Claims
- 1. A swirl flow plasma arc torch comprising an elongated electrode having an open front end; a nozzle forming a plasma discharge opening which is coaxial with the electrode; a mounting arrangement for the electrode; the electrode, the nozzle and the mounting arrangement defining a swirl chamber between the electrode and the nozzle and an annulus concentrically surrounding the electrode and in fluid communication with the swirl chamber, the annulus terminating in a closed aft end which is spaced rearwardly from the front end of the electrode; and a plurality of plasma gas injection ports for directing a plurality of plasma gas flows into the annulus generally tangentially, all gas injection ports being located proximate the aft end of the annulus so that plasma gas from the ports spirally advances along the annulus and past the swirl chamber into the nozzle discharge opening, the annulus and the injection ports being positioned and dimensioned to prevent particulates entrained in plasma gas recirculating through the discharge opening towards the electrode and the annulus from reaching and abrading surfaces defining the annulus.
- 2. A plasma arc torch comprising an elongated electrode extending from a front end in an aft direction; a nozzle having a plasma discharge opening spaced from and coaxial with the electrode; a mounting arrangement forming an annulus in flow communication with the nozzle discharge opening and extending from about the front end of the electrode in the aft direction to a closed aft end of the annulus which is spaced from the front end of the electrode; and a plasma gas flow system operatively coupled with the mounting arrangement which generates a swirling plasma gas flow beginning at the closed aft end of the annulus and flowing out of the discharge opening, the plasma gas flow generating a pressure in the annulus proximate the aft end thereof which exceeds a pressure of the plasma gas flow at an end of the annulus proximate the forward end of the electrode and which is sufficient to substantially prevent plasma gas from recirculating into the annulus; the annulus having a length so that the gas flow spins at least about 5 times in the annulus before it arrives at the front end of the annulus.
- 3. A torch according to claim 2 wherein the mounting arrangement includes ports that lie in a single plane that is perpendicular to the annulus.
- 4. A torch according to claim 2 wherein the mounting arrangement comprises a ceramic ring surrounding the electrode, extending from the front end of the electrode in an aft direction, and defining a radially inner wall of the annulus.
- 5. A torch according to claim 2 wherein the mounting arrangement includes a gas ring concentrically surrounding and radially spaced from the electrode, extending from the front end of the electrode in an aft direction, defining a radially outer wall of the annulus, and including a plurality of spaced-apart passages which define gas injection ports.
- 6. A torch according to claim 5 wherein the gas ring is constructed of metal.
- 7. A torch according to claim 6 wherein the gas ring defines a radially outermost wall of the swirl chamber.
- 8. A torch according to claim 2 wherein the mounting arrangement includes a ceramic ring surrounding an outer surface of the electrode, extending from proximate the front end of the electrode in an aft direction and defining the aft end of the annulus; and a metallic gas ring operatively coupled with the ceramic ring, defining a radially outermost wall of the annulus, and forming injection ports proximate the aft end of the annulus for the gas flow.
- 9. A torch according to claim 8 wherein the gas ring and the ceramic ring terminate in an aft facing end face that is spaced apart from the closed aft end of the annulus, and including a plastic plate secured to the end face.
- 10. A torch according to claim 2 wherein the gas flow system comprises plasma gas injection ports located proximate the aft end of the annulus only.
- 11. A method of operating a plasma torch having an elongated electrode, a mounting arrangement forming an annulus which is concentric to the electrode and extends from a closed aft end of the annulus along the electrode to a front end of the electrode, and a nozzle operatively coupled with the mounting arrangement and the electrode and including a discharge opening which is concentric with the electrode, the method comprising the steps of generating an electric arc between the electrode and a workpiece spaced apart from the nozzle; supplying a plasma gas; spinning the entire plasma gas in and flowing it through the annulus, past the front end of the electrode, and out of the discharge opening of the nozzle so that the plasma gas surrounds the electric arc and, upon arrival of the plasma gas at the front end of the electrode, forms a substantially uniform, rotating mass of gas; and generating a pressure in the plasma gas flow proximate the closed aft end of the annulus which exceeds the pressure of the plasma gas at the front end of the electrode sufficiently to prevent a recirculation of plasma gas into the annulus and therewith prevent the migration of particulate matter into the annulus.
- 12. A method according to claim 11 wherein flowing the plasma gas comprises flowing the plasma gas from proximate the aft end of the annulus.
- 13. A method according to claim 12 including flowing the entire plasma gas through a plurality of injection ports in fluid communication with the annulus and located proximate the closed aft end of the annulus.
- 14. A method of operating a plasma torch having an elongated electrode, a mounting arrangement forming an annulus disposed about the electrode and extending from a front end of the electrode to a closed aft end of the annulus, and a nozzle operatively coupled with the mounting arrangement and the electrode and including a discharge opening, the method comprising flowing a plasma gas tangentially into the annulus proximate the closed aft end thereof so that the plasma gas spins in the annulus as it propagates from the aft end of the annulus towards the front end of the torch, retaining the gas in the annulus sufficiently long so that the gas spins in the annulus at least about 5 times before it reaches the front end of the electrode and a recirculation of gas and particulate matter entrained therein into the torch is prevented, thereafter flowing the gas out of the discharge opening of the nozzle, and striking an electric arc between the electrode and a workpiece spaced apart from the nozzle.
- 15. A method of operating a plasma torch having an elongated electrode, a mounting arrangement forming an annulus which is concentric to the electrode and extends from a front end of the electrode rearwardly to a closed aft end of the annulus, a nozzle operatively coupled with the mounting arrangement and the electrode and including a discharge opening, the method comprising flowing a plasma gas through at least one injection port into the annulus proximate the aft end thereof, providing the annulus with a sufficient length so that the gas flow forms a substantially uniform, rotating mass of gas when it arrives at the front end of the electrode, flowing plasma gas only through the discharge opening and out of the nozzle, and striking an arc between the electrode and a workpiece that is spaced apart from the nozzle, whereby particulate matter entrained in plasma gas recirculating through the discharge opening into the plasma torch is prevented from entering the annulus and abrading surfaces defining the annulus.
- 16. A method according to claim 15 wherein each of the annulus and the at least one gas injection port has a cross-sectional area, and dimensioning the annulus and the injection port so that the cross-sectional area of the annulus is at least about 15 times the cross-sectional area of the at least one injection port.
- 17. A method according to claim 16 wherein the cross-sectional area of the annulus is more than 20 times the cross-sectional area of the at least one injection port.
Parent Case Info
This application claims benefit of provisional application No. 60/167,211, filed Nov. 24, 1999.
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
3823302 |
Muehlberger |
Jul 1974 |
A |
4865252 |
Rotolico et al. |
Sep 1989 |
A |
5239162 |
Haun et al. |
Aug 1993 |
A |
5451740 |
Hanus et al. |
Sep 1995 |
A |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/167211 |
Nov 1999 |
US |