1. Field
The present application generally relates to plastic containers, particularly to plastic containers designed to hold liquids while resisting deformation.
2. Description of the Related Art
Plastic containers have been used as a replacement for glass or metal containers in the packaging of beverages for several decades. The most common plastic used in making beverage containers today is polyethylene terephthalate (PET). Containers made of PET are transparent, thin-walled, and have the ability to maintain their shape by withstanding the force exerted on the walls of the container by their contents. PET resins are also reasonably priced and easy to process. PET bottles are generally made by a process that includes the blow-molding of plastic preforms which have been made by injection molding of the PET resin.
Advantages of plastic packaging include lighter weight and decreased breakage as compared to glass, and lower costs overall when taking both production and transportation into account. Although plastic packaging is lighter in weight than glass, there is still great interest in creating the lightest possible plastic packaging so as to maximize the cost savings in both transportation and manufacturing by making and using containers that contain less plastic, while still exhibiting good mechanical properties.
The bottling industry is moving in the direction of removing auxiliary packaging from cases or pallets. A case of bottles with film only and no paperboard is called a “film only conversion” or “lightweighting” of auxiliary packaging. The removal of supporting elements such as paperboard places additional stress on a bottle, which increases the structural demands on the bottle. In certain embodiments, a bottle design can provide one or more of the benefits of reducing bending and point loading failures. The disclosed design embodiments can alleviate the stresses during shipping and handling (including film only packaging) while maintaining ease of blow molding. In certain embodiments, a bottle design uses less resin for the same or similar mechanical performance, resulting in a lightweight product.
Embodiments of the bottle disclosed herein may use polyethylene terephthalate (PET), which has viscoelastic properties of creep and relaxation. As a plastic, PET and other resins tend to relax at temperatures normally seen during use. This relaxation is a time dependent stress relieving response to strain. Bending can provide exaggerated strains over what would be seen in tensile loading. Due to exaggerated strains, the relaxation in bending can be much more severe. Bending happens at multiple length scales. Bending can happen at the length scale of the bottle or on a small length scale. An example of the bottle length scale bending is a person bending the bottle in his/her hands, or bending experienced during packing in a case on a pallet. An example of the small scale is the flexing or folding of ribs or other small features on the wall of the bottle. In response to loads at the first, larger length scale, ribs flex at the local, smaller length scale. When they are held in this position with time, the ribs will permanently deform through relaxation.
Further, embodiments of the bottles disclosed herein may undergo pressurization. Pressure inside a bottle can be due to the bottle containing a carbonated beverage. Pressure inside a bottle can be due to pressurization procedures or processes performed during bottling and packaging. For example, a bottle can be pressurized to help the bottle retain its shape. As another example, the bottle can be pressurized with certain gases to help preserve a beverage contained in the bottle.
Embodiments of the bottles disclosed herein have varying depth ribs that achieve a balance of strength and rigidity to resist the bending described above while maintaining hoop strength. Varying depth ribs can smoothly transition around the circumference of the bottle from a flattened and/or shallow depth rib portion to a deep rib portion. A collection of flattened and/or shallow depth ribs act as recessed columns in the body of the bottle that distribute bending and top load forces along the wall to resist leaning and crumbling. The collection of flattened and/or shallow depth ribs can help the bottle retain its shape during pressurization, such as, for example, help inhibit stretching of the bottle when pressurized. Inhibiting stretching of the bottle helps retain desired bottle shape to aid in packaging of the bottles as discussed herein by, for example, maintaining a substantially constant height of the bottle. Inhibiting stretching of the bottle can help with applying a label to a label portion of the bottle. For example, with a label applied to a bottle, inhibiting stretching of the bottle helps retain a constant length or height of the bottle at the label panel portion, which can help prevent tearing of the label and/or prevent the label from at least partially separating from the bottle (i.e., failure of the adhesive between the bottle and the label).
The deep rib portions provide hoop strength and make the bottle body more rigid and/or stiffer when gripped by a user. A balance may be achieved between flattened and/or shallow ribs and deep ribs to attain a desired resistance to bending, leaning, and/or stretching while maintaining stiffness in a lightweight bottle. In some embodiments, at least some of the aforementioned desired qualities may be further achieved through a steeper bell portion of a bottle. A steeper bell portion can increase top load performance in a lightweight bell. A lightweight bottle body and bell leaves more resin for a thicker base of the bottle, which can increase stability. A thicker base may better resist bending and top load forces and benefits designs with a larger base diameter with respect to the bottle diameter for tolerance even when the base is damaged during packaging, shipping, and/or handling.
Containers disclosed herein comprise a base. The container can further comprise a grip portion connected to the base through a constant depth base rib and defining a grip portion perimeter that is substantially perpendicular to a central axis. The container can further comprise a label panel portion connected to the grip portion and defining a label portion perimeter that is substantially perpendicular to the central axis. The container can further comprise a bell with an obtuse angle as measured from the central axis to a wall of the bell of at least 120 degrees, the bell connected to the label panel portion through a shoulder and leading upward and radially inward to a finish connected to the bell, the finish adapted to receive a closure. The container can further comprise a plurality of angulating and varying depth ribs positioned substantially along the perimeter of the grip portion wherein each angulating and varying depth rib comprises a plurality of shallow sections, a plurality of middle sections, and a plurality of deep sections. The container can further comprise a plurality of constant depth ribs positioned substantially along the perimeter of the label portion. The shallow sections have a rib depth less than a rib depth of the middle sections. The deep sections have a rib depth greater than the rib depth of the middle sections. The shallow sections of the varying depth ribs can substantially vertically line up along the central axis and form recessed columns. The recessed columns are configured to resist at least one of bending, leaning, crumbling, or stretching. The plurality of deep sections is configured to provide hoop strength.
Containers disclosed herein comprise a base. The container can further comprise a grip portion connected to the base through a constant depth base rib and defining a grip portion perimeter that is substantially perpendicular to a central axis. The container can further comprise a label panel portion connected to the grip portion and defining a label portion perimeter that is substantially perpendicular to the central axis. The container can further comprise a bell with an obtuse angle as measured from the central axis to a wall of the bell of at least 120 degrees, the bell connected to the label panel portion through a shoulder and leading upward and radially inward to a finish connected to the bell, the finish adapted to receive a closure. The container can further comprise a plurality of angulating and varying depth ribs positioned substantially along the perimeter of the grip portion wherein each angulating and varying depth rib comprises a plurality of shallow sections, a plurality of middle sections, and a plurality of deep sections. The container can further comprise a plurality of varying depth ribs positioned substantially along the perimeter of the label portion wherein each varying depth rib comprises a plurality of shallow sections, a plurality of middle sections, and a plurality of deep sections. The shallow sections of the angulating and varying depth ribs have a rib depth less than a rib depth of the middle sections of the angulating and varying depth ribs. The deep sections of the angulating and varying depth ribs have a rib depth greater than the rib depth of the middle sections of the angulating and varying depth ribs. The shallow sections of the varying depth ribs have a rib depth less than a rib depth of the middle sections of the varying depth ribs. The deep sections of the varying depth ribs have a rib depth greater than the rib depth of the middle sections of the varying depth ribs. The shallow sections of the angulating and varying depth ribs can substantially vertically line up along the central axis and form a first plurality of recessed columns. The shallow sections of the varying depth ribs can substantially vertically line up along the central axis and form a second plurality of recessed columns. The first and second pluralities of recessed columns are configured to resist at least one of bending, leaning, crumbling, or stretching. The plurality of deep sections is configured to provide hoop strength.
In some embodiments, the first plurality of recessed columns substantially vertically lines up along the central axis with the second plurality of recessed columns, and/or the varying depth ribs of the label portion angulate.
Containers disclosed herein comprise a base. The container further comprises a sidewall connected to the base, the sidewall defining a sidewall perimeter that is substantially perpendicular to a central axis and extending substantially along the central axis to define at least part of an interior of the container. The container can further comprise a bell connected to the sidewall and leading upward and radially inward to a finish connected to the bell, the finish adapted to receive a closure. The container further comprises a varying depth rib positioned substantially along the sidewall perimeter. The varying depth rib comprises a shallow section, a middle section, and a deep section. The shallow section has a rib depth less than a rib depth the middle section. The deep section has a rib depth greater than the rib depth of the middle section. The shallow section of the rib is configured to resist at least one of bending, leaning, crumbling, or stretching. The deep section is configured to provide hoop strength.
In some embodiments, the varying depth rib transitions from the shallow section to the middle section to the deep section as at least one of a gradual transition or an abrupt transition; the varying depth rib has a shape of at least one of trapezoidal, triangular, rounded, squared, oval, or hemispherical; the varying depth rib angulates around the sidewall perimeter; the varying depth rib has a plurality of shallow sections, a plurality of middle sections, and a plurality of deep sections; the contain further comprises a plurality of varying depth ribs wherein at least two shallow sections substantially vertically line up along the central axis and form a recessed column whereby the recessed column is configured to resist at least one of bending, leaning, crumbling, or stretching; the plurality varying depth ribs have a plurality of shallow sections, a plurality of middle sections, and a plurality of deep sections; the container further comprises a rib of a constant depth; and/or the bell has an obtuse angle as measured from the central axis to a wall of the bell of at least 120 degrees.
The foregoing is a summary and thus contains, by necessity, simplifications, generalization, and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the teachings set forth herein. The summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of any subject matter described herein.
The foregoing and other features of the present disclosure will become more fully apparent from the following description, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only some embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description and drawings are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the FIGURES, may be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
In particular, disclosed herein are articles, including preforms and containers, which utilize less plastic in their construction while maintaining the ease of processing and excellent structural properties associated with current commercial designs.
Referring to
Referring to
A substantially vertical wall comprising the grip portion 8 and label portion 10 between the base 24 and bell 16, extending substantially along the central axis 25 to define at least part of the interior of the bottle 1, can be considered a sidewall of the bottle 1. The perimeter of the sidewall is substantially perpendicular to the central axis 25 of the interior. The sidewall defines at least part of the interior of the bottle 1. The finish 12, the neck 14, the bell 16, the shoulder 18, the label portion 10, the grip portion 8, and the base 24 can each define a respective perimeter (substantially perpendicular to the central axis 25) corresponding to that portion. For example, the label portion 10 has a label portion perimeter. As another example, the grip portion 8 has a grip portion perimeter.
As illustrated in
The number of ribs, including base ribs 22, grip portion ribs 3, and/or label panel ribs 20, 20b, may vary from 1 to 30 ribs every 10 centimeters of any rib containing portion of the bottle, such as, but not limited to the grip portion 8 and/or label panel portion 10, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 ribs every 10 centimeters, including ranges bordered and including the foregoing values. The aforementioned 10 centimeter section that is used to measure the number of ribs need not be actually 10 centimeters in length. Rather, 10 centimeters is used illustratively to provide a ratio for the number of ribs. Further, while in certain embodiments, the illustrated cross-section of the ribs, including base ribs 22, grip portion ribs 3, and/or label panel ribs 20, 20b, are trapezoidal or triangular-shaped, as will be discussed in further detail below, the ribs may have any shape known in the art, including but not limited to, rounded, squared, oval, hemispherical, and the like. The bottom portion of the bottle includes the base 24, which may be of any suitable design, including those known in the art and that illustrated.
In the embodiment illustrated in
In the embodiment illustrated in
Referring to
In the illustrated embodiments with three lined-up flattened and/or shallow rib 6 portions of
Referring to
In the illustrated embodiments with three lined-up flattened and/or shallow rib 6b portions of
In some embodiments, the flattened and/or shallow ribs 6b of the label panel ribs 20B are vertically misaligned with the flattened and/or shallow ribs 6 of the grip portion ribs 3 such that the label portion 10 has a set of recessed columns and the grip portion 8 has another set of recessed columns. Thus, the recessed column of the label portion 10 can be vertically misaligned from the recessed columns of the grip portion 8.
As illustrated in
As illustrated in
In some embodiments, grip portion ribs 3 are any combination of constant depth ribs and varying depth ribs described above. For instance, the constant versus varying depth rib may vary to be every other grip portion rib 3, or every 2, 3, 4, 5 or 6 grip portion rib 3, including ranges bordered and including the foregoing values. A constant depth rib is illustrated by a label panel rib 20 or base rib 22 of the bottle 1 in
Referring to a cross-section of a deep rib 2 embodiment illustrated in
The embodiment of
Referring to a cross-section of a middle rib 4 embodiment illustrated in
The embodiment of
Referring to a cross-section of a flattened and/or shallow rib 6 embodiment illustrated in
The embodiment of
Referring to an embodiment of a label panel rib 20 cross-section illustrated in
The embodiment of
As illustrated in
Referring to a cross-section of a flattened and/or shallow rib 6b embodiment illustrated in
The depth Ds as measured from the land 328 to the inner radius 534 may vary from 0 to 2.5 millimeters, including 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, or 2.4 millimeters, including ranges bordered and including the foregoing values. The ratio of Dd of the deep ribs 2 (
The length of the root wall 536 may vary from 0.3 to 4 millimeters, including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, or 3.9 millimeters, including ranges bordered and including the foregoing values. The ratio of Ds to the length of the root wall 536 may vary from 1:40 to 10:1, including 1:39, 1:38, 1:37, 1:36, 1:35, 1:34, 1:33, 1:32, 1:31, 1:30, 1:29, 1:28, 1:27, 1:26, 1:25, 1:24, 1:23, 1:22, 1:21, 1:20, 1:19, 1:18, 1:17, 1:16, 1:15, 1:14, 1:13, 1:12, 1:11, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, or 9:1, including ranges bordered and including the foregoing values, including where Ds is zero, resulting in an infinite ratio. The ratio of Dm of the middle ribs 4, 4b to the Ds of the flattened and/or shallow ribs 6b may vary from 1:1 to 50:1, including 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1, 21:1, 22:1, 23:1, or 24:1 or 1:1 to 40:1, 1:1 to 30:1, or 1:1 to 20:1, including ranges bordered and including the foregoing values, including where Ds is zero, resulting in an infinite ratio. The acute angle between the two connecting walls 532 may vary from 50 to 80 degrees, including 52.5, 55, 57.5, 60, 62.5, 63.56, 65, 67.5, 70, 72.5, 75, or 77.5 degrees, including ranges bordered and including the foregoing values.
The embodiment of
Referring to an embodiment of a base rib 22 detail illustrated in
The embodiment of
Any embodiments of the ribs discussed herein can be used interchangeably in any portion of the bottle. For example, grip portion ribs 3 can be used in the label portion 10. As another example, the grip portion ribs 3 can be used as base ribs 22. As another example, label panel ribs 20 can be used in the grip portion 8. As another example, label panel ribs 20 can be used as base ribs 22. As another example, label panel ribs 20b can be used in the grip portion 8. As another example, label panel ribs 20b can be used as base ribs 22. As another example, the base rib 22 can be used in the label portion 10. As another example, the base rib 22 can be used in the grip portion 8.
The embodiment of
The embodiment of
Referring to
Referring to
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced embodiment recitation is intended, such an intent will be explicitly recited in the embodiment, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the disclosure may contain usage of the introductory phrases “at least one” and “one or more” to introduce embodiment recitations. However, the use of such phrases should not be construed to imply that the introduction of an embodiment recitation by the indefinite articles “a” or “an” limits any particular embodiment containing such introduced embodiment recitation to embodiments containing only one such recitation, even when the same embodiment includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce embodiment recitations. In addition, even if a specific number of an introduced embodiment recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, embodiments, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
Although the present invention has been described herein in terms of certain embodiments, and certain exemplary methods, it is to be understood that the scope of the invention is not to be limited thereby. Instead, the Applicant intends that variations on the methods and materials disclosed herein which are apparent to those of skill in the art will fall within the scope of the Applicant's invention.
The present application claims priority to U.S. Provisional Patent Application No. 61/567,086 filed on Dec. 5, 2011 and entitled “Plastic Container with Varying Depth Ribs,” the entire contents of which are incorporated herein by reference and should be considered a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
3029963 | Evers | Apr 1962 | A |
3438578 | Moyer et al. | Apr 1969 | A |
4316551 | Belokin, Jr. | Feb 1982 | A |
4374878 | Jakobsen et al. | Feb 1983 | A |
D294462 | Ota et al. | Mar 1988 | S |
4756439 | Perock | Jul 1988 | A |
4818575 | Hirata et al. | Apr 1989 | A |
4847129 | Collette et al. | Jul 1989 | A |
4863046 | Collette et al. | Sep 1989 | A |
4907709 | Abe et al. | Mar 1990 | A |
D315869 | Collette | Apr 1991 | S |
D321830 | York et al. | Nov 1991 | S |
5092475 | Krishnakumar et al. | Mar 1992 | A |
5133468 | Brunson et al. | Jul 1992 | A |
5178289 | Krishnakumar et al. | Jan 1993 | A |
5199588 | Hayashi | Apr 1993 | A |
5255889 | Collette et al. | Oct 1993 | A |
5279433 | Krishnakumar et al. | Jan 1994 | A |
5281387 | Collette et al. | Jan 1994 | A |
D345693 | Edstrom | Apr 1994 | S |
5303833 | Hayashi et al. | Apr 1994 | A |
5303834 | Krishnakumar et al. | Apr 1994 | A |
5337909 | Vailliencourt | Aug 1994 | A |
5341946 | Vailliencourt et al. | Aug 1994 | A |
D352238 | Vailliencourt et al. | Nov 1994 | S |
D352245 | Krishnakumar et al. | Nov 1994 | S |
5381910 | Sugiura et al. | Jan 1995 | A |
5407086 | Ota et al. | Apr 1995 | A |
D358766 | Vailliencourt et al. | May 1995 | S |
5411699 | Collette et al. | May 1995 | A |
D364565 | Vailliencourt et al. | Nov 1995 | S |
D366416 | Semersky | Jan 1996 | S |
D366417 | Semersky | Jan 1996 | S |
5632397 | Fandeux et al. | May 1997 | A |
5669520 | Simpson | Sep 1997 | A |
5704503 | Krishnakumar et al. | Jan 1998 | A |
D391168 | Ogg | Feb 1998 | S |
D393802 | Collette et al. | Apr 1998 | S |
5762221 | Tobias et al. | Jun 1998 | A |
D397614 | Krishnakumar et al. | Sep 1998 | S |
D402895 | Takahashi et al. | Dec 1998 | S |
D404308 | Takahashi et al. | Jan 1999 | S |
5888598 | Brewster et al. | Mar 1999 | A |
D407649 | McCallister et al. | Apr 1999 | S |
D407650 | Takahashi et al. | Apr 1999 | S |
D411453 | Piccioli et al. | Jun 1999 | S |
5908128 | Krishnakumar et al. | Jun 1999 | A |
D413519 | Eberle et al. | Sep 1999 | S |
5971184 | Krishnakumar et al. | Oct 1999 | A |
5988417 | Cheng et al. | Nov 1999 | A |
6016932 | Gaydosh et al. | Jan 2000 | A |
D419882 | Bretz et al. | Feb 2000 | S |
D420592 | Bretz et al. | Feb 2000 | S |
6036037 | Scheffer et al. | Mar 2000 | A |
D423365 | Eberle | Apr 2000 | S |
6044996 | Carew et al. | Apr 2000 | A |
6044997 | Ogg | Apr 2000 | A |
6062409 | Eberle | May 2000 | A |
D426460 | Krishnakumar et al. | Jun 2000 | S |
D427905 | Eberle | Jul 2000 | S |
6092688 | Eberle | Jul 2000 | A |
D429647 | Warner et al. | Aug 2000 | S |
D430493 | Weick | Sep 2000 | S |
6112925 | Nahill et al. | Sep 2000 | A |
D434330 | Rowe et al. | Nov 2000 | S |
D440157 | Lichtman et al. | Apr 2001 | S |
D440158 | Bretz et al. | Apr 2001 | S |
D440877 | Lichtman et al. | Apr 2001 | S |
D441294 | Lichtman et al. | May 2001 | S |
6230912 | Rashid | May 2001 | B1 |
D445033 | Bretz et al. | Jul 2001 | S |
6257433 | Ogg et al. | Jul 2001 | B1 |
D446126 | Bretz et al. | Aug 2001 | S |
D447411 | Lichtman et al. | Sep 2001 | S |
6296131 | Rashid | Oct 2001 | B2 |
6347717 | Eberle | Feb 2002 | B1 |
D454500 | Bretz et al. | Mar 2002 | S |
D465158 | Peek et al. | Nov 2002 | S |
D466021 | Thierjung et al. | Nov 2002 | S |
D466819 | Darr et al. | Dec 2002 | S |
6494333 | Sasaki et al. | Dec 2002 | B2 |
D469358 | Bryant et al. | Jan 2003 | S |
D469359 | Bryant et al. | Jan 2003 | S |
D469695 | Bryant et al. | Feb 2003 | S |
D469696 | Bryant et al. | Feb 2003 | S |
D470773 | Darr et al. | Feb 2003 | S |
D472470 | Bretz et al. | Apr 2003 | S |
6554146 | DeGroff et al. | Apr 2003 | B1 |
D476236 | Ungrady et al. | Jun 2003 | S |
6585125 | Peek | Jul 2003 | B1 |
D479690 | DeGroff | Sep 2003 | S |
6616001 | Saito et al. | Sep 2003 | B2 |
D480957 | Mooney et al. | Oct 2003 | S |
D485765 | Thierjung et al. | Jan 2004 | S |
6722514 | Renz | Apr 2004 | B2 |
6739467 | Saito et al. | May 2004 | B2 |
D494475 | Thierjung et al. | Aug 2004 | S |
D497551 | Gamel et al. | Oct 2004 | S |
6830158 | Yourist | Dec 2004 | B2 |
6841262 | Beck et al. | Jan 2005 | B1 |
D502108 | Gamel et al. | Feb 2005 | S |
D503625 | Nelson et al. | Apr 2005 | S |
D503885 | Bretz et al. | Apr 2005 | S |
D504063 | Bretz et al. | Apr 2005 | S |
D506675 | Bretz et al. | Jun 2005 | S |
D506676 | Bretz et al. | Jun 2005 | S |
D506677 | Bretz et al. | Jun 2005 | S |
D507491 | Bretz et al. | Jul 2005 | S |
D507609 | Bretz et al. | Jul 2005 | S |
D507749 | Bretz et al. | Jul 2005 | S |
D508857 | Bretz et al. | Aug 2005 | S |
6932230 | Pedmo et al. | Aug 2005 | B2 |
D510526 | Bretz et al. | Oct 2005 | S |
7025219 | Heisner et al. | Apr 2006 | B2 |
7032770 | Finlay et al. | Apr 2006 | B2 |
D525530 | Livingston et al. | Jul 2006 | S |
D527643 | Gottlieb | Sep 2006 | S |
7172087 | Axe et al. | Feb 2007 | B1 |
D538660 | Gatewood | Mar 2007 | S |
7198164 | Yourist et al. | Apr 2007 | B2 |
D548106 | Martinez et al. | Aug 2007 | S |
7258244 | Ungrady | Aug 2007 | B2 |
D551081 | Ohara et al. | Sep 2007 | S |
7267242 | Tanaka et al. | Sep 2007 | B2 |
D555499 | Ross | Nov 2007 | S |
7334695 | Bysick et al. | Feb 2008 | B2 |
7334696 | Tanaka et al. | Feb 2008 | B2 |
7347339 | Bangi et al. | Mar 2008 | B2 |
7364046 | Joshi et al. | Apr 2008 | B2 |
7416089 | Kraft et al. | Aug 2008 | B2 |
7416090 | Mooney et al. | Aug 2008 | B2 |
D579339 | Shmagin | Oct 2008 | S |
7451886 | Lisch et al. | Nov 2008 | B2 |
7469796 | Kamineni et al. | Dec 2008 | B2 |
D584627 | Lepoitevin | Jan 2009 | S |
7543713 | Trude et al. | Jun 2009 | B2 |
D598779 | Lepoitevin | Aug 2009 | S |
D610015 | Yourist et al. | Feb 2010 | S |
7694842 | Melrose | Apr 2010 | B2 |
7699183 | Matsuoka et al. | Apr 2010 | B2 |
7748551 | Gatewood et al. | Jul 2010 | B2 |
7748552 | Livingston et al. | Jul 2010 | B2 |
7757874 | Ross | Jul 2010 | B2 |
D621271 | Soni | Aug 2010 | S |
7780025 | Simpson, Jr. et al. | Aug 2010 | B2 |
D623529 | Yourist et al. | Sep 2010 | S |
D624427 | Yourist et al. | Sep 2010 | S |
7798349 | Maczek et al. | Sep 2010 | B2 |
D630515 | Bretz et al. | Jan 2011 | S |
7861876 | Stowitts | Jan 2011 | B2 |
7980404 | Trude et al. | Jul 2011 | B2 |
8020717 | Patel | Sep 2011 | B2 |
8047388 | Kelley et al. | Nov 2011 | B2 |
8091720 | Colloud | Jan 2012 | B2 |
8308007 | Mast et al. | Nov 2012 | B2 |
8328033 | Mast | Dec 2012 | B2 |
8381496 | Trude et al. | Feb 2013 | B2 |
20010030166 | Ozawa et al. | Oct 2001 | A1 |
20040000533 | Kamineni et al. | Jan 2004 | A1 |
20050279728 | Finlay et al. | Dec 2005 | A1 |
20060070977 | Howell et al. | Apr 2006 | A1 |
20060113274 | Keller et al. | Jun 2006 | A1 |
20060131257 | Gatewood et al. | Jun 2006 | A1 |
20060157439 | Howell | Jul 2006 | A1 |
20070131644 | Melrose | Jun 2007 | A1 |
20080087628 | Bangi et al. | Apr 2008 | A1 |
20080197105 | Boukobza | Aug 2008 | A1 |
20090020497 | Tanaka et al. | Jan 2009 | A1 |
20090065468 | Hata et al. | Mar 2009 | A1 |
20090159556 | Patcheak et al. | Jun 2009 | A1 |
20090166314 | Matsuoka | Jul 2009 | A1 |
20090184127 | Mooney | Jul 2009 | A1 |
20090261058 | Pritchett, Jr. | Oct 2009 | A1 |
20090261059 | Pritchett, Jr. | Oct 2009 | A1 |
20090283495 | Lane et al. | Nov 2009 | A1 |
20090321383 | Lane | Dec 2009 | A1 |
20100089865 | Oguchi et al. | Apr 2010 | A1 |
20100155359 | Simon et al. | Jun 2010 | A1 |
20100163513 | Pedmo | Jul 2010 | A1 |
20100176081 | Kamineni et al. | Jul 2010 | A1 |
20100206837 | Deemer et al. | Aug 2010 | A1 |
20100206838 | Mast et al. | Aug 2010 | A1 |
20100206839 | Tanaka et al. | Aug 2010 | A1 |
20100206892 | Mast | Aug 2010 | A1 |
20100213204 | Melrose | Aug 2010 | A1 |
20100230378 | Colloud | Sep 2010 | A1 |
20100270259 | Russell et al. | Oct 2010 | A1 |
20100320218 | Tanaka | Dec 2010 | A1 |
20110017700 | Patcheak et al. | Jan 2011 | A1 |
20110073559 | Schlies et al. | Mar 2011 | A1 |
20120248003 | Hunter et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2 846 946 | May 2004 | FR |
2899204 | Oct 2007 | FR |
7 164436 | Jun 1995 | JP |
09240647 | Sep 1997 | JP |
10029614 | Feb 1998 | JP |
2004 090425 | Mar 2004 | JP |
2008 189721 | Aug 2008 | JP |
2009 045877 | Mar 2009 | JP |
WO 2004080828 | Sep 2004 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2011/060587 dated Mar. 14, 2012 in 12 pages. |
International Search Report and Written Opinion for PCT application No. PCT/US2012/067795 mailed on Mar. 13, 2013, by Detlef Meyer. |
Number | Date | Country | |
---|---|---|---|
20130140264 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61567086 | Dec 2011 | US |