black forming feedstock (14), e.g. natural gas or methane, is introduced into the system. The feedstock can be injected just prior to the throat (within about 5 diameters), anywhere within the throat, or downstream of the throat (within about 5 diameters). The mixed feedstock and plasma then enter into the reaction zone (13) generating a carbon black product.


EXAMPLE

Hydrogen gas is run by a conventional plasma electrode assembly to generate a temperature of 3000° C. in the plasma forming zone. The plasma formed then flows through a constricted throat area where it increases in velocity and turbulence. It is at this point in the throat area that methane gas is injected into the turbulent plasma. The plasma-methane gas mixture then flows rapidly into a reaction zone resulting in the production of a carbon black with increased surface area, reduced grit and/or reduced extract levels.













TABLE





Properties
Units
Sample 1
Sample 2
Sample 3







Grade

N234
N550
N762


Q in*
kW
8000
6466
9000


thermal efficiency
%
95%
95%
95%


Q heat
kW
7600.0
6142.4
8550.0


H2 temp @ inlet
C
150
150
150



K
423
423
423


H2 temp @ throat
C
3200
3200
3200



K
3473
3473
3473


Reaction Temperature
C
1800
1450
1400



K
2073
1723
1673


Reactor pressure
atm
1.2
1.2
1.2


H2 to plasma formation
kg/sec
0.071
0.057
0.080



kg/hr
255
206
286



Nm3/hr
2829
2287
3183


carbon yield
%
95%
95%
95%


CH4 feed temp
C.
150
150
150


CH4 Reaction temp
C.
1800
1450
1400





*Q is energy flow.


Qin is the power into the plasma torch.


Q heat is the heat coming out of the plasma torch.


The efficiency is shown as 95% (the 5% being lost in the power supply, water cooling of parts of the torch etc).






Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims
  • 1. A method of making carbon black comprising: flowing a plasma gas into a plasma forming region and forming a plasma;flowing the plasma gas through a throat which is connected to the plasma forming region and a carbon black forming region, wherein the throat is narrower than the plasma forming region, causing the plasma gas to accelerate and create, maintain or increase turbulence within the throat; andinjecting carbon black forming feedstock comprising methane upstream of or into the throat, resulting in carbon black with increased surface area as compared to carbon black formed without the feedstock injection upstream of or into the throat.
  • 2. The method of claim 1, wherein, at the point where the carbon black forming feedstock is injected, the throat or the carbon black forming feedstock is externally cooled.
  • 3. The method of claim 2, wherein, at the point where the carbon black forming feedstock is injected, the throat or the carbon black forming feedstock is externally cooled by water cooling.
  • 4. The method of claim 2, wherein, at the point where the carbon black forming feedstock is injected, the throat or the carbon black forming feedstock is externally cooled by preheating the plasma gas prior to flowing the plasma gas into the plasma forming region.
  • 5. The method of claim 2, wherein, at the point where the carbon black forming feedstock is injected, the throat and the carbon black forming feedstock are externally cooled.
  • 6. The method of claim 2, wherein, at the point where the carbon black forming feedstock is injected, the throat or the carbon black forming feedstock are externally cooled by cooling channels.
  • 7. The method of claim 1, wherein the carbon black feedstock is injected within about 5 throat diameters upstream of the throat.
  • 8. The method of claim 1 wherein the throat has a center section and the carbon black forming feedstock is injected radially inwards towards the center section.
  • 9. The method of claim 1 wherein the throat has a center section and a wall section and the carbon black forming feedstock is injected with an axial component either from the center section or from the wall section of the throat.
  • 10. The method of claim 1 wherein the throat has an entry section and an exit section and the carbon black forming feedstock is injected at or near the exit section of the throat.
  • 11. The method of claim 1 wherein the throat is wider at the plasma entry point than at the plasma exit point and the feedstock is injected at or near the plasma exit point.
  • 12. The method of claim 1, wherein the feedstock comprises natural gas.
  • 13. The method of claim 1, wherein the feedstock is a gas.
  • 14. The method of claim 1 wherein the throat has a center section and the carbon black forming feedstock is injected radially outwards away from the center section.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/933,479 filed Jan. 30, 2014, the disclosure of which is expressly incorporated by reference herein in its entirety.

US Referenced Citations (192)
Number Name Date Kind
1339225 Rose May 1920 A
1536612 Lewis May 1925 A
1597277 Jakowsky Aug 1926 A
2062358 Frolich Sep 1932 A
2002003 Eisenhut et al. May 1935 A
2393106 Johnson et al. Jan 1946 A
2557143 Royster Jun 1951 A
2572851 Gardner et al. Oct 1951 A
2616842 Sheer et al. Nov 1952 A
2785964 Pollock Mar 1957 A
2850403 Day Sep 1958 A
2951143 Anderson et al. Aug 1960 A
3009783 Sheer et al. Nov 1961 A
3073769 Doukas Jan 1963 A
3288696 Orbach Nov 1966 A
3307923 Ruble Mar 1967 A
3308164 Johnson Mar 1967 A
3309780 Goins Mar 1967 A
3331664 Jordan Jul 1967 A
3344051 Latham, Jr. Sep 1967 A
3408164 Johnson Oct 1968 A
3409403 Bjornson et al. Nov 1968 A
3420632 Ryan Jan 1969 A
3431074 Jordan Mar 1969 A
3464793 Jordan et al. Sep 1969 A
3619140 Morgan et al. Nov 1971 A
3637974 Tajbl et al. Jan 1972 A
3673375 Camacho Jun 1972 A
3725103 Jordan et al. Apr 1973 A
3922335 Jordan et al. Nov 1975 A
3981654 Rood et al. Sep 1976 A
3981659 Myers Sep 1976 A
3984743 Horie Oct 1976 A
4028072 Braun et al. Jun 1977 A
4035336 Jordan et al. Jul 1977 A
4057396 Matovich Nov 1977 A
4075160 Mills et al. Feb 1978 A
4101639 Surovikin et al. Jul 1978 A
4199545 Matovich Apr 1980 A
4282199 Lamond et al. Aug 1981 A
4289949 Raaness et al. Sep 1981 A
4317001 Silver et al. Feb 1982 A
4372937 Johnson Feb 1983 A
4404178 Johnson et al. Sep 1983 A
4452771 Hunt Jun 1984 A
4431624 Casperson Aug 1984 A
4472172 Sheer et al. Sep 1984 A
4553981 Fuderer Nov 1985 A
4601887 Dorn et al. Jul 1986 A
4678888 Camacho et al. Jul 1987 A
4689199 Eckert et al. Aug 1987 A
4765964 Gravley et al. Aug 1988 A
4787320 Raaness et al. Nov 1988 A
4864096 Wolf et al. Sep 1989 A
4977305 Severance, Jr. Dec 1990 A
5039312 Hollis, Jr. et al. Aug 1991 A
5045667 Iceland et al. Sep 1991 A
5046145 Drouet Sep 1991 A
5105123 Ballou Apr 1992 A
5147998 Tsantrizos et al. Sep 1992 A
5206880 Olsson Apr 1993 A
5399957 Vierboom et al. Mar 1995 A
5481080 Lynum et al. Jan 1996 A
5486674 Lynum et al. Jan 1996 A
5500501 Lynum et al. Mar 1996 A
5527518 Lynum et al. Jun 1996 A
5593644 Norman et al. Jan 1997 A
5604424 Shuttleworth Feb 1997 A
5611947 Vavruska Mar 1997 A
5717293 Sellers Feb 1998 A
5725616 Lynum et al. Mar 1998 A
5935293 Detering et al. Aug 1999 A
5951960 Lynum et al. Sep 1999 A
5989512 Lynum et al. Nov 1999 A
5997837 Lynum et al. Dec 1999 A
6068827 Lynum et al. May 2000 A
6099696 Schwob et al. Aug 2000 A
6188187 Harlan Feb 2001 B1
6197274 Mahmud et al. Mar 2001 B1
6358375 Schwob Mar 2002 B1
6380507 Childs Apr 2002 B1
6395197 Detering et al. May 2002 B1
6444727 Yamada et al. Sep 2002 B1
6602920 Hall et al. Aug 2003 B2
6703580 Brunet et al. Mar 2004 B2
6773689 Lynum et al. Aug 2004 B1
7167240 Stagg Jan 2007 B2
7452514 Fabry et al. Nov 2008 B2
7462343 Lynum et al. Dec 2008 B2
7563525 Ennis Jul 2009 B2
7655209 Rumpf et al. Feb 2010 B2
8147765 Muradov et al. Apr 2012 B2
8221689 Boutot et al. Jul 2012 B2
8257452 Menzel Sep 2012 B2
8277739 Monsen et al. Oct 2012 B2
8323793 Hamby et al. Dec 2012 B2
8443741 Chapman et al. May 2013 B2
8471170 Li et al. Jun 2013 B2
8486364 Vanier et al. Jul 2013 B2
8501148 Belmont et al. Aug 2013 B2
8581147 Kooken et al. Nov 2013 B2
8771386 Licht et al. Jul 2014 B2
8784617 Novoselo et al. Jul 2014 B2
8850826 Ennis Oct 2014 B2
8871173 Nester Oct 2014 B2
8911596 Vancina Dec 2014 B2
9445488 Foret Sep 2016 B2
9574086 Johnson et al. Feb 2017 B2
20010029888 Sundarrajan et al. Oct 2001 A1
20010039797 Cheng Nov 2001 A1
20020000085 Hall et al. Jan 2002 A1
20020050323 Moisan et al. May 2002 A1
20020157559 Brunet et al. Oct 2002 A1
20030152184 Shehane et al. Aug 2003 A1
20040047779 Denison Mar 2004 A1
20040071626 Smith et al. Apr 2004 A1
20040081862 Herman Apr 2004 A1
20040148860 Fletcher Aug 2004 A1
20040168904 Anazawa et al. Sep 2004 A1
20040211760 Delzenne et al. Oct 2004 A1
20040247509 Newby Dec 2004 A1
20050063892 Tandon et al. Mar 2005 A1
20050230240 Dubrovsky et al. Oct 2005 A1
20060034748 Lewis et al. Feb 2006 A1
20060037244 Clawson Feb 2006 A1
20060107789 Deegan et al. May 2006 A1
20060226538 Kawata Oct 2006 A1
20060239890 Chang et al. Oct 2006 A1
20070140004 Marotta et al. Jun 2007 A1
20070183959 Charlier et al. Aug 2007 A1
20070270511 Melnichuk et al. Nov 2007 A1
20080041829 Blutke et al. Feb 2008 A1
20080121624 Belashchenko et al. May 2008 A1
20080169183 Hertel et al. Jul 2008 A1
20080182298 Day Jul 2008 A1
20080226538 Rumpf et al. Sep 2008 A1
20080279749 Probst et al. Nov 2008 A1
20090090282 Gold et al. Apr 2009 A1
20090142250 Fabry et al. Jun 2009 A1
20090155157 Stenger et al. Jun 2009 A1
20090208751 Green et al. Aug 2009 A1
20090230098 Salsich et al. Sep 2009 A1
20100249353 MacIntosh et al. Sep 2010 A1
20110036014 Tsangaris et al. Feb 2011 A1
20110071962 Lim Mar 2011 A1
20110076608 Bergemann et al. Mar 2011 A1
20110138766 Elkady et al. Jun 2011 A1
20110155703 Winn Jun 2011 A1
20110239542 Liu et al. Oct 2011 A1
20120018402 Carducci et al. Jan 2012 A1
20120025693 Wang et al. Feb 2012 A1
20120201266 Boulos et al. Aug 2012 A1
20120232173 Juranitch et al. Sep 2012 A1
20120292794 Prabhu et al. Nov 2012 A1
20130039841 Nester et al. Feb 2013 A1
20130062195 Samaranayake et al. Mar 2013 A1
20130062196 Sin Mar 2013 A1
20130092525 Li et al. Apr 2013 A1
20130194840 Huselstein et al. Aug 2013 A1
20130292363 Hwang et al. Nov 2013 A1
20130323614 Chapman et al. Dec 2013 A1
20130340651 Wampler et al. Dec 2013 A1
20140057166 Yokoyama et al. Feb 2014 A1
20140131324 Shipulski et al. May 2014 A1
20140190179 Barker et al. Jul 2014 A1
20140224706 Do et al. Aug 2014 A1
20140227165 Hung et al. Aug 2014 A1
20140248442 Luizi et al. Sep 2014 A1
20140290532 Rodriguez et al. Oct 2014 A1
20140294716 Susekov et al. Oct 2014 A1
20140357092 Singh Dec 2014 A1
20140373752 Hassinen et al. Dec 2014 A2
20150044516 Kyrlidis et al. Feb 2015 A1
20150064099 Nester et al. Mar 2015 A1
20150180346 Yuzurihara et al. Jun 2015 A1
20150210856 Johnson et al. Jul 2015 A1
20150210857 Johnson et al. Jul 2015 A1
20150210858 Hoermann et al. Jul 2015 A1
20150211378 Johnson et al. Jul 2015 A1
20150218383 Johnson et al. Aug 2015 A1
20150223314 Hoermann et al. Aug 2015 A1
20160030856 Kaplan et al. Feb 2016 A1
20160210856 Johnson et al. Jul 2016 A1
20170034898 Moss et al. Feb 2017 A1
20170037253 Hardman et al. Feb 2017 A1
20170058128 Johnson et al. Mar 2017 A1
20170066923 Hardman et al. Mar 2017 A1
20170073522 Hardman et al. Mar 2017 A1
20170349758 Johnson Dec 2017 A1
20180015438 Taylor et al. Jan 2018 A1
20180016441 Taylor et al. Jan 2018 A1
20180022925 Hardman et al. Jan 2018 A1
Foreign Referenced Citations (65)
Number Date Country
2897071 Nov 1972 AU
830378 Dec 1969 CA
964 405 Mar 1975 CA
2 353 752 Jan 2003 CA
2 621 749 Aug 2009 CA
1644650 Jul 2005 CN
102108216 Jun 2011 CN
102993788 Mar 2013 CN
103160149 Jun 2013 CN
203269847 Nov 2013 CN
198 07 224 Aug 1999 DE
200300389 Dec 2003 EA
0 616 600 Sep 1994 EP
0 635 044 Feb 1996 EP
0 635 043 Jun 1996 EP
0 861 300 Sep 1998 EP
1188801 Mar 2002 EP
2 891 434 Mar 2007 FR
2 937 029 Apr 2010 FR
395893 Jul 1933 GB
987498 Mar 1965 GB
1 400 266 Jul 1975 GB
1 492 346 Nov 1977 GB
6-322615 Nov 1994 JP
2004-300334 Oct 2004 JP
2005-243410 Sep 2005 JP
10-2008-105344 Dec 2008 KR
2014-0075261 Jun 2014 KR
2425795 Aug 2011 RU
2488984 Jul 2013 RU
9312031 Jun 1993 WO
9318094 Sep 1993 WO
9320153 Oct 1993 WO
9323331 Nov 1993 WO
1994008747 Apr 1994 WO
9703133 Jan 1997 WO
03014018 Feb 2003 WO
2012015313 Feb 2012 WO
2012067546 May 2012 WO
2012094743 Jul 2012 WO
2012149170 Nov 2012 WO
2013134093 Sep 2013 WO
2013184074 Dec 2013 WO
2013185219 Dec 2013 WO
2014000108 Jan 2014 WO
2014012169 Jan 2014 WO
2015049008 Apr 2015 WO
2015116797 Aug 2015 WO
2015116798 Aug 2015 WO
2015116800 Aug 2015 WO
2015116807 Aug 2015 WO
2015116811 Aug 2015 WO
2015116943 Aug 2015 WO
2016012367 Jan 2016 WO
2016126598 Aug 2016 WO
2016126599 Aug 2016 WO
2016126600 Aug 2016 WO
2016014641 Aug 2016 WO
2017019683 Feb 2017 WO
2017027385 Feb 2017 WO
2017034980 Mar 2017 WO
2017044594 Mar 2017 WO
2017048621 Mar 2017 WO
2017190015 Nov 2017 WO
2017190045 Nov 2017 WO
Non-Patent Literature Citations (81)
Entry
International Search Report for PCT/US2015/13487, dated Jun. 16, 2015.
ISR and Written Opinion from PCT/US2015/013482, dated Jun. 17, 2015.
ISR and Written Opinion from PCT/US2015/013505, dated May 11, 2015.
ISR and Written Opinion from PCT/US2015/013794, dated Jun. 19, 2015.
Donnet, Basal and Wang, “Carbon Black”, New York: Marcel Dekker, 1993 pp. 46, 47 and 54.
Boehm, HP, “Some Aspects of Surface Chemistry of Carbon Blacks and Other Carbons”, Carbon 1994, p. 759.
“The Science and Technology of Rubber” (Mark, Erman, and Roland, Fourth Edition, Academic Press, 2013).
“Carbon Black Elastomer Interaction” Rubber Chemistry and Technology, 1991, pp. 19-39.
“The Impact of a Fullerene-Like Concept in Carbon Black Science”, Carbon, 2002, pp. 157-162.
ISR and Written Opinion from PCT/US2015/013510, dated Apr. 22, 2015.
ISR and Written Opinion from PCT/US2016/015939, dated Jun. 3, 2016.
ISR and Written Opinion from PCT/US2016/015941, dated Apr. 22, 2016.
ISR and Written Opinion from PCT/US2016/015942, dated Apr. 11, 2016.
ISR and Written Opinion from PCT/US2016/044039, dated Oct. 6, 2016.
ISR and Written Opinion from PCT/US2016/045793, dated Oct. 18, 2016.
ISR and Written Opinion from PCT/US2016/050728, dated Nov. 18, 2016.
ISR and Written Opinion from PCT/US2016/051261, dated Nov. 18, 2016.
ISR and Written Opinion from PCT/US2015/013484, dated Apr. 22, 2015.
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,476.
Final Office Action dated Jul. 11, 2016 in in U.S. Appl. No. 14/591,476.
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,541.
Final Office Action dated Jul. 14, 2016 in U.S. Appl. No. 14/591,541.
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,761.
Final Office Action dated Oct. 19, 2016 in U.S. Appl. No. 14/601,761.
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,793.
Final Office Action dated Aug. 3, 2016 in U.S. Appl. No. 14/601,793.
Notice of Allowance dated Oct. 7, 2016 in U.S. Appl. No. 14/601,793.
Non-Final Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/221,088.
AP 42, Fifth Edition, vol. I, Chapter 6: Organic Chemical Process Industry, Section 6.1: Carbon Black.
Fulcheri, et al. “Plasma processing: a step towards the production of new grades of carbon black.” Carbon 40.2 (2002): 169-176.
Grivei, et al. A clean process for carbon nanoparticles and hydrogen production from plasma hydrocarbon cracking. Publishable Report, European Commission JOULE III Programme, Project No. JOE3-CT97-0057, circa 2000.
Fabry, et al. “Carbon black processing by thermal plasma. Analysis of the particle formation mechanism.” Chemical Engineering Science 56.6 (2001): 2123-2132.
Pristavita, et al. “Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation.” Plasma Chemistry and Plasma Processing 31.6 (2011): 851-866.
Cho, et al. “Conversion of natural gas to hydrogen and carbon black by plasma and application of plasma black.” Symposia—American Chemical Society, Div. Fuel Chem. vol. 49. 2004.
Pristavita, et al. “Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology.” Plasma Chemistry and Plasma Processing 30.2 (2010): 267-279.
Pristavita, et al. “Volatile Compounds Present in Carbon Blacks Produced by Thermal Plasmas.” Plasma Chemistry and Plasma Processing 31.6 (2011): 839-850.
Garberg, et al. “A transmission electron microscope and electron diffraction study of carbon nanodisks.” Carbon 46.12 (2008): 1535-1543.
Knaapila, et al. “Directed assembly of carbon nanocones into wires with an epoxy coating in thin films by a combination of electric field alignment and subsequent pyrolysis.” Carbon 49.10 (2011): 3171-3178.
Krishnan, et al. “Graphitic cones and the nucleation of curved carbon surfaces.” Nature 388.6641 (1997): 451-454.
Høyer, et al. “Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix.” Journal of Applied Physics 112.9 (2012): 094324.
Naess, Stine Nalum, et al. “Carbon nanocones: wall structure and morphology.” Science and Technology of advanced materials (2016), 7 pages.
Fulcheri, et al. “From methane to hydrogen, carbon black and water.” International journal of hydrogen energy 20.3 (1995): 197-202.
ISR and Written Opinion from PCT/US2016/047769, dated Dec. 30, 2016.
D.L. Sun, F. Wang, R.Y. Hong, C.R. Xie, Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis, Diamond & Related Materials (2015), doi: 10.1016/j.diamond.2015.11.004, 47 pages.
Non-Final Office Action dated Feb. 22, 2017 in U.S. Appl. No. 14/591,541.
Non-Final Office Action dated May 2, 2017 in U.S. Appl. No. 14/610,299.
Ex Parte Quayke Action dated May 19, 2017 in U.S. Appl. No. 14/601,761.
Extended European Search Report from EP Application No. 15 742 910.1 dated Jul. 18, 2017.
Search report in counterpart European Application No. 15 74 3214 dated Sep. 12, 2017.
ISR and Written Opinion from PCT/US2017/030139, dated Jul. 19, 2017.
ISR and Written Opinion from PCT/US2017/030179, dated Jul. 27, 2017.
A.I. Media et al., “Tinting Strength of Carbon Black,” Journal of Colloid and Interface Science, vol. 40, No. 2, Aug. 1972.
Reese, J. (2017). Resurgence in American manufacturing will be led by the rubber and tire industry. Rubber World. 255. 18-21 and 23.
Non-Final Office Action dated Feb. 27, 2017 in U.S. Appl. No. 14/591,476.
Extended European Search Report from EP Application No. 15743214.7 dated Jan. 16, 2018.
Chiesa P, Lozza G, Mazzocchi L. Using Hydrogen as Gas Turbine Fuel. ASME. J. Eng. Gas Turbines Power. 2005;127(1):73-80. doi:10.1115/1.1787513.
Tsujikawa, Y., and T. Sawada. “Analysis of a gas turbine and steam turbine combined cycle with liquefied hydrogen as fuel.” International Journal of Hydrogen Energy 7.6 (1982): 499-505.
Search report from RU2016135213, dated Feb. 12, 2018.
Non-Final Office Action dated Jan. 16, 2018 in U.S. Appl. No. 14/591,528.
Bakken, Jon Arne, et al. “Thermal plasma process development in Norway.” Pure and applied Chemistry 70.6 (1998): 1223-1228.
Polman, E. A., J. C. De Laat, and M. Crowther. “Reduction of CO2 emissions by adding hydrogen to natural gas.” IEA Green House Gas R&D programme (2003).
Verfondern, K., “Nuclear Energy for Hydrogen Production”, Schriften des Forschungzentrum Julich, vol. 58, 2007..
U.S. Environmental Protection Agency, “Guide to Industrial Assessments for Pollution Prevention and Energy Efficiency,” EPA 625/R-99/003, 1999.
Breeze, P. “Raising steam plant efficiency-Pushing the steam cycle boundaries.” PEI Magazine 20.4 (2012).
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,476.
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,541.
Notice of Allowance dated Jan. 18, 2018 in U.S. Appl. No. 14/601,761.
Correced Notice of Allowance dated Feb. 9, 2018 in U.S. Appl. No. 14/601,761.
Final Office Action dated Sep. 19, 2017 in U.S. Appl. No. 15/221,088.
Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/259,884.
Non-Final Office Action dated Apr. 20, 2018 in U.S. Appl. No. 15/221,088.
Russian Official Notification of Application No. 2016135213 from Russia dated Feb. 12, 2018.
Non-Final Office Action dated Jun. 1, 2018 in U.S. Appl. No. 15/262,539.
Non-Final Office Action dated Jun. 7, 2018 in U.S. Appl. No. 15/410,283.
Non-Final Office Action dated Jun. 7, 2018 in U.S. Appl. No. 14/591,476.
Notice of Allowance dated Jun. 7, 2018 in U.S. Appl. No. 14/591,541.
Non-Final Office Action dated Jul. 6, 2018 in U.S. Appl. No. 15/241,771.
Extended European Search Report from EP Application No. 16747055.8 dated Jun. 27, 2018.
Extended European Search Report from EP Application No. 16747056.6 dated Jun. 27, 2018.
Invitation to Pay Additional Fees dated Jun. 18, 2018 in PCT/US2018/028619.
ISR and Written Opinion from PCT/US2018/028619, dated Aug. 9, 2018.
Related Publications (1)
Number Date Country
20150210858 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
61933479 Jan 2014 US