Plasma torch design

Information

  • Patent Grant
  • 11304288
  • Patent Number
    11,304,288
  • Date Filed
    Friday, January 30, 2015
    9 years ago
  • Date Issued
    Tuesday, April 12, 2022
    2 years ago
Abstract
Design advances for improving the performance of a plasma torch. The use of one or more of various advances described herein can improve the efficiency and effectiveness of the torch, the reactor and the manufacturing process. The use of the torch with hydrogen plasma gas, natural gas feedstock, and carbon black production are also described.
Description
TECHNICAL FIELD

The field of art to which this invention generally pertains is methods and apparatus for making use of electrical energy to affect chemical changes.


BACKGROUND

There are many processes that can be used and have been used over the years to produce carbon black. The energy sources used to produce such carbon blacks over the years have, in large part, been closely connected to the raw materials used to convert hydrocarbon containing materials into carbon black. Residual refinery oils and natural gas have long been a resource for the production of carbon black. Energy sources have evolved over time in chemical processes such as carbon black production from simple flame, to oil furnace, to plasma, to name a few. As in all manufacturing, there is a constant search for more efficient and effective ways to produce such products. Varying flow rates and other conditions of energy sources, varying flow rates and other conditions of raw materials, increasing speed of production, increasing yields, reducing manufacturing equipment wear characteristics, etc. have all been, and continue to be, part of this search over the years.


The systems described herein meet the challenges described above, and additionally attain more efficient and effective manufacturing process.


BRIEF SUMMARY

A plasma torch is described including at least two cylindrical, graphite electrodes nested inside one another and coaxially aligned; the plasma torch described above wherein the inner electrode is hollow; the plasma torch described above where the inner electrode is a solid cylinder; the plasma torch described above useable with plasma gas which is at least about 60% H2 by volume; the plasma torch described above useable with plasma gas containing at least one of CO, C2H2, HCN, CH4, C2H6, N2, polycyclic aromatic hydrocarbons, monoaromatic hydrocarbons, and/or Ar gas; present in at least 10 ppm (parts per million); the plasma torch described above where the gap between the concentric electrodes is not less than about 4 mm and not more than about 20 mm; the plasma torch described above containing a tip wherein the gap distance, electrode thickness, and/or surface area of the tip remains substantially constant during wear; the plasma torch described above additionally containing at least one annulus between electrodes particularly adapted for the flow of plasma gas; the plasma torch described above additionally containing an upper annulus and a lower annulus between electrodes wherein the upper annulus is wider than the lower annulus; the plasma torch described above additionally containing a power supply capable of supplying an about 300 to about 1500V operating voltage and an open circuit voltage up to about 4500V; the plasma torch described above where at least one electrode has a tip and the torch additionally contains a magnetic field generating component capable of providing a magnetic field at the tip of the electrode with an axial component of between about 10 and about 100 mT; the plasma torch described above containing an upper cathode and a lower cathode and an upper anode and a lower anode, wherein the upper cathode is connected to the lower cathode to make one electrically conductive electrode and the upper anode is connected to the lower anode to make one electrically conductive electrode and each of these connections are made at an electrically conductive electrode junction; the plasma torch described above where conical threads are used to connect upper and lower electrodes; the plasma torch described above containing an annulus between electrodes wherein the lower electrode has a more narrow annulus than the upper electrode; the plasma torch described above where the lower electrodes are considered consumable; the plasma torch described above where multiple consumable electrodes are attached to an upper electrode; the plasma torch described above containing ring thicknesses where the ring thickness of the lower electrodes is within 10% of each other; the plasma torch described above including an electrode tip area where the surface area of the electrode tip is greater than 2:3 but less than 4:1 when the surface area of the outer electrode is compared to the surface area of the inner electrode; the plasma torch described above where at least one of the electrodes has a substantially barrel stave design; the plasma torch described above where at least 5 staves are used to create a hollow concentric ring; the plasma torch described above containing axial grooves cut into the electrodes to provide relief of thermal stress and/or provide controlled thermal cracking; the plasma torch described above including an electrode tip area wherein the cylindrical electrodes comprise cylindrical rods capable of being held at the same electric potential that approximate a hollow cylinder at the tip; the plasma torch described above where the inner electrode comprises a shower head design; the plasma torch described above including an annulus for the flow of shield gas; the plasma torch described above including at least one channel for the flow of plasma gas through one or more than one of the following: an annulus, a shield gas channel, a shower head in a central electrode, through the body of hollow concentric electrodes, and/or through the center of hollow concentric electrodes; the plasma torch described above including at least one magnet to generate and tailor a magnetic field; and the plasma torch described above including a conductive mechanical connector connecting the anode to the cathode and providing a conductive path for initiation of arc.


Additional embodiments include: a plasma reactor containing a plasma chamber where the walls of the reactor include gas flow channels that can transport heat away from the plasma chamber; the plasma reactor described above where the channels are designed so as to allow at least some of the heated gas to be redirected as plasma gas; the plasma reactor described above including the torch described where the walls of the reactor narrow after the torch section to form a throat section and then the walls diverge after the throat section; the plasma reactor described above including hydrocarbon feedstock injectors in the throat section; the plasma reactor described above including hydrocarbon feedstock injectors within 5 diameters of the throat in either the upstream or downstream direction.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1, 2 and 3 show schematic representations of typical plasma torches as described herein.



FIG. 4 shows a schematic representation of an electrode that has a substantially barrel stave design.



FIG. 5 shows a schematic representation of axial slots or grooves cut into an electrode.





DETAILED DESCRIPTION

The particulars shown herein are by way of example and for purposes of illustrative discussion of the various embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


The present invention will now be described by reference to more detailed embodiments. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety.


Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.



FIGS. 1, 2 and 3 are schematic 2-dimensional representations of variants of typical torches described herein. For example, FIG. 1 shows plasma gas flowing through plasma gas inlets (103) between an inner electrode (108), typically the cathode and the outer electrode (107), typically the anode. Each electrode is comprised of an upper electrode section (104) and lower electrode section (106) that are connected at the electrode junction (105). The electrode junction can use conical threads to ensure that weight distribution of the lower electrode is even across the junction and that thermally induced stress fractures are minimized. Other methods of joining the upper and lower electrodes could also be employed including hook and latch, tongue and groove, mechanical bolts, as non-limiting examples. The annulus is the space between the concentric electrodes where some but not necessarily all of the plasma gas is passed before reaching the plasma region (111). The width of the annulus is described as the average distance between the anode and cathode and the gap or the tip distance is described as the closest distance at the tip of the cathode to the tip of the anode. The electrode holders (101) are connected to the upper electrodes at the holder/electrode junction (102). The electrode holders enable the electrical isolation of both the anode and cathode and additionally supply the electrical connections to the anode and cathode. The connection of the power supply to either or both the anode and cathode can be accomplished through other means, but is convenient when accomplished with the electrode holders which serve multiple functions. The use of various materials at the electrode holders, including Teflon™ polymer and various ceramics amongst others, are included to provide adequate thermal and electrical isolation. These materials additionally allow for pre-heated plasma gas to flow in close proximity to the electrode holders which can optionally be water cooled. The plasma gas is transported through the arc (110) and serves as heat dissipation into the plasma zone or region (111) which ideally is the hottest part of the reactor. The wider upper annulus in FIG. 1 (in the upper electrode section above lower annulus 109) allows for reduced probability of arcing between the electrodes in this area of the torch. Additionally, the lower electrode is designed to be consumable in nature and allow for facile, rapid, inexpensive replacement without the need to replace the upper electrodes and the electrode holders.



FIG. 2 shows several different possible flow paths for the plasma gas. The plasma gas can flow around the outer electrode to act as a shield gas (204). This will protect the electrodes and provide for longer service life and maximize the utility of the heat load supplied by the torch. The electrodes can also have a shower head design (202) wherein the inner electrode is not a hollow ring, but rather a solid electrode with hollow shafts that allow for heat dissipation (203) at the inner electrode and maximization of the utility of the heat load of the torch. Additionally, the plasma gas can flow through the annulus (201) or it can flow through the walls of the hollow concentric inner and outer electrodes depicted in FIG. 1 for example through tubular shafts drilled axially through the electrodes.



FIG. 3 depicts the torch and the downstream reaction zone. The plasma gas (301) flows downstream of the plasma zone through the inner electrode (302) and the outer electrode (303) into a converging or narrowing region (304) and into the throat (305) and then out of the throat into a diverging reactor (306). This creates a large amount of turbulence and this configuration will provide for optimal mixing with hydrocarbon feedstock. The figure also shows recycle plasma gas (307) flowing around the lower and mid portion of the plasma zone to serve two functions (1)—cool the walls of the plasma zone and (2)—pre-heat the plasma gas prior to entering the plasma chamber to more effectively use the heat load of the plasma torch and prolong the service life of the plasma chamber.


While all of these figures show the torch/reactor in a vertical state with downward flow, it is also possible to have an upward flow, or a horizontal reactor. For the particular torch/reactor designs shown, vertical reactor orientation with downward flow is preferred.


Carbon black has been made from a variety of processes over the years, however, commercial development of a plasma based process has never been successful. In the past, plasma generator designs for the production of carbon black have not possessed adequate heating rates, resistance to corrosion, economical plasma gas, rapid mixing, and sufficient economics of manufacture to survive when pitted against the incumbent furnace process. The plasma torch described herein enable continuous operation and production of high quality carbon black from the plasma process where others have failed.


Plasma jets for various industrial processes are normally produced by plasma generators comprising a discharge chamber and mutually insulated electrodes. An electric arc discharge is initiated in the discharge chamber between the electrodes, in the flow of a medium. The medium, typically a gas, is heated in the discharge to the plasma state and flows out of the generator in the form of a plasma jet.


Of all plasma generator components, electrodes, or rather their surfaces exposed to the electric arc, “arc-spots”, are exposed to the most extreme thermal flux. The thermal flux in these areas can exceed 105 W/cm2 (Watts per square centimeter) and this environment will melt or erode all known metals. Cooling of the plasma components is typically achieved via jacketed cooling techniques with thermal exchange agents.


In the plasma reactor described herein, the power supply, the control of arc placement, the distance between the electrodes, the gas flow rate amongst other factors are controlled with high precision to ensure performance. The power supply is connected to the electrodes and provides for very high open circuit voltage to deal with high voltage spikes. The power supply can be capable of supplying 500-1500 V (volts) or greater typical operating voltage. The power supply has an open circuit voltage that can be 1.5 to 3.0 times the operating voltage. These voltage ranges have been found to be optimal for the manufacture of carbon black at specific plasma gas flow rates in combination with hydrocarbon feedstock flow rates, a plasma gas comprised of greater than 60% hydrogen, and the gap distance of between 4 and 20 mm (millimeters).


For the given gap distance, voltage, plasma gas flow rates, and surface area of electrode tips, an optimal power density of the electrode tip is from 0.1 to 2 kW/cm2 (kilowatts per square centimeter). Below this range power output would be too low for efficient carbon black production and above this range the torch would rapidly decompose resulting in inefficient carbon black production due to electrode wear.


The plasma gas is the gas that has passed through the plasma torch region and may have sufficiently interacted to be deemed in the plasma state. Plasma gas as used herein can mean the excited gas and can also mean any gas passing through the plasma torch area that could have been induced into the plasma state, but for whatever reason has not been induced.


The components of the plasma gas for the highly efficient plasma reactors described herein are comprised of at least about 60% hydrogen up to about 100% hydrogen and can further comprise up to about 30% nitrogen, up to about 30% CO, up to about 30% CH4, up to about 10% HCN, up to about 30% C2H2, and up to about 30% Ar. Additionally, the plasma gas can also be comprised of polycyclic aromatic hydrocarbons such as anthracene, naphthalene, coronene, pyrene, chrysene, fluorene, and the like. In addition, the plasma gas can have benzene and toluene or similar monoaromatic hydrocarbon components present. A more typical composition can comprise 90% or greater hydrogen, and 0.2% nitrogen, 1.0% CO, 1.1% CH4, 0.1% HCN, 0.1% C2H2, or thereabouts. The plasma gas can also comprise about 80% hydrogen and the remainder can comprise some mixture of the afore mentioned gases, polycyclic aromatic hydrocarbons, monoaromatic hydrocarbons, and other components.


The material of construction for the electrodes in this invention should have high thermal conductivity over 100 W/m-K (watts per meter kelvin) and electrical resistivity less than 10e-2 ohm-m (meter). Materials that fit this description include graphite and silicon carbide, although graphite is preferable. The material should be resistant to chemical erosion in highly reactive hydrogen free radical atmosphere.


The use of conical threads in joining electrodes reduces stress concentration and potential of electrode cracking can be employed. Preferable tapers comprise those with an about 1 in 3 angle can be used, although tapers down from about 1 in 2 to about 1 in 20 can also be used. To prevent the unscrewing of electrodes through vibration, a hole can be drilled through the threaded section and a pin can be inserted.


The ideal gap distance between concentric electrodes is about 4 millimeters to about 20 millimeters (mm) based on desired operating voltage, current, and electrode wear. Gap size may change operating voltage anywhere from about 500V up to about 1200V. A gap of about 8 millimeters to about 14 millimeters is the preferred gap size that provides for optimal arcing in this voltage range with minimal electrode wear, optimal thermal transfer, minimal undesired arcing, and minimal blow-out due to arc “lift-off” of the arc (loss of arc).


Additionally, the electrode length can be controlled in order to control heat distribution in the electrode. An increase in electrode length to reduce losses in water cooled holders. For instance, a preferable range for length for a 750 kW torch is between about 600 mm and about 1500 mm, wherein the 1500 mm electrode length will provide for the most gradual thermal distribution. It can be readily realized by those skilled in the art that the increased length will not only distribute heat, but also provide for more surface to allow radiative heat loss and convective heat loss from electrode to gas flowing in or around the annulus. This will, of course, be balanced against weight load requirements to gain optimal advantage of both heat management and electrode integrity (reduction of cracks, etc.)


Additional methods to control or optimize weight load vs. thermal stress is to make the concentric rings out of cylindrical electrodes with touching tips that allow for the passage of electricity through concentric tubes that still allow for an annulus between the anode and cathode. The electrodes in this type of embodiment could also be rectangular in nature with groove and tongue type connections to allow for electrical conductivity and weight load support.


To address thermal stress cracking in very large diameter hollow cylindrical electrodes, use of a barrel stave design where the sections are held together with features commonly employed in such a design which allows different sections to flex based on thermal gradient, or the use of a solid piece of material that has axial slots cut into it to relieve thermal stress. The axial slots can be referred to as the barrel stave design. In the barrel stave design, at least 5 staves or sections would be required to create the concentric ring or barrel. FIG. 4 shows a schematic representation of an electrode that has a substantially barrel stave design. FIG. 5 shows a schematic representation of axial slots or grooves cut into an electrode.


Another alternative would be the use of distinct pieces to simulate a cylinder, for example a ring of solid rods. This configuration also possesses advantages in material availability and ease of replacement.


Elongating the life of the electrodes is largely dependent on the ability to minimize the thermal effect of the electric arc on the electrodes, as well as adequate protection of the electrode surface against the erosive medium. This can partially be achieved by applying an electromagnetic field to reduce the effects of the arc spots by moving the arc spots rapidly over the electrode surface, whereby the mean thermal flux is reduced in density to the areas of contact between the electrodes and electric arc. The magnetic field is provided for through the use of an annular magnetic coil located outside of the electrodes. The field can also be provided for by the use of a permanent magnet as long as the field is oriented in such a way that the arc is rotated around the central axis of the torch which facilitates the rotation of the arc around said axis.


Additionally, the magnetic field will push the plasma outside of the confines of the immediate space between the two electrodes. This means that the erosive medium (superheated H2 and hydrogen radical) will be largely separated from the electrode itself. In one embodiment, the method includes the use of a rotating arc discharge created through the application of a magnetic field to the electrodes, as measured at the annulus at the tip of the torch, of about 20 millitesla (mT) to about 100 millitesla, measured in the axial direction, hereafter referred to as axial component. A value of about 30 millitesla to about 50 millitesla can typically be used. The typical radial component of the magnetic field can be between about 3 and about 15 mT.


One or more magnetic coils can be employed to tailor the shape of the field used to manipulate the behavior of the arc. For example, a coil design may produce a diverging magnetic field with a 6 mT radial component and a 40 mT axial component at the tip of the torch. It is not possible to change one of these without the other using one coil, however, through the utilization of several coils the arc can be tailored to a specific radial and axial component. This may further reduce the capital cost of the magnetic coil and optimize the shape of the magnetic field to maximize the life of the electrode.


As mentioned previously, the electrodes can be made up of upper and lower portions wherein the lower portion can be made to be replaced in an extremely rapid fashion with low cost graphite parts. The definition of consumable in this context means that more than 1 ton of carbon black but less than 100 tons of carbon black is produced per inch of axially oriented graphite erosion. Additionally, multiple consumable electrodes can be attached to the upper electrode e.g. 3 or 4 or more consumable electrodes that are removed or allowed to be consumed in place during carbon black production runs. This enables limited downtime of the torch and provides a sacrificial electrode that is both cheap and rapidly replaced.


Use of different gas flow paths to affect the cooling of electrodes and change the flow profile in the arc region are shown, for example, in FIG. 2. Gas can pass through the annulus (default flow path), through an inner path (201) consisting of hole(s) drilled into the center electrode, through the hollow path inside the inner electrode, or through an outer path (204) around the outer electrode (referred to as shield gas). In FIG. 2 this outer path is through a ring of holes in the upper electrode, but this flow entrance could also be an annular slot. The inner and outer flow paths help to cool the electrodes and transfer more heat to the gas. They also allow higher gas flow rates that might “blow out” the arc if directed entirely through the annulus. And the outer flow path acts as a shielding gas, helping to confine the plasma region and protect surrounding refractory. A typical flow split could be about 50% through the annulus and about 25% through each of the other two paths. Any combination of flow splits could be used to achieve different operating regimes and optimize for different goals (e.g. reducing wear, increasing operating voltage, etc.).


Of further interest is the utilization of mechanical means of establishing electrical contact between the electrodes and initiating an arc. This eliminates the need for a high voltage starter and associated equipment and safety risks. This may consist of a moving rod made from an electrically conductive material such as graphite or copper that would touch the electrodes simultaneously, allowing current to flow, before being withdrawn. The starter rod could be a plunger that comes in through the outer electrode and strikes the arc in the annulus or it could be a rotating arm that strikes the arc at the electrode tips.


As described herein, the reactor is separated into two sections or zones, a plasma zone and a reactor zone, with natural gas or other feedstock injection taking place in the area in-between. The throat is used not only to separate the two regions but to accelerate the plasma gas so that more intense mixing can take place in a smaller region. The throat is therefore defined as the narrowest section between the plasma zone and the reactor zone. The length of the throat can be several meters or as small as about 0.5 to about 2 millimeters. The narrowest point of the throat is defined as the most narrow diameter of the throat +20%. Any cross-section that is within about 10% of the most narrow cross-section is deemed to be within the scope of the throat.


Preferable injection points into the reactor are about 5 diameters upstream of the throat and about 5 diameters downstream of the throat. One diameter is defined as the diameter of the throat at the most narrow point of the throat. Optionally the injection can occur within about +/−2 diameters or about +/−1 diameter of the throat.


Acceptable hydrocarbon feedstock includes any chemical with formula CnHx or CnHxOy. For example simple hydrocarbons such as: methane, ethane, propane, butane, etc. can be used. Aromatic feedstock such as benzene, toluene, methyl naphthalene, pyrolysis fuel oil, coal tar, coal, heavy oil, oil, bio-oil, bio-diesel, other biologically derived hydrocarbons, or the like. Also, unsaturated hydrodcarbon feedstocks can also be used, such as: ethylene, acetylene, butadiene, styrene and the like. Oxygenated hydrocarbons such as; ethanol, methanol, propanol, phenol, and similar are also acceptable feedstocks. These examples are provided as non-limiting examples of acceptable hydrocarbon feedstocks which can further be combined and/or mixed with other acceptable components for manufacture. Hydrocarbon feedstock referred to herein, means that the majority of the feedstock is hydrocarbon in nature.


Thus, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims
  • 1. A plasma torch, comprising at least two cylindrical, graphite electrodes comprising an inner electrode nested within an outer electrode, wherein the inner electrode is coaxially aligned with the outer electrode, and wherein at least one of the electrodes comprises a barrel stave design comprising staves or sections that form a ring or barrel such that the at least one of the electrodes is configured to (i) provide relief of thermal stress or (ii) provide controlled thermal cracking.
  • 2. The plasma torch of claim 1, wherein the inner electrode is hollow.
  • 3. The plasma torch of claim 1, wherein the inner electrode is a solid cylinder.
  • 4. The plasma torch of claim 1, wherein a gap between the electrodes is not less than about 4 millimeters (mm) and not more than about 20 mm.
  • 5. The plasma torch of claim 1, wherein the electrodes are configured such that a gap distance between the electrodes, an electrode thickness of at least one of the electrodes, and/or a surface area of a tip of at least one of the electrodes remains constant during wear.
  • 6. The plasma torch of claim 1, further comprising at least one annulus between the electrodes adapted for a flow of plasma gas.
  • 7. The plasma torch of claim 1, further comprising an upper annulus and a lower annulus between the electrodes, wherein the upper annulus is wider than the lower annulus.
  • 8. The plasma torch of claim 1, further comprising a power supply configured to supply about 300 volts (V) to about 1500V operating voltage and an open circuit voltage up to about 4500V.
  • 9. The plasma torch of claim 1, wherein at least one of the electrodes has a tip, and wherein the plasma torch additionally comprises a magnetic field generating component configured to provide a magnetic field at the tip of the at least one electrode with an axial component of between about 10 millitesla (mT) and about 100 mT.
  • 10. The plasma torch of claim 1, wherein at least portions of the electrodes are replaceable.
  • 11. The plasma torch of claim 10, wherein each electrode of the electrodes comprises an upper electrode and a lower electrode section, wherein the lower electrode section is replaceable, and wherein multiple replaceable lower electrode sections are attached to the upper electrode section.
  • 12. The plasma torch of claim 1, wherein a surface area of a tip of the outer electrode is greater than 2:3 but less than 4:1 compared to a surface area of a tip of the inner electrode.
  • 13. The plasma torch of claim 1, further comprising an annulus disposed around the outer electrode of the electrodes for a flow of shield gas.
  • 14. The plasma torch of claim 1, further comprising at least one channel for flow of plasma gas through one or more of the following: an annulus disposed between the electrodes, a shield gas channel disposed around the outer electrode, a shower head in the inner electrode, a body of at least one hollow electrode of the electrodes, and a center of at least one hollow electrode of the electrodes.
  • 15. The plasma torch of claim 1, further comprising at least one magnet disposed outside of the electrodes configured to generate and tailor a magnetic field.
  • 16. A plasma reactor including the plasma torch of claim 1, wherein the plasma reactor comprises walls, and wherein the walls of the plasma reactor narrow after the plasma torch to form a throat and diverge after the throat.
  • 17. The plasma torch of claim 1, wherein the barrel stave design comprises at least 5 staves.
  • 18. The plasma torch of claim 17, wherein the at least 5 staves form the ring.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application No. 61/934,184 filed Jan. 31, 2014, the disclosures of which is expressly incorporated herein by reference.

US Referenced Citations (283)
Number Name Date Kind
1339225 Rose May 1920 A
1536612 Lewis May 1925 A
1597277 Jakowsky Aug 1926 A
2002003 Eisenhut et al. May 1935 A
2039312 Goldman May 1936 A
2062358 Frolich Dec 1936 A
2393106 Johnson et al. Jan 1946 A
2557143 Royster Jun 1951 A
2572851 Gardner et al. Oct 1951 A
2603669 Chappell Jul 1952 A
2603699 Chappel Jul 1952 A
2616842 Sheer et al. Nov 1952 A
2785964 Pollock Mar 1957 A
2850403 Day Sep 1958 A
2851403 Hale Sep 1958 A
2897071 Gilbert Jul 1959 A
2951143 Anderson et al. Aug 1960 A
3009783 Sheer et al. Nov 1961 A
3073769 Doukas Jan 1963 A
3127536 McLane Mar 1964 A
3253890 De et al. May 1966 A
3288696 Orbach Nov 1966 A
3307923 Ruble Mar 1967 A
3308164 Shepard Mar 1967 A
3309780 Goins Mar 1967 A
3331664 Jordan Jul 1967 A
3342554 Jordan et al. Sep 1967 A
3344051 Latham, Jr. Sep 1967 A
3408164 Johnson Oct 1968 A
3409403 Bjornson et al. Nov 1968 A
3420632 Ryan Jan 1969 A
3431074 Jordan Mar 1969 A
3453488 Cann et al. Jul 1969 A
3464793 Jordan et al. Sep 1969 A
3619138 Gunnell Nov 1971 A
3619140 Morgan et al. Nov 1971 A
3637974 Tajbl et al. Jan 1972 A
3673375 Camacho Jun 1972 A
3725103 Jordan et al. Apr 1973 A
3922335 Jordan et al. Nov 1975 A
3981654 Rood et al. Sep 1976 A
3981659 Myers Sep 1976 A
3984743 Horie Oct 1976 A
3998934 Vanderveen Dec 1976 A
4028072 Braun et al. Jun 1977 A
4035336 Jordan et al. Jul 1977 A
4057396 Matovich Nov 1977 A
4075160 Mills et al. Feb 1978 A
4088741 Takewell May 1978 A
4101639 Surovikin et al. Jul 1978 A
4138471 Lamond et al. Feb 1979 A
4199545 Matovich Apr 1980 A
4282199 Lamond et al. Aug 1981 A
4289949 Raaness et al. Sep 1981 A
4292291 Rothbuhr et al. Sep 1981 A
4317001 Silver et al. Feb 1982 A
4372937 Johnson Feb 1983 A
4404178 Johnson et al. Sep 1983 A
4431624 Casperson Feb 1984 A
4452771 Hunt Jun 1984 A
4472172 Sheer et al. Sep 1984 A
4543470 Santen et al. Sep 1985 A
4553981 Fuderer Nov 1985 A
4577461 Cann Mar 1986 A
4601887 Dorn et al. Jul 1986 A
4678888 Camacho et al. Jul 1987 A
4689199 Eckert et al. Aug 1987 A
4755371 Dickerson Jul 1988 A
4765964 Gravley et al. Aug 1988 A
4787320 Raaness et al. Nov 1988 A
4864096 Wolf et al. Sep 1989 A
4977305 Severance, Jr. Dec 1990 A
5039312 Hollis, Jr. et al. Aug 1991 A
5045667 Iceland et al. Sep 1991 A
5046145 Drouet Sep 1991 A
5105123 Ballou Apr 1992 A
5147998 Tsantrizos et al. Sep 1992 A
5206880 Olsson Apr 1993 A
5222448 Morgenthaler Jun 1993 A
5352289 Weaver et al. Oct 1994 A
5399957 Vierboom et al. Mar 1995 A
5427762 Steinberg et al. Jun 1995 A
5476826 Greenwald et al. Dec 1995 A
5481080 Lynum et al. Jan 1996 A
5486674 Lynum et al. Jan 1996 A
5500501 Lynum et al. Mar 1996 A
5527518 Lynum et al. Jun 1996 A
5593644 Norman et al. Jan 1997 A
5604424 Shuttleworth Feb 1997 A
5611947 Vavruska Mar 1997 A
5673285 Wittle et al. Sep 1997 A
5717293 Sellers Feb 1998 A
5725616 Lynum et al. Mar 1998 A
5749937 Detering et al. May 1998 A
5935293 Detering Aug 1999 A
5951960 Lynum et al. Sep 1999 A
5989512 Lynum et al. Nov 1999 A
5997837 Lynum et al. Dec 1999 A
6058133 Bowman May 2000 A
6068827 Lynum et al. May 2000 A
6099696 Schwob et al. Aug 2000 A
6188187 Harlan Feb 2001 B1
6197274 Mahmud et al. Mar 2001 B1
6277350 Gerspacher Aug 2001 B1
6358375 Schwob Mar 2002 B1
6380507 Childs Apr 2002 B1
6395197 Detering et al. May 2002 B1
6403697 Mitsunaga et al. Jun 2002 B1
6441084 Lee et al. Aug 2002 B1
6442950 Tung Sep 2002 B1
6444727 Yamada et al. Sep 2002 B1
6602920 Hall et al. Aug 2003 B2
6703580 Brunet et al. Mar 2004 B2
6773689 Lynum et al. Aug 2004 B1
6955707 Ezell et al. Oct 2005 B2
7167240 Stagg Jan 2007 B2
7294314 Graham Nov 2007 B2
7312415 Ohmi et al. Dec 2007 B2
7360309 Vaidyanathan et al. Apr 2008 B2
7431909 Rumpf et al. Oct 2008 B1
7452514 Fabry et al. Nov 2008 B2
7462343 Lynum et al. Dec 2008 B2
7563525 Ennis Jul 2009 B2
7582184 Tomita et al. Sep 2009 B2
7623340 Song et al. Nov 2009 B1
7635824 Miki et al. Dec 2009 B2
7655209 Rumpf et al. Feb 2010 B2
7777151 Kuo Aug 2010 B2
7847009 Wong et al. Dec 2010 B2
7968191 Hampden-Smith et al. Jun 2011 B2
8147765 Muradov et al. Apr 2012 B2
8221689 Boutot et al. Jul 2012 B2
8257452 Menzel Sep 2012 B2
8277739 Monsen et al. Oct 2012 B2
8323793 Hamby et al. Dec 2012 B2
8443741 Chapman et al. May 2013 B2
8471170 Li et al. Jun 2013 B2
8486364 Vanier et al. Jul 2013 B2
8501148 Belmont et al. Aug 2013 B2
8581147 Kooken et al. Nov 2013 B2
8710136 Yurovskaya et al. Apr 2014 B2
8771386 Licht et al. Jul 2014 B2
8784617 Novoselov et al. Jul 2014 B2
8850826 Ennis Oct 2014 B2
8871173 Nester et al. Oct 2014 B2
8911596 Vancina Dec 2014 B2
9095835 Skoptsov et al. Aug 2015 B2
9229396 Wu et al. Jan 2016 B1
9315735 Cole et al. Apr 2016 B2
9445488 Foret Sep 2016 B2
9574086 Johnson et al. Feb 2017 B2
9679750 Choi et al. Jun 2017 B2
10100200 Johnson et al. Oct 2018 B2
10138378 Hoermman et al. Nov 2018 B2
10370539 Johnson et al. Aug 2019 B2
10808097 Hardman et al. Oct 2020 B2
20010029888 Sindarrajan et al. Oct 2001 A1
20010039797 Cheng Nov 2001 A1
20020000085 Hall et al. Jan 2002 A1
20020050323 Moisan May 2002 A1
20020051903 Masuko et al. May 2002 A1
20020141476 Varela Oct 2002 A1
20020157559 Brunet et al. Oct 2002 A1
20030103858 Baran et al. Jun 2003 A1
20030152184 Shehane et al. Aug 2003 A1
20040047779 Denison Mar 2004 A1
20040071626 Smith et al. Apr 2004 A1
20040081609 Green et al. Apr 2004 A1
20040081862 Herman Apr 2004 A1
20040148860 Fletcher Aug 2004 A1
20040168904 Anazawa et al. Sep 2004 A1
20040211760 Delzenne et al. Oct 2004 A1
20040213728 Kopietz et al. Oct 2004 A1
20040216559 Kim et al. Nov 2004 A1
20040247509 Newby Dec 2004 A1
20050063892 Tandon et al. Mar 2005 A1
20050063893 Ayala et al. Mar 2005 A1
20050079119 Kawakami et al. Apr 2005 A1
20050230240 Dubrovsky et al. Oct 2005 A1
20060034748 Lewis et al. Feb 2006 A1
20060037244 Clawson Feb 2006 A1
20060068987 Bollepalli et al. Mar 2006 A1
20060107789 Deegan et al. May 2006 A1
20060155157 Zarrinpashne et al. Jul 2006 A1
20060226538 Kawata Oct 2006 A1
20060239890 Chang et al. Oct 2006 A1
20070140004 Marotta et al. Jun 2007 A1
20070183959 Charlier et al. Aug 2007 A1
20070270511 Melnichuk et al. Nov 2007 A1
20070293405 Zhang et al. Dec 2007 A1
20080041829 Blutke et al. Feb 2008 A1
20080121624 Belashchenko et al. May 2008 A1
20080159947 Yurovskaya et al. Jul 2008 A1
20080169183 Hertel et al. Jul 2008 A1
20080182298 Day Jul 2008 A1
20080226538 Rumpf et al. Sep 2008 A1
20080233402 Carlson et al. Sep 2008 A1
20080279749 Probst et al. Nov 2008 A1
20080292533 Belmont et al. Nov 2008 A1
20090014423 Li et al. Jan 2009 A1
20090035469 Sue et al. Feb 2009 A1
20090090282 Gold et al. Apr 2009 A1
20090142250 Fabry et al. Jun 2009 A1
20090155157 Stenger et al. Jun 2009 A1
20090173252 Nakata et al. Jul 2009 A1
20090208751 Green et al. Aug 2009 A1
20090230098 Salsich et al. Sep 2009 A1
20100147188 Mamak et al. Jun 2010 A1
20100249353 Macintosh et al. Sep 2010 A1
20110036014 Tsangaris et al. Feb 2011 A1
20110071692 D'Amato et al. Mar 2011 A1
20110071962 Lim Mar 2011 A1
20110076608 Bergemann et al. Mar 2011 A1
20110120137 Ennis May 2011 A1
20110138766 Elkady et al. Jun 2011 A1
20110155703 Winn Jun 2011 A1
20110180513 Luhrs et al. Jul 2011 A1
20110239542 Liu et al. Oct 2011 A1
20120018402 Carducci et al. Jan 2012 A1
20120025693 Wang et al. Feb 2012 A1
20120201266 Boulos et al. Aug 2012 A1
20120232173 Juranitch et al. Sep 2012 A1
20120292794 Prabhu et al. Nov 2012 A1
20130039841 Nester et al. Feb 2013 A1
20130062195 Samaranayake et al. Mar 2013 A1
20130062196 Sin Mar 2013 A1
20130092525 Li et al. Apr 2013 A1
20130105739 Bingue et al. May 2013 A1
20130194840 Huselstein et al. Aug 2013 A1
20130292363 Hwang et al. Nov 2013 A1
20130323614 Chapman et al. Dec 2013 A1
20130340651 Wampler et al. Dec 2013 A1
20140000488 Sekiyama et al. Jan 2014 A1
20140057166 Yokoyama et al. Feb 2014 A1
20140131324 Shipulski et al. May 2014 A1
20140151601 Hyde et al. Jun 2014 A1
20140166496 Lin et al. Jun 2014 A1
20140190179 Barker et al. Jul 2014 A1
20140224706 Do et al. Aug 2014 A1
20140227165 Hung et al. Aug 2014 A1
20140248442 Luizi et al. Sep 2014 A1
20140290532 Rodriguez et al. Oct 2014 A1
20140294716 Susekov et al. Oct 2014 A1
20140339478 Probst et al. Nov 2014 A1
20140345828 Ehmann et al. Nov 2014 A1
20140357092 Singh Dec 2014 A1
20140373752 Hassinen et al. Dec 2014 A2
20150004516 Kim et al. Jan 2015 A1
20150044105 Novoselov Feb 2015 A1
20150044516 Kyrlidis et al. Feb 2015 A1
20150056516 Hellring et al. Feb 2015 A1
20150064099 Nester et al. Mar 2015 A1
20150180346 Yuzurihara et al. Jun 2015 A1
20150210856 Johnson Jul 2015 A1
20150210857 Johnson et al. Jul 2015 A1
20150210858 Hoermann et al. Jul 2015 A1
20150211378 Johnson et al. Jul 2015 A1
20150217940 Si et al. Aug 2015 A1
20150218383 Johnson et al. Aug 2015 A1
20150223314 Hoermann et al. Aug 2015 A1
20150252168 Schuck et al. Sep 2015 A1
20160030856 Kaplan et al. Feb 2016 A1
20160210856 Assenbaum et al. Jul 2016 A1
20160243518 Spitzl Aug 2016 A1
20160293959 Blizanac et al. Oct 2016 A1
20170034898 Moss et al. Feb 2017 A1
20170037253 Hardman et al. Feb 2017 A1
20170058128 Johnson et al. Mar 2017 A1
20170066923 Hardman et al. Mar 2017 A1
20170073522 Hardman et al. Mar 2017 A1
20170349758 Johnson Dec 2017 A1
20180015438 Taylor et al. Jan 2018 A1
20180016441 Taylor et al. Jan 2018 A1
20180022925 Hardman et al. Jan 2018 A1
20190048200 Johnson et al. Feb 2019 A1
20190100658 Taylor et al. Apr 2019 A1
20190153234 Hoermann et al. May 2019 A1
20190338139 Hoermann et al. Nov 2019 A1
20200140691 Johnson et al. May 2020 A1
20200291237 Hardman et al. Sep 2020 A1
20210017025 Hardman Jan 2021 A1
20210017031 Hardman et al. Jan 2021 A1
20210020947 Hardman et al. Jan 2021 A1
Foreign Referenced Citations (136)
Number Date Country
2897071 Nov 1972 AU
830378 Dec 1969 CA
964 405 Mar 1975 CA
2 353 752 Jan 2003 CA
2 621 749 Aug 2009 CA
86104761 Feb 1987 CN
1059541 Mar 1992 CN
1076206 Sep 1993 CN
1077329 Oct 1993 CN
1078727 Nov 1993 CN
1086527 May 1994 CN
1196032 Oct 1998 CN
1398780 Feb 2003 CN
1458966 Nov 2003 CN
1644650 Jul 2005 CN
101092691 Dec 2007 CN
101193817 Jun 2008 CN
101198442 Jun 2008 CN
201087175 Jul 2008 CN
101368010 Feb 2009 CN
101657283 Feb 2010 CN
101734620 Jun 2010 CN
102007186 Apr 2011 CN
102060281 May 2011 CN
102108216 Jun 2011 CN
102186767 Sep 2011 CN
102350506 Feb 2012 CN
102612549 Jul 2012 CN
102666686 Sep 2012 CN
202610344 Dec 2012 CN
102869730 Jan 2013 CN
102993788 Mar 2013 CN
103108831 May 2013 CN
103160149 Jun 2013 CN
103391678 Nov 2013 CN
203269847 Nov 2013 CN
203415580 Jan 2014 CN
204301483 Apr 2015 CN
105070518 Nov 2015 CN
105073906 Nov 2015 CN
205472672 Aug 2016 CN
211457 Jul 1984 DE
198 07 224 Aug 1999 DE
200300389 Dec 2003 EA
0315442 May 1989 EP
0325689 Aug 1989 EP
0 616 600 Sep 1994 EP
0 635 044 Feb 1996 EP
0 635 043 Jun 1996 EP
0 861 300 Sep 1998 EP
0982378 Mar 2000 EP
1088854 Apr 2001 EP
1188801 Mar 2002 EP
3592810 Jan 2020 EP
1249094 Dec 1960 FR
2 891 434 Mar 2007 FR
2 937 029 Apr 2010 FR
395893 Jul 1933 GB
987498 Mar 1965 GB
1068519 May 1967 GB
1 400 266 Jul 1975 GB
1 492 346 Nov 1977 GB
2419883 May 2006 GB
S5021983 Jul 1975 JP
S5987800 May 1984 JP
H04228270 Aug 1992 JP
H06302527 Oct 1994 JP
6-322615 Nov 1994 JP
H07307165 Nov 1995 JP
H08319552 Dec 1996 JP
H09316645 Dec 1997 JP
H11123562 May 1999 JP
2001253974 Sep 2001 JP
2004-300334 Oct 2004 JP
2005-243410 Sep 2005 JP
2005235709 Sep 2005 JP
10-2008-105344 Dec 2008 KR
2014-0075261 Jun 2014 KR
2425795 Aug 2011 RU
2488984 Jul 2013 RU
200418933 Oct 2004 TW
WO-9204415 Mar 1992 WO
9312031 Jun 1993 WO
WO-9312633 Jun 1993 WO
9318094 Sep 1993 WO
9320153 Oct 1993 WO
WO-9320152 Oct 1993 WO
9323331 Nov 1993 WO
1994008747 Apr 1994 WO
9703133 Jan 1997 WO
WO-9813428 Apr 1998 WO
WO-0018682 Apr 2000 WO
WO-0224819 Mar 2002 WO
03014018 Feb 2003 WO
WO-2004083119 Sep 2004 WO
WO-2005054378 Jun 2005 WO
WO-2010040840 Apr 2010 WO
WO-2010059225 May 2010 WO
2012015313 Feb 2012 WO
2012067546 May 2012 WO
2012094743 Jul 2012 WO
2012149170 Nov 2012 WO
2013134093 Sep 2013 WO
2013184074 Dec 2013 WO
2013185219 Dec 2013 WO
2014000108 Jan 2014 WO
2014012169 Jan 2014 WO
WO-2014149455 Sep 2014 WO
2015049008 Apr 2015 WO
WO-2015051893 Apr 2015 WO
WO-2015093947 Jun 2015 WO
2015116797 Aug 2015 WO
2015116798 Aug 2015 WO
2015116800 Aug 2015 WO
2015116807 Aug 2015 WO
2015116811 Aug 2015 WO
2015116943 Aug 2015 WO
2016012367 Jan 2016 WO
2016126598 Aug 2016 WO
2016126599 Aug 2016 WO
2016126600 Aug 2016 WO
2016014641 Aug 2016 WO
2017019683 Feb 2017 WO
2017027385 Feb 2017 WO
2017034980 Mar 2017 WO
2017044594 Mar 2017 WO
2017048621 Mar 2017 WO
2017190015 Nov 2017 WO
2017190045 Nov 2017 WO
WO-2018165483 Sep 2018 WO
WO-2018195460 Oct 2018 WO
WO-2019046320 Mar 2019 WO
WO-2019046322 Mar 2019 WO
WO-2019046324 Mar 2019 WO
WO-2019084200 May 2019 WO
WO-2019195461 Oct 2019 WO
Non-Patent Literature Citations (201)
Entry
Search Report from P.C.T., dated Jun. 19, 2015.
Europe Office Action conducted in counterpart Europe Appln. No. 15 74 2910 (dated Jul. 18, 2017).
ISR and Written Opinion from PCT/US2015/013482, dated Jun. 17, 2015.
ISR and Written Opinion from PCT/US2015/013505, dated May 11, 2015.
ISR and Written Opinion from PCT/US2015/013794, dated Jun. 19, 2015.
Donnet, Basal and Wang, “Carbon Black”, New York: Marcel Dekker, 1993 pp. 46, 47 and 54.
Boehm, HP, “Some Aspects of Surface Chemistry of Carbon Blacks and Other Carbons”, Carbon 1994, p. 759.
“The Science and Technology of Rubber” (Mark, Erman, and Roland, Fourth Edition, Academic Press, 2013).
“Carbon Black Elastomer Interaction” Rubber Chemistry and Technology, 1991, pp. 19-39.
“The Impact of a Fullerene-Like Concept in Carbon Black Science”, Carbon, 2002, pp. 157-162.
ISR and Written Opinion from PCT/US2015/013510, dated Apr. 22, 2015.
ISR and Written Opinion from PCT/US2016/015939, dated Jun. 3, 2016.
ISR and Written Opinion from PCT/US2016/015941, dated Apr. 22, 2016.
ISR and Written Opinion from PCT/US2016/015942, dated Apr. 11, 2016.
ISR and Written Opinion from PCT/US2016/044039, dated Oct. 6, 2016.
ISR and Written Opinion from PCT/US2016/045793, dated Oct. 18, 2016.
ISR and Written Opinion from PCT/US2016/050728, dated Nov. 18, 2016.
ISR and Written Opinion from PCT/US2016/051261, dated Nov. 18, 2016.
ISR and Written Opinion from PCT/US2015/013484, dated Apr. 22, 2015.
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,476.
Final Office Action dated Jul. 11, 2016 in in U.S. Appl. No. 14/591,476.
Non-Final Office Action dated Mar. 16, 2016 in U.S. Appl. No. 14/591,541.
Final Office Action dated Jul. 14, 2016 in U.S. Appl. No. 14/591,541.
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,761.
Final Office Action dated Oct. 19, 2016 in U.S. Appl. No. 14/601,761.
Non-Final Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/601,793.
Final Office Action dated Aug. 3, 2016 in U.S. Appl. No. 14/601,793.
Notice of Allowance dated Oct. 7, 2016 in U.S. Appl. No. 14/601,793.
Non-Final Office Action dated Dec. 23, 2016 in U.S. Appl. No. 15/221,088.
AP 42, Fifth Edition, vol. I, Chapter 6: Organic Chemical Process Industry, Section 6.1: Carbon Black.
Fulcheri, et al. “Plasma processing: a step towards the production of new grades of carbon black.” Carbon 40.2 (2002): 169-176.
Grivei, et al. A clean process for carbon nanoparticles and hydrogen production from plasma hydrocarbon cracking. Publishable Report, European Commission JOULE III Programme, Project No. JOE3-CT97-0057, circa 2000.
Fabry, et al. “Carbon black processing by thermal plasma. Analysis of the particle formation mechanism.” Chemical Engineering Science 56.6 (2001): 2123-2132.
Pristavita, et al. “Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation.” Plasma Chemistry and Plasma Processing 31.6 (2011): 851-866.
Cho, et al. “Conversion of natural gas to hydrogen and carbon black by plasma and application of plasma black.” Symposia—American Chemical Society, Div. Fuel Chem. vol. 49. 2004.
Pristavita, et al. “Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology.” Plasma Chemistry and Plasma Processing 30.2 (2010): 267-279.
Pristavita, et al. “Volatile Compounds Present in Carbon Blacks Produced by Thermal Plasmas.” Plasma Chemistry and Plasma Processing 31.6 (2011): 839-850.
Garberg, et al. “A transmission electron microscope and electron diffraction study of carbon nanodisks.” Carbon 46.12 (2008): 1535-1543.
Knaapila, et al. “Directed assembly of carbon nanocones into wires with an epoxy coating in thin films by a combination of electric field alignment and subsequent pyrolysis.” Carbon 49.10 (2011): 3171-3178.
Krishnan, et al. “Graphitic cones and the nucleation of curved carbon surfaces.” Nature 388.6641 (1997): 451-454.
Høyer, et al. “Microelectromechanical strain and pressure sensors based on electric field aligned carbon cone and carbon black particles in a silicone elastomer matrix.” Journal of Applied Physics 112.9 (2012): 094324.
Naess, Stine Nalum, et al. “Carbon nanocones: wall structure and morphology.” Science and Technology of advanced materials (2016), 7 pages.
Fulcheri, et al. “From methane to hydrogen, carbon black and water.” International journal of hydrogen energy 20.3 (1995): 197-202.
ISR and Written Opinion from PCT/US2016/047769, dated Dec. 30, 2016.
D.L. Sun, F. Wang, R.Y. Hong, C.R. Xie, Preparation of carbon black via arc discharge plasma enhanced by thermal pyrolysis, Diamond & Related Materials (2015), doi: 10.1016/j.diamond.2015.11.004, 47 pages.
Non-Final Office Action dated Feb. 22, 2017 in U.S. Appl. No. 14/591,541.
Non-Final Office Action dated May 2, 2017 in U.S. Appl. No. 14/610,299.
Ex Parte Quayke Action dated May 19, 2017 in U.S. Appl. No. 14/601,761.
Extended European Search Report from EP Application No. 15 742 910.1 dated Jul. 18, 2017.
Search report in counterpart European Application No. 15 74 3214 dated Sep. 12, 2017.
ISR and Written Opinion from PCT/US2017/030139, dated Jul. 19, 2017.
ISR and Written Opinion from PCT/US2017/030179, dated Jul. 27, 2017.
A.I. Media et al., “Tinting Strength of Carbon Black,” Journal of Colloid and Interface Science, vol. 40, No. 2, Aug. 1972.
Reese, J. (2017). Resurgence in American manufacturing will be led by the rubber and tire industry. Rubber World. 255. 18-21 and 23.
Non-Final Office Action dated Feb. 27, 2017 in U.S. Appl. No. 14/591,476.
Extended European Search Report from EP Application No. 15743214.7 dated Jan. 16, 2018.
Chiesa P, Lozza G, Mazzocchi L. Using Hydrogen as Gas Turbine Fuel. ASME. J. Eng. Gas Turbines Power. 2005;127(1):73-80. doi:10.1115/1.1787513.
Tsujikawa, Y., and T. Sawada. “Analysis of a gas turbine and steam turbine combined cycle with liquefied hydrogen as fuel.” International Journal of Hydrogen Energy 7.6 (1982): 499-505.
Search report from RU2016135213, dated Feb. 12, 2018.
Non-Final Office Action dated Jan. 16, 2018 in U.S. Appl. No. 14/591,528.
Bakken, Jon Arne, et al. “Thermal plasma process development in Norway.” Pure and applied Chemistry 70.6 (1998): 1223-1228.
Polman, E. A., J. C. De Laat, and M. Crowther. “Reduction of CO2 emissions by adding hydrogen to natural gas.” IEA Green House Gas R&D programme (2003).
Verfondern, K., “Nuclear Energy for Hydrogen Production”, Schriften des Forschungzentrum Julich, vol. 58, 2007.
U.S. Environmental Protection Agency, “Guide to Industrial Assessments for Pollution Prevention and Energy Efficiency,” EPA 625/R-99/003, 1999.
Breeze, P. “Raising steam plant efficiency-Pushing the steam cycle boundaries.” PEI Magazine 20.4 (2012).
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,476.
Final Office Action dated Oct. 13, 2017 in U.S. Appl. No. 14/591,541.
Notice of Allowance dated Jan. 18, 2018 in U.S. Appl. No. 14/601,761.
Correced Notice of Allowance dated Feb. 9, 2018 in U.S. Appl. No. 14/601,761.
Final Office Action dated Sep. 19, 2017 in U.S. Appl. No. 15/221,088.
Non-Final Office Action dated Jan. 9, 2018 in U.S. Appl. No. 15/259.884.
Russian Official Notification of application No. 2016135213 from Russia dated Feb. 12, 2018.
Non-Final Office Action in U.S. Appl. No. 15/241,771, dated Jul. 6, 2018.
Extended European Search Report from EP Application No. 16747055.8, dated Jun. 27, 2018.
Extended European Search Report from EP Application No. 16747056.6, dated Jun. 27, 2018.
ISR and Written Opinion from PCT/US2018/028619, dated Aug. 9, 2018.
Non-Final Office Action in U.S. Appl. No. 15/221,088, dated Apr. 20, 2018.
ISR and Written Opinion from PCT/US2018/021627, dated May 31, 2018.
Wikipedia “Heating Element” Oct. 14, 2016. p. 1 para[0001]. Retrieved from https://en.wikipedia.org/w/index.php?title=Heating_element&oldid=744277540 on May 9, 2018.
Wikipedia “Joule Heating” Jan. 15, 2017. p. 1 para[0002]. Retrieved from https://en.wikipedia.org/w/index.php?title=Joule_heating&oldid=760136650 on May 9, 2018.
Reynolds “Electrode Resistance: How Important is Surface Area” Oct. 10, 2016. p. 3 para[0001]; Figure 3; Retrieved from http://electrofishing.net/2016/10/10/electrode-resistance-how-important-is-surface-area/ on May 8, 2018.
Non-Final Office Action in U.S. Appl. No. 15/262,539, dated Jun. 1, 2018.
Non-Final Office Action in U.S. Appl. No. 14/591,476, dated Jun. 7, 2018.
Notice of Allowance in U.S. Appl. No. 14/591,541, dated Jun. 7, 2018.
Non-Final Office Action in U.S. Appl. No. 15/410,283, dated Jun. 7, 2018.
Notice of Allowance in U.S. Appl. No. 14/601,761, dated Jun. 19, 2018.
Co-pending U.S. Appl. No. 16/892,199, inventors Moss; John Jared et al., filed Jun. 3, 2020.
Co-pending U.S. Appl. No. 17/021,197, inventors Hardman; Ned J. et al., filed Sep. 15, 2020.
Co-pending U.S. Appl. No. 17/031,484, inventors Johnson; Peter L. et al., filed Sep. 24, 2020.
Co-pending U.S. Appl. No. 17/062,075, inventors Cardinal; Christopher J.-P. et al., filed Oct. 2, 2020.
Co-pending U.S. Appl. No. 17/072,416, inventors Taylor; Roscoe W. et al., filed Oct. 16, 2020.
Database WPI, Week 200323, 2017 Clarivate Analytics. Thomson Scientific, London, GB; Database accession No. 2003-239603, XP002781693.
EP18764428.1 Extended European Search Report dated Jan. 11, 2021.
EP18788086.9 Extended European Search Report dated Jan. 11, 2021.
Invitation to Pay Additional Fees in PCT/US2018/028619 dated Jun. 18, 2018.
Invitation to Pay Additional Fees in PCT/US2018/048378 dated Oct. 26, 2018.
Invitation to Pay Additional Fees in PCT/US2018/048381 dated Oct. 9, 2018.
Invitation to Pay Additional Fees in PCT/US2018/057401 dated Dec. 19, 2018.
Separation of Flow. (2005). Aerospace, Mechanical & Mechatronic Engg. Retrieved Jul. 16, 2020, from http://www-mdp.eng.cam.ac.uk/web/library/enginfo/aerothermal_dvd_only/aero/fprops/introvisc/node9.html.
U.S. Appl. No. 14/591,528 Office Action dated Sep. 11, 2020.
U.S. Appl. No. 15/262,539 Notice of Allowance dated Jul. 23, 2020.
U.S. Appl. No. 15/262,539 Notice of Allowance dated Jun. 18, 2020.
U.S. Appl. No. 15/410,283 Office Action dated Jul. 31, 2020.
U.S. Appl. No. 15/548,352 Office Action dated Aug. 11, 2020.
U.S. Appl. No. 16/097,035 Office Action dated Oct. 30, 2020.
U.S. Appl. No. 16/097,039 Office Action dated Nov. 18, 2020.
U.S. Appl. No. 16/180,635 Office Action dated Dec. 15, 2020.
Biscoe, et al., An X-ray study of carbon black. Journal of Applied physics, 1942; 13: 364-371.
Co-pending US patent application No. U.S. Appl. No. 16/097,035, filed Oct. 26, 2018.
Co-pending US patent application No. U.S. Appl. No. 16/563,008, filed Sep. 6, 2019.
Co-pending US patent application No. U.S. Appl. No. 16/807,550, filed Mar. 3, 2020.
Co-pending US patent application No. U.S. Appl. No. 16/855,276, filed Apr. 22, 2020.
Donnet, et al., Observation of Plasma-Treated Carbon Black Surfaces by Scanning Tunnelling Microscopy. Carbon (1994) 32(2): 199-206.
EP16845031.0 Extended European Search Report dated Mar. 18, 2019.
EP16847102.7 Extended European Search Report dated Jul. 5, 2019.
EP17790549.4 Extended European Search Report dated Nov. 26, 2019.
EP17790570.0 Extended European Search Report dated Nov. 8, 2019.
Extended European Search Report for EP Application No. 16747057.4 dated Oct. 9, 2018.
Extended European Search Report for EP Application No. 16835697.0 dated Nov. 28, 2018.
Gago, et al., Growth mechanisms and structure of fullerene-like carbon-based thin films: superelastic materials for tribological applications. Trends in Fullerene Research, Published by Nova Science Publishers, Inc. (2007): 1-46.
Hernandez, et al. Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scripta Materialia 58 (2008) 69-72.
International Preliminary Report on Patentability for Application No. PCT/US2015/013482 dated Aug. 2, 2016.
International Preliminary Report on Patentability for Application No. PCT/US2015/013484 dated Aug. 2, 2016.
International Preliminary Report on Patentability for Application No. PCT/US2015/013487 dated Aug. 2, 2016.
International Preliminary Report on Patentability for Application No. PCT/US2015/013505 dated Aug. 2, 2016.
International Preliminary Report on Patentability for Application No. PCT/US2015/013510 dated Aug. 2, 2016.
International Preliminary Report on Patentability for Application No. PCT/US2017/030139 dated Oct. 30, 2018.
International Preliminary Report on Patentability for Application No. PCT/US2017/030179 dated Oct. 30, 2018.
International Search Report and Written Opinion for Application No. PCT/US2015/013487 dated Jun. 16, 2015.
International Search Report and Written Opinion for Application No. PCT/US2018/048374 dated Nov. 21, 2018.
International Search Report and Written Opinion for Application No. PCT/US2018/048378 dated Dec. 20, 2018.
International Search Report and Written Opinion for Application No. PCT/US2018/048381 dated Dec. 14, 2018.
International Search Report for Application No. PCT/US2015/13482 dated Jun. 17, 2015.
International Search Report for Application No. PCT/US2015/13487 dated Jun. 16, 2015.
Larouche, et al., Nitrogen Functionalization of Carbon Black in a Thermo-Convective Plasma Reactor. Plasma Chern Plasma Process (2011) 31: 635-647.
PCT/US2018/021627 International Search Report and Written Opinion dated May 31, 2018.
PCT/US2018/028619 International Search Report and Written Opinion dated Aug. 9, 2018.
PCT/US2018/048374 International Search Report and Written Opinion dated Nov. 21, 2018.
PCT/US2018/057401 International Search Report and Written Opinion dated Feb. 15, 2019.
PCT/US2018/064538 International Search Report and Written Opinion dated Feb. 19, 2019.
PCT/US2019/025632 International Search Report and Written Opinion dated Jun. 24, 2019.
U.S. Appl. No. 14/591,541 Notice of Allowance dated Sep. 17, 2018.
U.S. Appl. No. 14/591,528 Office Action dated Jan. 17, 2019.
U.S. Appl. No. 15/548,346 Office Action dated Oct. 22, 2019.
U.S. Appl. No. 15/548,348 Office Action dated Apr. 25, 2019.
U.S. Appl. No. 14/591,476 Notice of Allowance dated Mar. 20, 2019.
U.S. Appl. No. 14/591,528 Office Action dated Oct. 28, 2019.
U.S. Appl. No. 14/601,761 Notice of Allowance dated Feb. 9, 2018.
U.S. Appl. No. 14/601,761 Notice of Allowance dated Oct. 11, 2018.
U.S. Appl. No. 14/601,761 Notice of Allowance dated Sep. 17, 2018.
U.S. Appl. No. 15/221,088 Office Action dated Dec. 4, 2019.
U.S. Appl. No. 15/221,088 Office Action dated Mar. 7, 2019.
U.S. Appl. No. 15/229,608 Office Action dated Apr. 8, 2019.
U.S. Appl. No. 15/229,608 Office Action dated May 15, 2020.
U.S. Appl. No. 15/229,608 Office Action dated Oct. 25, 2019.
U.S. Appl. No. 15/241,771 Office Action dated Mar. 13, 2019.
U.S. Appl. No. 15/241,771 Office Action dated May 1, 2020.
U.S. Appl. No. 15/241,771 Office Action dated Sep. 25, 2019.
U.S. Appl. No. 15/259,884 Office Action dated Feb. 25, 2020.
U.S. Appl. No. 15/259,884 Office Action dated Jan. 9, 2018.
U.S. Appl. No. 15/259,884 Office Action dated May 31, 2019.
U.S. Appl. No. 15/259,884 Office Action dated Oct. 11, 2018.
U.S. Appl. No. 15/262,539 Office Action dated Jan. 4, 2019.
U.S. Appl. No. 15/262,539 Office Action dated Sep. 19, 2019.
U.S. Appl. No. 15/410,283 Office Action dated Jan. 16, 2020.
U.S. Appl. No. 15/410,283 Office Action dated Jun. 7, 2018.
U.S. Appl. No. 15/410,283 Office Action dated Mar. 12, 2019.
U.S. Appl. No. 15/548,346 Office Action dated May 4, 2020.
U.S. Appl. No. 15/548,348 Notice of Allowance dated Dec. 12, 2019.
U.S. Appl. No. 15/548,352 Office Action dated Jan. 31, 2020.
U.S. Appl. No. 15/548,352 Office Action dated May 9, 2019.
U.S. Appl. No. 15/548,352 Office Action dated Oct. 10, 2018.
U.S. Appl. No. 16/159,144 Office Action dated Mar. 26, 2020.
Co-pending U.S. Appl. No. 17/239,041, inventors Hardman Ned; J. et al., filed Apr. 23, 2021.
Co-pending U.S. Appl. No. 17/245,296, inventors Johnson Peter; L. et al., filed Apr. 30, 2021.
Co-pending U.S. Appl. No. 17/329,532, inventors Taylor Roscoe; W. et al., filed May 25, 2021.
Co-pending U.S. Appl. No. 17/412,913, filed Aug. 26, 2021.
Co-pending U.S. Appl. No. 17/473,106, inventors Taylor Roscoe; W. et al., filed Sep. 13, 2021.
Co-pending U.S. Appl. No. 17/487,982, filed Sep. 28, 2021.
Co-pending U.S. Appl. No. 17/498,693, inventors Johnson Peter; L. et al., filed Oct. 11, 2021.
EP18850029.2 Extended European Search Report dated Apr. 29, 2021.
EP18850502.8 Extended European Search Report dated Feb. 25, 2021.
Long C. M., et al., “Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions”, Environmental Pollution, 2013, 181, pp. 271-286. https://doi.Org/10.1016/j.envpol.2013.06.009.
U.S. Appl. No. 15/229,608 Office Action dated Feb. 1, 2021.
U.S. Appl. No. 15/259,884 Office Action dated Jun. 18, 2021.
U.S. Appl. No. 15/548,346 Office Action dated Jul. 16, 2021.
U.S. Appl. No. 15/548,352 Office Action dated Sep. 21, 2021.
U.S. Appl. No. 16/097,035 Office Action dated May 10, 2021.
U.S. Appl. No. 16/097,039 Notice of Allowance dated Jun. 14, 2021.
U.S. Appl. No. 16/180,635 Notice of Allowance dated Jul. 8, 2021.
U.S. Appl. No. 16/180,635 Notice of Allowance dated Jun. 29, 2021.
U.S. Appl. No. 16/445,727 Office Action dated Aug. 17, 2021.
U.S. Appl. No. 16/855,276 Office Action dated Apr. 5, 2021.
U.S. Appl. No. 16/855,276 Office Action dated Oct. 25, 2021.
What is Carbon Black, Orion Engineered Carbons, (Year: 2015).
Carmer, et al., Formation of silicon carbide particles behind shock waves. Appl. Phys. Lett. 54 (15), Apr. 10, 1989. 1430-1432.
EP19780959.3 Extended European Search Report dated Dec. 21,2021.
Frenklach, et al., Silicon carbide and the origin of interstellar carbon grains. Nature, vol. 339; May 18, 1989: 196-198.
Gomez-Pozuelo, et al., Hydrogen production by catalytic methane decomposition over rice husk derived silica. Fuel, Dec. 15, 2021; 306: 121697.
U.S. Appl. No. 15/241,771 Office Action dated Dec. 30, 2021.
U.S. Appl. No. 16/802,190 Office Action dated Jan. 31, 2022.
Related Publications (1)
Number Date Country
20150223314 A1 Aug 2015 US
Provisional Applications (1)
Number Date Country
61934184 Jan 2014 US