The invention relates to a plastic container product, in particular one produced by a blow molding, filling and sealing method, including a container body having a content of the container and an adjoining head part, which delimits an extraction area. The extraction area is closed by a head membrane, which has a connecting seam. The connecting seam passes through a surface spanned by the head membrane and separates penetrable areas on the free end face of the head membrane from each other for extracting the content of the container.
Plastic containers, which are produced in a blow-molding, filling and sealing process (BFS process), as described, for example, in EP 2 269 558 A1 and also known in the professional world as the Bottelpack® system, are used with great advantage for food and luxury foodstuff and in medicine for the packaging of pharmaceuticals, diagnostics, enteral nutrition and medical devices, e.g. rinsing and dialysis solutions. A significant advantage of these containers for such purposes is that the contents are solely in contact with a polymer constituting the container material, typically a plastic such as LDPE, HDPE or PP. The germ reduction/sterility of the contents can be maintained for extended periods of time using integral containers made and filled using the BFS process. Containers intended for injection, infusion, transfusion or enteral nutrition have a specific shape of the head area for the formation of points of access to the contents of the container. The integral design of container and head makes for a secure sterility of the contents at a particularly efficient implementation of the manufacturing process. Caps having elastomer sealing elements (DIN ISO 15759) are applied to the container head by welding or injection molding. In such containers—just like in other container products for medical purposes, such as injection vials, cylindrical vials or plastic containers for injections (DIN EN ISO 15747:2012-07)—polymer or elastomer particles can be punched out of the closure material, e.g. when puncturing using injection needles or piercing devices. These loose particles can remain in the cannula, the syringe, or in the container itself. This situation can inter alia lead to the clogging of the cannula, rendering the extraction and/or the injection procedure impossible. Particles can also get into the product.
In view of this problem, EN ISO 8871-5:2014 specifies limits in the use of injection vials having an elastomeric closure, same as in the US Pharmacopoeia Chapter 381. To address this problem—also known as fragmentation—special needle geometries have been proposed by Marinacci et al. in the prior art (U.S. Pat. No. 5,868,721), which, however, necessitate costly and expensive special cannulas.
WO 81/02286 discloses a plastic container having preferred thin-walled piercing positions for a cannula arranged on a defined lateral shoulder area of the container. In this case, sufficient thinning is only possible by a very complex tool technology, accepting retracted areas, which renders cleaning very difficult. Moreover, the container cannot be completely emptied via these thin spots because they are not at the highest or lowest point of the container.
In contrast, U.S. Pat. No. 4,574,965 (Meierhoefer) discloses a container product produced by a blow molding, filling and sealing method having a specially designed double dome geometry without thinning for the container head, in this way ensuring a secure sealing and no particle formation when it is punctured using a cannula for an extraction from the container. In this case, thin wall thicknesses in the puncturing area are not necessary. The necessary double-dome geometry permits only one puncture point and deviates very much from the proven head geometry of blow, fill and seal infusion containers designed as container products and requires special cap systems, which do not comply with the well-proven ISO standard 15759:2006-05, which in turn is costly and can impair the functional safety of the entire container system.
Moreover, U.S. Pat. No. 4,574,965 (FIGS. 1 and 3) shows, as does CN 85103261 A (FIGS. 1, 2 and 3), a disadvantageous course of the mold parting line in the head area (FIGS. 1 and 3: seam 18). For that reason, the puncturing point is very close to the edge of the container head and carries the real danger of unintentionally puncturing the neck area of the container with the cannula even at an only slightly divergent piercing angle. Another disadvantage is the low central rigidity of the container head, addressed in DE 10 2013 012809. In this document numerous different dome head shapes having multiple top surfaces are proposed for the stiffening of the head area, which also require detailed adapted cap designs and significantly reduce the puncture area compared to the top surface in accordance with DIN EN ISO 15759:2006-05. This arrangement also reduces the possible spacing between the two puncture points, which in turn can result in disadvantages in the application, for instance in the administration of infusions, if the somewhat projecting drip chamber of a pierced infusion device (EN ISO 8536-4: 2013) blocks the puncture site for the cannula, which has to be used to inject another medication during the infusion.
FIG. 4 of EP 0621027 A1 (Weiler) discloses a container having a parting line (42, “parting line”, column 8, II 26), which in an end-face view extends in a rectilinear line across the container body. Such a parting line typically results during blow molding due to the use of bi-partite molds. The parting line results from the separations of the bi-partite forming tool. The corresponding sealing or connecting seam in the head area has a minimal length and follows the course of the parting line in a rectilinear line. Just like in this example, sealed seams in general—not only in blow-molded containers—should be as short as possible to minimize the risk of weaknesses, imperfections or even leaks, which may have dire consequences for the health of the patient in the case of filled sterile containers for medical purposes.
In particular, sealing seams are sensitive and prone to occurring leaks in containers having a multilayer wall construction—for example as described in EP 1616549 B1 and DE 10347908 A1.
DE 10 2013 012 809 A1 relates to a container product, in which, instead of a uniform head membrane, which spans the end of the head part of the container body at a uniform curvature, different top surfaces are formed. The top surfaces form different curvatures at the head part end, such that for the possible total extraction surface of the head membrane, an increased resistance to deflection and easier puncturing, cutting or penetration is achieved. A deflection of the head membrane during extraction and the risk of leaks are kept to a minimum. The handling is safe even when using not very sharp piercing spikes, blades or thick cannulas.
Based on this prior art, the present invention addresses the problem of providing a container product that is further improved in comparison to the known solutions, in particular regarding the handling and extraction behavior of the contents of the container.
A container product solving this problem has a connecting seam seen on the free end face of the head membrane with a course of the seam at least partially deviating from a fictitious rectilinear course extending within the head membrane surface. The seam length is longer than a rectilinear course and at least partially extends around the penetrable areas allowing very thin-walled, penetrable areas to be formed. These penetrable areas are supported by the extended connecting or sealing seam, extending in the surface of the head membrane such that there is no unintentional denting of the entire head membrane resulting in impaired extraction behavior, in particular with regard to sterility during an extraction from or addition to the contents of the containers at the respective penetrable areas. As incorrect operations are precluded in this respect, the handling of the plastic container product according to the invention as a whole is made easier for an operator. Moreover, this container of the invention ensures a safe addition to and/or extraction of the contents of the container in each case. The support and bracing function for the addition or extraction procedure based on the connecting seam according to the invention is also ensured by the fact that, leaving the rectilinear alignment, it at least partially encompasses the penetrable areas, thus further stiffening the edges. The supporting and securing connecting seam of the head part permits the reduction of the penetrable areas on the free end face of the head membrane from the wall diameter compared to the other wall parts of the head membrane, which further facilitates the mentioned addition and/or extraction procedure.
Surprising to a person of ordinary skill in the art, compared to an otherwise rectilinearly oriented course, is that the substantially elongated connecting seam based on the known blow-molding, filling and sealing process (BFS) in a manner that is routinely safe in production, permits the manufacture of thinner areas as penetrable areas with thicknesses of 0.10 mm to 0.25 mm without any problems. Particularly, this container is without resulting leaks at the connecting seam, technically known as a head seal seam or head weld, and is without tearing occurring at the thin areas at internal pressure stresses in the temperature range above 110° C. Those temperature ranges occur, for instance, during the sterilization of the filled container product in the context of the required autoclave process. On one hand, owing to the counter-shearing movement of the still hot polymer in the third manufacturing step of the BFS process, i.e. during the sealing of the container head part, a favorable orientation of the polymer chains and/or an advantageous state of stress in the system head membrane/connecting seam/penetrable areas occurs. On the other hand, as already mentioned, the supporting effect of the connecting seam, which almost reaches the thin puncture areas, is of particular importance.
In a particularly preferred embodiment of the container product according to the invention, the course of the connecting seam is formed as a kind of sealing or welding seam, which is formed during the creation of the head part in the context of the blow molding, filling and sealing process (BFS). The seam extends on opposite sides of the head part along the head part and merges into the mold parting line that results from its production using multi-partite forming tools as part of the BFS process. In the production of the pertinent sealing seam for the head part, the penetrable areas mentioned are also formed in the head membrane in the context of the aforementioned production method. The thickness of the penetrable areas is reduced in comparison to the average wall thickness of the head membrane. In doing so, the sealing or welded seam fully penetrates the head membrane in a sealed manner.
It has further been found to be particularly advantageous, that the course of the seam in the head membrane merges at two opposite points into the corresponding parting lines/course of the seam in the other head part. Between them, the lines form a fictitious connecting rectilinear line, on which and/or outside of which the centers of the penetrable areas of the head membrane are located. In one embodiment the fictitious rectilinear line delimits at least one penetrable area in the manner of a tangent. Alternatively, this area is located at a predeterminable distance from the fictitious rectilinear line. In this way, the penetrable areas can be arranged in a supported manner on the head membrane of the container product for a variety of applications.
In this context, it has also been proven to be particularly advantageous to form the connecting seam similar to or exactly following the course of a sinusoidal wave on the head membrane. The wave trough and/or wave peak of each receives a penetrable area of the head membrane and comprises it at least partially in a supporting manner.
In a further particularly preferred embodiment of the container product according to the invention provision is made that the head part of the container body and/or a collar between the head part and the container body is preferably firmly connected to a cap part having externally detachable or detached puncture parts. The puncture parts are arranged congruently with the assignable penetrable areas of the head membrane. As the mentioned, penetrable areas in the head membrane can be arranged eccentrically, and the puncture parts of the cap part have to cover the penetrable areas for an extraction procedure. According to the invention, provision can be made advantageously to apply the cap parts to the container rotated by a predetermined offset angle.
Overall, a container product is created based on the solution according to the invention,
Other objects, advantages and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the drawings, discloses preferred embodiments of the present invention.
Referring to the drawings that form a part of this disclosure and that are schematic and not to scale:
The container product shown in
Viewed in the direction of
The connecting seam 18, which is also referred to as sealed head seam in technical terms, thus extends from the one point E1 of the head part 12 to the opposite point E2 of the same head part and, as reinforcing means in the form of a protruding rib, at least partially provides support against the unwanted indentation of the entire head membrane 16 when an extraction device, such as a cannula or a piercing device 34, is applied for a subsequent extraction or addition procedure in relation to the content of the containers. Without such a rib-shaped reinforcing means or reinforcement, puncturing the head membrane 16 would essentially not be possible when the piercing tool 34 is applied as shown in
Although the rib-shaped reinforcing seam 18 according to the representations in the prior art according to
In the solution according to the invention as shown in
As can also be seen from
The head membrane 16 has a circular outer circumference. The fictitious connecting line 32 defines a fictitious center point Z based on a further fictitious connecting line 48, which is perpendicular to the rectilinear line 32, through which the wave 40 as shown in
If, as shown in
As is further apparent from
The penetrable or puncturable areas 22, 24 on the head membrane 16 are selected to be largely equal in size in the exemplary embodiment shown in
The connecting seam 38 on the individual head membrane 16 may protrude in the manner of a reinforcing rib at least partially outwardly towards the environment and/or in the direction of the interior of the container body 10. An outward protrusion for the known solution according to the
In order to obtain the wave-shaped connecting seam 38, the molding tools in the case of a corresponding molding device have to be designed such that they have the required mold recesses and protrusions on their opposite end faces in order to obtain the wave form for the head part 12. Such a molding device for moving molding tools for generating pertinent head geometries in plastic containers having slide control is shown in DE 103 17 712 A1 by way of example. The waveform shown in the figures for the connecting seam 38 has proven to be particularly advantageous in terms of manufacturing. However, other waveforms can be selected, for example, in the manner of an S-shaped arc having different courses of the curve. Furthermore, meandering seam courses or zigzag seam courses can be implemented, if required. It is important to select the course of the seam of the connecting seam 38 such that the respective penetrable areas 22, 24 are at least partially enclosed in order to sufficiently stabilize them during piercing. The elongated course of the seam 36 results in an improved reinforcement of the otherwise soft plastic head membrane 16. More than two penetrable areas can be mounted on the head membrane 16 (not shown).
The further embodiments of the head membrane 16 for a container product according to the invention as shown in the images in
In the embodiment of a head membrane 16 shown in
In the embodiment shown in
In the exemplary embodiment according to
As is apparent from the illustration of
Furthermore, the solution according to the invention, as shown in particular in
While various embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 002 401.4 | Mar 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/054551 | 2/23/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/162255 | 9/13/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4254884 | Maruyama | Mar 1981 | A |
4419323 | Winchell | Dec 1983 | A |
4574965 | Meierhoefer | Mar 1986 | A |
5395365 | Weiler | Mar 1995 | A |
5868721 | Marinacci et al. | Feb 1999 | A |
20100065526 | Consolaro | Mar 2010 | A1 |
20100326990 | Mader | Dec 2010 | A1 |
20150157535 | Frishman | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
85103261 | Oct 1986 | CN |
103 17 712 | Nov 2004 | DE |
103 47 908 | May 2005 | DE |
10 2008 009 418 | Apr 2009 | DE |
10 2013 012 809 | Feb 2015 | DE |
0 183 723 | Apr 1990 | EP |
0 621 027 | Oct 1994 | EP |
1 616 549 | Jan 2006 | EP |
2 269 558 | Jan 2011 | EP |
8102286 | Aug 1981 | WO |
8505611 | Dec 1985 | WO |
8606043 | Oct 1986 | WO |
WO-2016015742 | Feb 2016 | WO |
Entry |
---|
International Search Report (ISR) dated Jun. 29, 2018 in International (PCT) Application No. PCT/EP2018/054551. |
Number | Date | Country | |
---|---|---|---|
20200085688 A1 | Mar 2020 | US |