1. Field of the Invention
The present invention relates to a plasma tube array which includes an array of two or more light-emitting tubes incorporating fluorescent substance layers therein, produces discharge inside the two or more light-emitting tubes and causes the fluorescent substance layers inside the light-emitting tubes to emit light and thereby displays an image.
2. Description of the Related Art
As a large image display device which performs self light emission, there is a proposal on a technique (see Japanese Patent Laid-Open No. 61-103187) of displaying an image by using the principle of plasma display with an array of multiple light-emitting strings made up of glass tubes incorporating fluorescent substance layers therein and controlling light emission by parts of the respective light-emitting strings (see Japanese Patent Laid-Open No. 61-103187).
Each light-emitting string includes a protective film such as an MgO film and a fluorescent substance layer in the glass tube filled with a discharge gas composed of, for example, Ne and Xe. The fluorescent substance layer is formed on a supporting member, a mounted part, called a “boat”, which has a substantially semicircular cross-section and the supporting member (boat) is inserted into the glass tube. Then, the glass tube is heated in a vacuum chamber and the gas is exhausted, the tube is filled with a discharge gas and then both ends of the glass tube are sealed. Multiple light-emitting strings created in this way are arranged in parallel and fixed and the light-emitting strings are provided with electrodes and a voltage is applied to the electrodes to thereby provoke discharge in the light-emitting strings and cause the fluorescent substance to emit light.
The plasma tube array (PTA) 100 shown here has a structure in which light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . containing fluorescent substance layers which emit red (R), green (G), blue (B) fluorescence filled with a discharge gas are arranged in parallel and in a planar shape as a whole, and a transparent front supporting member 20 and a transparent back supporting member 30 are placed on the front and back of the light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . respectively and the array of multiple light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . are held between the front supporting member 20 and back supporting member 30.
On the front supporting member 20 are multiple display electrode pairs 21 each made up of two display electrodes 211, 212 arranged parallel to each other forming a discharge slit in between in the direction of the array of the multiple light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . that is, the direction in which the display electrodes extend across the multiple light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . . These display electrode pairs 21 are arranged in two or more rows in the longitudinal direction of the light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . forming a non-discharge slit between the neighboring display electrode pairs 21. Furthermore, the two display electrodes 211, 212 making up one display electrode pair 21 consist of metallic (e.g., Cr/Cu/Cr) bus electrodes 211a, 212a on the mutually far sides (non-discharge slit sides) and transparent electrodes 211b, 212b each made up of an ITO thin film on the mutually near sides (discharge slit sides). The bus electrodes 211a, 212a are intended to reduce the electric resistance of the display electrodes 211, 212 and the transparent electrodes 211b, 212b are designed so as to allow light emitted from the light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . to pass through up to the front supporting member 20 side without being intercepted and thereby realize brighter display.
Furthermore, on the back supporting member 30 are multiple metallic signal electrodes 31 which are associated with and extend parallel to the multiple light-emitting strings 10R, 10G, 10B, 10R, 10G, 10B, . . . respectively.
When the PTA 100 having such a structure is viewed two-dimensionally, the intersections between the signal electrodes 31 and display electrode pairs 21 become unit light-emitting regions (unit discharge regions). Display is realized by using either one of the display electrode 211, 212 as a scanning electrode, producing a selective discharge at the intersection between the scanning electrode and signal electrode 31 to select a light-emitting region, using wall charge formed on the inner surface of the light-emitting string of the region accompanying the discharge and thereby generating a display discharge between the display electrodes 211, 212. A selective discharge is an opposed discharge produced in the light-emitting string between the opposed scanning electrode and signal electrode 31 in vertical direction, while a display discharge is a planar discharge produced in the light-emitting string between the display electrodes 211, 212 arranged in parallel on a plane. Such an electrode arrangement causes two or more light-emitting regions to be formed inside the light-emitting string in the longitudinal direction.
Here, three light-emitting strings 10R, 10G, 10B are shown. Each of the light-emitting strings 10R, 10G, 10B has a structure in which a protective film 12 of MgO, etc., is formed on the inner surface of a glass tube 11 and a boat 13 which is a supporting member on which fluorescent substance layer 14R, 14G, 14B emitting R, G, B fluorescence is formed is inserted in the glass tube 11 (see Japanese Patent Laid-Open No. 2003-86141).
The boat 13 has a semicircular or U-figured cross-section or the like and has an elongated shape as with the glass tube 11 (see
Returning to
Each of the light-emitting strings 10R, 10G, 10B shown in
Here, in the case of the structure shown in
In the PTA having the basic structure described above, instead of arranging light-emitting strings two-dimensionally, it is also possible to form a curved image display plane by arranging the light-emitting strings along a curve (see Japanese Patent Laid-Open No. 2003-92085) or make the image display plane flexibly modifiable into various types of curved surfaces.
In such a case, a flexible substrate, for example, PET (polyethylene terephthalate) substrate is used as the front supporting member 20 and back supporting member 30 and the display electrodes 211, 212 formed on the front supporting member 20 are also required to have a structure resistant to bending. In this case, when the display electrodes 211, 212 combining the metallic bus electrodes 211a, 212a and transparent electrodes 211b, 212b each made up of an ITO thin film as explained with reference to
The figure shows a display electrode pair 21 made up of two display electrodes 211, 212 with a discharge slit 210 formed in between and the respective display electrodes 211, 212 are made up of bus electrodes 211a, 212a which are also provided for the display electrodes shown in
When the display electrodes 211, 212 having the structure shown in
Light emitted from this fluorescent substance passes through the discharge slit 210 or the openings 621, 622 of the branched electrodes 211c, 212c and appears as an image when the entire display surface is viewed.
The problem to be solved when using the display electrodes having a structure with wiring of metal thin wires as illustrated in
Wiring relatively wide (or thick) metal thin wires or wiring metal thin wires relatively densely can reduce the electric resistance of the display electrodes but this causes the ratio of the area of the openings 621, 622 to the total area of the branched electrodes 211c, 212c (hereinafter referred to as “opening ratio”) to decrease, which causes the light emitted form the fluorescent substance to be shielded, reducing the transmission coefficient and resulting in a dark image.
On the contrary, using thinner metal thin wires and using more coarse wiring of metal thin wires will increase the opening ratio and improve the transmission coefficient accordingly, but the electric resistance of the display electrodes 211, 212 is also increased, which requires a higher drive voltage to be applied to the display electrodes to obtain necessary light-emission intensity, etc., leading to deterioration of the discharge characteristic.
The present invention has been made in view of the above circumstances and provides a plasma tube array including display electrodes adopting more flexible wiring of metal thin wires and having an electrode structure which makes both a discharge characteristic and a high opening ratio compatible at a high level.
A plasma tube array according to the present invention includes:
In the plasma tube array according to the present invention, preferably, at least one of the display electrodes constituting the display electrode pair has a metal wire facing the discharge slit and extending along the discharge slit, the metal wire being larger in width than other metal wires.
In the plasma tube array according to the present invention, preferably, at least one of the display electrodes constituting the display electrode pair has a plurality of metal wires extending in a direction orthogonal to the light-emitting tubes, and the metal wires are substantially parallel to the other of the display electrodes constituting the pair.
In the plasma tube array according to the present invention, preferably, among the metal wires, a metal wire having the largest width is twice in width than a metal wire having the smallest width.
In the plasma tube array according to the present invention, preferably, at least one of the display electrodes constituting the display electrode pair has a first region facing the discharge slit, the first region having a smaller opening ratio than a second region disposed closer to the non-discharge slit than the first region.
In the plasma tube array according to the present invention, preferably, the opening ratio of the first region is 50% or less.
In the plasma tube array according to the present invention, preferably, at least one of the display electrodes constituting the display electrode pair has a plurality of metal wires extending in a direction orthogonal to the light-emitting tubes and forming openings.
In the plasma tube array according to the present invention, preferably, at least one of the display electrodes constituting the display electrode pair has a metal wire facing the non-discharge slit and extending along the non-discharge slit, the metal wire being larger in width than other metal wires.
In the plasma tube array according to the present invention, preferably, at least one of the display electrodes constituting the display electrode pair includes an opening adjacent to the non-discharge slit, which is open to the non-discharge slit.
In the plasma tube array according to the present invention, preferably, the display electrodes constituting the display electrode pair excluding extension lines thereof are shaped symmetrically.
According to the present invention, it is possible to provide a plasma tube array including display electrodes having an electrode structure which makes both a discharge characteristic and a high opening ratio compatible at a high level, capable of forming a curved image display screen and bending the image display screen flexibly.
FIGS. 9(A) and 9(B) illustrate display electrodes of a plasma tube array according to a fourth embodiment of the present invention;
Embodiments of the present invention will be described below.
Various embodiments which will be described below differ from the conventional techniques explained so far only in the electrode structure of the display electrode, and therefore the overall structure in the respective embodiments will be explained with reference to the explanations given so far and the electrode structure of the display electrode specific to the respective embodiments will be mainly described here.
This figure shows a display electrode pair 21 made up of two display electrodes 211, 212 between which a discharge slit 210 is formed and the respective display electrodes 211, 212 are constructed of bus electrodes 211a, 212a and branched electrodes 211c, 212c made up of mesh-like metal thin wires 611, 612 as in the case of the conventional example shown in
What has been explained so far about the display electrodes shown in
As shown in this
An experiment is conducted here by creating the display electrodes 211, 212 using a wire width W of 12 μm and 20 μm as metal thin wires 611a, 612a facing the discharge slit 210 and extending along the discharge slit 210. The wire width of metal thin wires 611b, 612b other than the metal thin wires 611a, 612a facing the discharge slit 210 out of the metal thin wires 611, 612 making up the branched electrodes 211c, 212c is 5 μm.
This
Here, the voltage at which at least one of pixels originally controlled so as not to emit light discharges (emits light) when the voltage applied to the display electrodes 211, 212 is increased gradually from a sufficiently low voltage is the first ON voltage B and the voltage at which all pixels including even pixels originally controlled so as not to emit light discharge (emit light) is the last ON voltage A. Furthermore, the voltage at which at least one of pixels which should originally emit light stops emitting light when the voltage is increased gradually from a state in which all pixels originally controlled so as to emit light are discharging (emitting light) is the first OFF voltage C and the voltage at which all pixels which should originally emit light stop emitting light when the voltage is further decreased is the last OFF voltage D.
Therefore, it is necessary to drive the display electrodes at a voltage not higher than the first ON voltage B and not lower than the first OFF voltage C (region with hatching in
In the case of the display electrodes 211, 212 shown in
As shown in this
This
The branched electrodes 211c, 212c in this
As shown in this
FIGS. 9(A) and 9(B) illustrate display electrodes of a plasma tube array according to a fourth embodiment of the present invention. FIGS. 9(A) and 9(B) show three light-emitting strings 10 respectively.
In these FIGS. 9(A) and 9(B), the same components as those of the display electrodes of the third embodiment shown in
FIGS. 9(A) and 9(B) as well as
The branched electrodes 211c, 212c in FIGS. 9(A) and 9(B) are formed of metal thin wires wired parallel to the discharge slit 210 and metal thin wires wired diagonal to the discharge slit 210 and rhombic openings 621, 622 are formed between their metal thin wires 611, 612. As with
Here,. in the case of the electrode structure shown in
As is evident from this
As shown in
In order to obtain the same brightness of light emission, the graph A when only the coverage rate in the vicinity of the discharge slit 210 is increased requires a lower drive voltage than the graph B when the coverage rate is uniform, and therefore the graph A can obtain higher brightness of light emission when driven at the same drive voltage.
Thus, as shown in
In this
Furthermore, the branched electrodes 211c, 212c are formed of metal thin wires 611, 612 of the same wire width extending vertically and horizontally and rectangular openings 621, 622 are formed between the metal thin wires 611, 612. However, the sides farthest from the discharge slit 210, that is, openings 621a, 622a adjacent to the non-discharge slit have no metal thin wire which would partition the neighboring non-discharge slit and are open to the non-discharge slit.
In the case of the display electrodes having the electrode structure shown in this
The figure shows a display electrode pair 21 made up of two display electrodes 211, 212 between which a discharge slit 210 is interposed and the respective display electrodes 211, 212 are constructed of bus electrodes 211a, 212a and branched electrodes 211c, 212c made up of mesh-like metal thin wires 611, 612. Multiple openings 621, 622 enclosed by the metal thin wires 611, 612 are formed over the entire surfaces of the branched electrodes 211c, 212c.
Here, the display electrodes 211, 212 shown in this
Number | Date | Country | Kind |
---|---|---|---|
2005-131487 | Apr 2005 | JP | national |