The present invention refers generally to fluid separation, and more particularly to a device and a process for at least partially fractioning or separating fluid from higher density and/or solid particles contained in a liquid sample.
For the separation of the serum or plasma from blood as presently disclosed basically a centrifugal test tube, filled with blood is rotated for e.g. twenty minutes at a centrifugal speed of 3000 g. By doing so, one can find all the solid parts of the blood within the sediment and the supernatant liquid consisting out of plasma or serum. Besides this classical blood plasma separation there are known other processes such as e.g. filtration methods. The known filtration methods are not really suitable in microfluidic systems for the separation of plasma out of blood.
For example, Kang et al., Proceedings of the 8th International Conference of Miniaturized Systems in Chemistry and Life (uTAS), Sep. 26-30 (2004), Malmö, Sweden, p. 614, proposes a spiral particle separator in a CD like centrifugal system. Particles are separated by centrifugal force and fluid is pumped by centrifugal acceleration. At the outlet particles are isolated and flow into a waste chamber. Due to priming effects at the first filling of the device, the first fraction of fluid pumped through the device is subject to very low separation efficiency.
Furthermore within U.S. Pat. No. 5,186,844 (Abaxis) micro fluidic structures for the separation of plasma within a rotating disc are disclosed. The layouts are characterized by the separation of particles or cells from the blood in a separation chamber. The plasma is collected within a collecting chamber, which is connected via a fluid outlet port with the separation chamber. The processable volume of blood is defined by the dimension of the sedimentation chamber and the position of the fluid outlet port, which means that the volume to be processed is very limited.
Brenner et al., Proceedings of the 8th International Conference of Miniaturized Systems in Chemistry and Life (uTAS), Sep. 26-30 (2004), Malmö, Sweden, p. 566, again proposes fluidic structures which are very similar to the design layouts as disclosed within the above mentioned U.S. Pat. No. 5,186,844. The separation of parts within the blood is executed within a micro fluidic canal section (drain channel) and a decant chamber. Again the range of volume to be processed is very limited.
Blattert et at., Microfluidics, BioMEMS, and Medical Microsystems II, Proceedings of SPIE, Vol. 5345, 17 (2003), proposes a method and a device for the separation of plasma by using centrifugal force within an arcuated non rotating canal. The achieved separation efficiency can be compared with the so called “plasma skimming” process without using any centrifugal force. The purity of the plasma achieved by using this method is very limited.
C. Bor Fuh, Analytical Chemistry, Apr. 1, 2000, pp. 266A-271A, proposes a splitting technique for the separation of particles and cells by utilizing the different physical properties of particles or cells under the influence of centrifugal forces.
The U.S. Pat. Appln. Pub. 2002/0068675 A1 a centrifugal separation device for use in a fluid separation system is disclosed. A composite fluid to be separated is delivered to a fluid receiving area, from which it travels to a circumferential fluid separation channel, which separates the composition into components which each then travel to distinct fluid outlet channels. The individual fluid components are then moved to separate collecting bags.
In the U.S. Pat. No. 6,635,163 a separation device is disclosed, where the separation of a multi-component substance containing molecules of different sizes is achieved by narrowing or enlarging the diameter of a flow-pass, through which the molecule mixture is transported. The separation is achieved due to the molecule size dependence of the entropic trapping effect.
All the above disclosed rotating micro fluidic systems or separation methods respectively cannot be operated with any or arbitrary volume of blood. This can be either due to the dimensions of the device or the structures respectively or due to problems at the priming procedure which means at the first filling of the devices. In other words, the blood volumes are very limited.
Furthermore the above described prior art methods and structures are either not feasible in a continuous flow or require a minimum volume of blood or the result is a non-complete separation or an insufficient separation of blood cells and the plasma.
It is against the above background that the present invention provides a more reliable and easier processable device for the separation of plasma or serum from blood, or more generally, for the fractioning or separation of a fluid from higher density and/or solid particles contained in a liquid sample.
In one embodiment, the present invention discloses a more sophisticated and more reliable methods for the separation of plasma from blood for the use in microfluidic systems to enable e.g. continuous or further processing of the separated samples.
In another embodiment, the present invention also integrates the separation step into an analytical device for which using known filtration methods is not possible.
In one embodiment, disclosed is a device or an arrangement for at least partially separating fluid from higher mass-density and/or solid particles contained in a liquid sample such as, e.g., blood plasma to be separated at least from red blood cells to get a red blood cell free fluid fraction for, e.g., analysis purpose. For that purpose a device or an arrangement is disclosed which can be driven or moved such, that a fluid flowing within a fluid path in or on the device is forced to flow by pressure force such as, e.g., centrifugal force, gravity force etc., the fluid path being arranged such that at least one force component is not parallel to the direction of the flow path of the fluid. The device comprises e.g. a rotatable plate like or disc-like body in or on which at least one flow path is integrated or arranged in which at one internal wall surface the flow velocity of the sample fluid is higher compared with the velocity at e.g. the opposite internal wall surface to enable separation or sedimentation out of the fluid sample of solid particles or particles with higher mass-density than the density of the liquid. In one embodiment, the distance between the flow path and the rotation axis of the rotatable plate or disc-like body is at least partially increasing or constant. The path can be e.g. an arcuated ring like, helical or spiral separation or sedimentation path or channel for the fluid, which is arranged in or on the body, the path or channel comprises at least along a section of the mentioned one wall surface against which the nonparallel force component is directed, resistive elements for the reason that at least the flow of the sample fluid mixture is delayed along the mentioned one wall surface section. With other words at the mentioned wall surface as e.g. the outer wall surface, means are arranged or incorporated, which influence the flow velocity of the fluid sample and/or which are enabled to capture parts of the fluid sample, such as solid parts and/or particles with a higher mass-density than the liquid.
The mentioned one wall surface of the path or channel, which in fact is a separation or sedimentation path or channel is designed such, that the flow rate is delayed along the mentioned wall surface and a separation or sedimentation of the high density and/or solid particles from the remaining fluid occurs along the wall surface.
According one embodiment the wall comprises at least along parts of the outer wall surface successively arranged cavities for the collection of the higher density and/or solid particles such as e.g. the red blood cells and additional solid parts of the blood.
Other embodiments of the mentioned wall surface are possible such as e.g. the definition of wave forms in the outer wall surface, the formation of a zigzag behaved surface, the arrangement of capture cavities, pocket volumes, etc.
According to one embodiment the path or channel can be arranged within the disc-like body in a spiral or helical form such, that towards the rotor axis of the device a fluid mixture input zone is arranged and that the path or channel from the input zone is defining a helical path towards the outer periphery boundary of the disc-like body. In direction to the periphery of the disc-like body of the device discharge conducts can be arranged near the inner and/or the outer wall of the path or channel respectively to discharge either the fluid such as e.g. the blood plasma or the higher density and/or solid particles, such as for instance the red and white blood cell particles.
According to one embodiment the helical like path or channel comprises successively arranged cavities as resistive elements along the outer wall surface, the total volume of the cavities or elements respectively is such, that at least an essential part or preferably almost all of the higher density and/or solid particles can be collected, such that at least almost all of the fluid such as the plasma volume can be used for further analysis purpose.
The resistive elements along the outer path or canal wall are such, that the higher density and/or solid particles are collected within the resistive elements and that an overflow of the collected higher density and/or solid particles may be prevented. Specific and preferred designs of the cavities or restrictive elements shall be described in more details with reference to the attached figures; the description will follow later on within this description.
According to a further embodiment, the helical path or channel respectively comprises channels, ducts, bypasses, and the likes to remove plasma or to remove higher density and/or solid particles such as for instance red and white blood cells.
Again according a further embodiment the diameter of the path or channel is decreasing along the path length, to take on one side the separated volume of the high viscous and solid particles into consideration and further more by decreasing the cross section of the channel along the pass. As a consequence, the flow resistance will increase so that at equal centrifugal acceleration the flow of the liquid sample or blood respectively shall decrease, and therefore the efficiency of sedimentation or separation of higher density and solid particles will increase.
As already described above during the radial and/or helical flow towards the outside periphery of the device of the present invention, a separation of the fluid mixture occurs resulting in a more or less solid free fluid such as, for instance, a cell free blood plasma for analysis purpose.
The invention shall be described in more details with reference to the examples, shown within the attached figures.
a-5f show the section A out of
In
In
Important and responsible for the optimization of the restrictive elements or structures 5 is the volume Vs as well as the angle of the retaining wall 15 of the resistive elements 5. The volume Vs of one element is characterized by the mentioned angle θ and the lengths or heights of the two legs 13 and 15 of the resistive element. Furthermore of importance of course is also the geometry of the channel which means the width and the depth of the channel as well as the radial position of the channel and the angle between the channel axis and the radius which means the distance to the rotation axis of the disc-like device.
a to 5f show embodiments of the section A out of the separation channel 3 arranged within the disc-like device 1 of
In
c, 5d, 5e and 5f show further embodiment of the resistive elements 5.
In case, that the total volume Vs of the resistive elements is sufficient, as e.g. in case of blood a plasma can be achieved at the end of the channel containing practically no cells anymore within the plasma, without the need of any bypasses or branching off channels. Practically any small volume of blood can be introduced within the channel for gaining cell free plasma. At bigger blood volumes the canal section including resistive elements should be elongated and eventually bypasses or branching off channels should be used to remove the plasma out of the sample mixture.
In
One advantage of the designs as shown in
In
The embodiments shown in
Number | Date | Country | Kind |
---|---|---|---|
05026571.9 | Dec 2005 | EP | regional |
PCT CH2006000612 | Nov 2006 | CH | national |
This application is a continuation of International Application No. PCT/CH2006/000612 filed Nov. 1, 2006, which claims priority to EP Application No. 05026571.9, filed Dec. 6, 2005.