These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
Reference will now be made to the drawings to describe a preferred embodiment of the present plasma jet electrode device, in detail.
Referring to
The plasma manufacturing gases, which enter through windpipe 62 into the ceramic pipe 20, may be air, argon (Ar), carbon dioxide (CO2), nitrogen (N2), helium (He), oxygen (O2), or their combinations.
The plasma jet electrode device further includes a rotating base 50 arranged around the orientation base 10, a bottom plate 70 under the rotating base 50, and a grounding electrode 71 arranged on the inner surface of the bottom plate 70. A low-temperature non-equilibrium plasma area B is formed between the grounding electrode 71 and the high-voltage metal electrode 40. A spray head 72 for spraying the low-temperature non-equilibrium plasma, is arranged on the bottom plate 70. In this exemplary embodiment, the spray head 72 includes at least one titled through holes 73 arranged thereon, such as a plurality of titled through holes 73 distributed in a radial form as shown in
The round plate 30 is made of stainless steel, an inner screw is formed in the round plate 30, and an outer screw is formed at the periphery of the top of the high-voltage metal electrode 40. The outer screw is may arranged in the inner screw for assembling fixedly the high-voltage metal electrode 40 on the round plate 30.
The orientation base 10 has an inner circular groove 11 for inserting the ceramic pipe 20 into the orientation base 10 and fixing the ceramic pipe 20 at the circular groove 11.
The ceramic pipe 20 has an inner circular groove 21 for inserting the round plate 30 into the ceramic pipe 20 and fixing the round plate 30 at the inner circular groove 21.
The round plate 30 has a plurality of tilted through holes 31 distributed thereon as shown in
The high-voltage metal electrode 40 includes a metal connecter 41 and a tie-in 421 arranged on the top thereof. An inserting hole is arranged in the high-voltage metal electrode 40, and a laddering groove 401 is arranged in the inserting hole. Another inserting hole is arranged in the metal connecter 41, and another laddering groove 411 is arranged in the inserting hole. The metal connecter 41 is inserted into the laddering groove 401 of the high-voltage metal electrode 40, and the tie-in 421 is inserted into the laddering groove 411 of the metal connecter 41. The metal connecter 41 and the tie-in 421 are both made of electric metals. The wire 42 connects with the tie-in 421, and the windpipe 62 is an insulator communicated with outside. The wire 42 is inserted into the windpipe 62 and connected with a power (not shown) such so to transmit an alternating high-frequency high voltage on the high-voltage metal electrode 40. The ceramic pipe 20 is connected to ground and the dielectric discharging plasma area A formed between the high-voltage metal electrode 40 and the ceramic pipe 20, has a first proportional distance. The bottom plate 70 is connected to ground, and the low-temperature non-equilibrium plasma area B formed between the high-voltage metal electrode 40 and the grounding electrode 71, has also a second proportional distance. The first proportional distance of the dielectric discharging plasma area A and the second proportional distance of the low-temperature non-equilibrium plasma area B are decided by the plasma manufacturing gas entered therein and the voltage supplied therein. A ratio of the voltage supplied therein and the distance is 1˜5, for example:
If the voltage supplied therein is 5 kv, the distance may be 1˜5 mm;
If the voltage supplied therein is 4 kv, the distance may be 0.8˜4 mm;
If the voltage supplied therein is 3 kv, the distance may be 0.6˜3 mm;
If the voltage supplied therein is 2 kv, the distance may be 0.4˜2 mm;
If the voltage supplied therein is 1 kv, the distance may be 0.2˜1 mm; the other relation of the supplied therein and the distance can be achieved by analogy.
If the voltage supplied therein is 4 kv, the distance may be 0.84 mm;
The orientation base 10 includes a coping 60 arranged on the top thereof. An outer screw is arranged around the top of the orientation base 10, and an inner screw is arranged on the inner surface of the bottom plate of the coping 60. The inner screw of the coping 60 can be coupled with the outer screw of the orientation base 10. The coping 60 is made of polytetrafluoroethylene.
Preferably, for increasing the plasma treatment area and the uniformity of the plasma jet electrode device 1, a rotating base 50 is arranged around the orientation base 10 as shown in
If no rotating base 50, the bottom plate 70 can be mounted on the orientation base 10. The orientation base 10 and the bottom plate 70 can be incorporated together. The bottom plate 70 also can be screwed with the orientation base 10.
A spray head 72 is arranged under the bottom plate 70. A protrusion 701 is extending from the bottom plate, and an outer screw is formed around the protrusion 701. An inner screw is formed on the inner surface of the spray head 72 such that the inner screw of the spray head 72 can be screwed with the outer screw of the protrusion 701. A plurality of tilted through holes 73 are arranged on the spray head 72 and distributed in a spreading form or a radial form.
Referring to
Furthermore, the present spray head 72 can be designed a linear shape as shown in
Referring to
The present plasma jet electrode device 1 may further includes a van flow controller (not shown) for supplying and controlling the van to the low-temperature non-equilibrium plasma area B. The van is organic, inorganic or metal organic plating manufacturing gas (such as Ethyl silicate Tetraethoxy-silicone, oxygen, polythene, methane, ethyne, etc.) or etching manufacturing gas (such as hydrogen, carbon tetrachloride, etc.) to make the plasma jet electrode device 1 using in the plating or etching.
Referring to
When the plasma jet electrode system 2 treats the work-piece (not shown), the temperature of the work-piece will increased. Therefore, the present plasma jet electrode system 2 may include also a cooling device 91 as shown in
The present plasma jet electrode system 2 may further includes a guiding device 92, such as an idler wheel, connected with the frame 90 to guide the frame 90 to move in a pre-determined direction for remaining the distance of the plasma jet electrode device 1 and the work-piece such that the plasma jet electrode device can treat the work-piece uniformly and the frame can operate steadily. Furthermore, the guiding device 92 includes an adjustable connecter 920 connected with the frame 90. Since the adjustable connecter 920 can adjust the height, the guiding device 92 can fit various distances of the work-piece and the plasma jet electrode device 1.
The present plasma jet electrode device 1 and the plasma jet electrode system 2 improves the treatment area and the uniformity of the low-temperature atmospheric pressure non-equilibrium plasma such that the plasma jet electrode device can be used more widely, such as cleaning and etching.
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including configurations ways of the recessed portions and materials and/or designs of the attaching structures. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein.
Thus, the scope of the claims is not to be limited by the illustrated embodiments.
Number | Date | Country | Kind |
---|---|---|---|
095111710 | Apr 2006 | TW | national |