Plastic container with horizontal annular ribs

Information

  • Patent Grant
  • 6230912
  • Patent Number
    6,230,912
  • Date Filed
    Thursday, August 12, 1999
    25 years ago
  • Date Issued
    Tuesday, May 15, 2001
    23 years ago
Abstract
A plastic bottle comprises a label panel portion comprising a plurality of ribs extending annularly about the perimeter thereof and lands located between each rib for accepting a label thereon, wherein the ribs are configured to render the label panel substantially rigid and capable of enduring pasteurization without subjecting the lands to substantial alteration or misalignment. A pasteurizable bottle having a label panel onto which a label may be evenly secured is thus provided.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates generally to plastic containers; particularly to plastic containers designed to hold liquids under pressure during pasteurization or other thermal treatment.




2. Background Art




Bottles of various configurations and materials have long been employed for the distribution of liquids by the beverage industry. Although the beverage industry traditionally employed glass containers to deliver liquid beverages to customers, that industry has recently embraced the use of plastic bottles due to the relative cost advantages and durability of plastics. For reasons of efficiency and to lower production costs, the plastic container industry has embraced the conventional technique of blow molding plastic containers from plastic preforms. Polyethylene terephthalate (“PET”) or polypropylene (“PP”) are typically used to construct plastic containers because of, among other reasons, the ability to reclaim and recycle containers constructed therefrom. A barrier layer constructed, for example from ethylene vinyl alcohol (“EVOH”), is sometimes employed with the PET or PP to inhibit the migration of gases such as oxygen and carbon dioxide as well as moisture into or out of, the container.




Although plastic has proven more durable than glass in many aspects, plastic containers may be subject to deformation, in instances in which glass was not, due to the relative strength of thicker glass bottles over the thinner plastic bottles. Sanitation requires that beverages be at least partially sterilized prior to reaching the consumer. Typically this is accomplished by elevating the beverage to a predetermined temperature for a specified period of time in order to kill all objectionable organisms without major chemical alteration of the beverage. The two currently accepted methods for accomplishing such sterilization are hot-filling and pasteurization. Hot-filling entails heating the beverage to the required temperature for the required period of time prior to bottling the beverage. The bottles are then filled and sealed while the beverage remains at an elevated temperature sufficient to assure that living objectionable organisms on the container surfaces are rendered harmless. As the beverage cools from the sterilizing temperature, the internal pressure of the bottle drops and creates a pressure differential with the surrounding environment which is sustained until the bottle is opened by the consumer. Thus, hot-filled bottles often deform inwardly as a result of the pressure differential. This deformation is often referred to as “paneling.” Alternatively, the beverage may be sterilized after filling, often referred to in the industry as “pasteurization” and will likewise be so referenced herein. Pasteurization entails filling each bottle with unsterilized beverage and sealing the bottle. The bottle and its contents are then raised to the desired temperature for the desired period of time in order to kill all objectionable organisms without major chemical alteration of the beverage. Because the beverage is sealed prior to pasteurization, no objectionable organism from the surrounding environment may infiltrate the beverage. The sterility of the beverage is thus guaranteed. The internal pressure of the bottle is substantially elevated with respect to that of the surrounding environment as the pasteurization process heats the beverage in the sealed bottle. This pressure differential may result in outward deformation of the bottle. Although the internal pressure of the bottle typically returns to the pre-pasteurization level, the bottle may retain some deformation experienced during pasteurization.




Prior plastic bottle configurations have attempted to overcome the deformation caused by hot-filling and pasteurization by simply increasing the overall wall thickness of the bottle. The resulting costs and manufacturing difficulties experienced with these configurations rendered them commercially unacceptable. Other bottle configurations have employed various ribs or panels about the bottle in an attempt to elevate its resistance to deformation. However, these configurations created difficulties with properly placing a label on the bottle and the complicated nature of these bottle configurations often rendered the bottle prohibitively costly.




Specific configurations of the bottle base have been constructed to prevent base deformation which may cause the bottle to be unstable when rested upright on its base. One such base configuration can be found in co-pending U.S. patent application Ser. No. 09/172,345 which is hereby incorporated herein by reference in its entirety.




Bottles intended to undergo hot-filling rather than pasteurization are usually designed to absorb the pressure differential that is created by the cooling of the beverage subsequent to sealing the bottle. This pressure absorption is often accomplished by placing “vacuum panels” in the sidewall of a hot-fill bottle. Thus, aesthetic features of hot-fill bottle configurations anticipate, and are designed to accommodate, change resulting from the sterilization process.




Conversely, bottles intended for pasteurization are not designed to anticipate aesthetic changes resulting from the sterilization process. Rather, because the bottle deformation that results from the internal pressure created by pasteurization subsides once the beverage cools, bottles intended for pasteurization may be molded with the same aesthetic features that will be viewed by the final consumers. Thus, permanent deformation is especially undesirable for bottles intended to undergo pasteurization rather than hot-filling. Permanent deformation resulting from pasteurization is not anticipated. Thus, deformation of pasteurizable bottles should be prevented or, at least, maintained within the elastic zone of deformation for the material from which the bottle is constructed.




SUMMARY OF THE INVENTION




It is one of the principal objectives of the present invention to provide a plastic bottle having a high resistance to deformation due to hot-filling or sterilization.




It is another objective of the present invention to provide a plastic bottle comprising annular ribs which provide resistance to both longitudinal and radial bottle deformation.




It is another objective of the present invention to provide a plastic bottle comprising annular ribs which provide resistance to deformation without requiring excessive wall thickness.




It is another objective of the present invention to provide a plastic bottle comprising annular ribs which have a predetermined depth to width ratio to provide resistance to both longitudinal and radial bottle deformation.




It is another objective of the present invention to provide a plastic bottle that is cost effective and will resist both longitudinal and radial deformation.




It is still another objective of the present invention to provide a plastic bottle having a high resistance to longitudinal and radial deformation and is capable of being blow molded from a standard preform.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a side elevational view of a container according to the present invention.





FIG. 2

is a cross sectional view of a single annular rib of the container shown in FIG.


1


.





FIG. 3

is a bottom elevational view of the base of the container shown in FIG.


1


.











DETAILED DESCRIPTION OF THE DRAWINGS




A container according to the present invention is depicted in

FIG. 1

in the form of a bottle


10


having a top end


12


with a threaded finish


14


for receiving a thread-on cap (not shown) to seal the bottle


10


after filling with a desired product. A rounded neck portion


16


integrally extends downward and outward from the top end


12


widening to form integrally with an annular groove


18


. Annular groove


18


then extends integrally into a body portion


20


of the bottle


10


wherein the body portion


20


comprises a cylindrical wall


22


having a label panel portion


24


with a plurality of annular ribs


26


therein. A single rib


26


is depicted in cross-section in

FIG. 2

separated from the remainder of the bottle


10


. A base


28


of the bottle


10


extends integrally from, and closes the bottom end of, the body portion


20


. The base


28


is depicted in

FIG. 3

dissected from the remaining portions of the bottle


10


. Preferably, the bottle


10


is formed as an integral unit by blow molding from a standard preform using conventional blow molding techniques.




As depicted in

FIG. 1

, the plurality of annular ribs


26


are each separated one from another by an annular land


30


. Each annular rib


26


, as depicted in

FIG. 2

, comprises a pair of opposing outer radii


32


, each of which comprises an outer end


34


and an inner end


36


. The outer end


34


of each outer radius


32


is contiguous with an adjacent annular land


30


and each outer radius


32


extends inward of the annular land


30


. Each annular rib


26


further comprises a pair of opposing straight walls


38


each having an outer end


40


and an inner end


42


. The outer end


40


of each straight wall


38


is contiguous with an adjacent one of the outer radius inner ends


36


as depicted in FIG.


2


. Each annular rib


26


further comprises a pair of opposing inner radii


44


each having an outer end


46


and an inner end


48


wherein each straight wall inner end


42


is contiguous with an adjacent inner radii outer end


46


as depicted in FIG.


2


. Each annular rib


26


further comprises a root wall


50


extending contiguously between the opposing inner radii inner ends


48


to close off the rib


26


.




Each rib


26


extends annularly about the cylindrical wall


22


and is oriented substantially perpendicular to a central longitudinal axis


52


of the bottle


10


. Furthermore, each land


30


and each root wall


50


are oriented substantially parallel to the bottle central longitudinal axis


52


.




As depicted in

FIG. 1

, and discussed above, the plurality ribs


26


are located within the label panel portion


24


of the bottle


10


. The label panel portion


24


is provided with two annular beads


54


for label panel protection, one located at each of the upper and lower ends of the label panel portion


24


to bolster its resistance to radial deformation (often referred to as hoop strain). The label panel portion is configured to provide an area in which the beverage manufacturer may place a label to communicate the contents of the bottle, information required by government regulations and any desired marketing information or materials which may be required to impart the desired image to a consumer. It is important to assure that the label panel provides an even surface that will support a label and will not subject the label to excess damage prior to reaching the ultimate consumer so that the message and image presented by the label is not adversely effected. Bottle configurations that damage a label or the image intended to be imparted thereby, are commercially unacceptable. Therefore, the label panel portion


24


of the present bottle


10


designed to assure that the lands


30


provide an even surface to support a label, even after being subjected to the rigors of pasteurization




It has been found that the strength of the label panel section


24


may be optimized by providing the ribs with an average depth to width ratio in the approximate range of 1.0:1.0-1.1:1.0. Deformation of the bottle


10


will typically occur either longitudinally along the central longitudinal axis


52


due to longitudinal stresses or radially of the bottle


10


due to radial stresses. Radial stresses resulting from pasteurization are commonly referred to as hoop stress. By dimensioning the ribs


26


in the above range of ratios, the ribs are configured to withstand nearly equal amounts of longitudinal stress and radial stress such that any resulting deformation will likewise be nearly equal. Increasing the length E of the root wall


50


or increasing the radius of curvature of the inner radii


44


to lower the depth to width ratio would expose the ribs


26


to excessive deformation in the form of buckling (inward for hot-filling and outward for pasteurization). The resulting excessive deformation may enter the zone of plastic deformation of the material from which the bottle


10


is constructed and thus result in permanent deformation permanently altering the aesthetic appearance of the bottle


10


regardless of whether the deformation resulted from hot-filling or pasteurization. Lowering the depth to width ratio of the ribs


26


is therefore undesirable.




Conversely, shortening the length E of the root wall


50


or decreasing the radius of curvature of the inner radii


44


to increase the depth to width ratio would result in difficulties of blow molding a parison around the rib portion of the mold as is known in the art. Difficulties would also arise in obtaining a proper release of the bottle from the mold as is also known in the art.




It has also been found that the strength of the label panel portion


24


may be optimized by providing the ribs


26


with an average land


30


width to total rib


26


width (“total rib width” being measured between the outer radii outer ends


34


of a single rib


26


) ratio in the range of 1.09:1.0-1.30:1.0. Thus, the length B of the label panel


24


and the size of the ribs


26


will determine the number of ribs


26


in the label panel


24


.




Constructing the plurality of ribs


26


and the interspersed lands


30


of the bottle


10


within the above strictures will provide the label panel


24


with a sufficient resistance to deformation such that the lands


30


will remain substantially radially aligned and provide an area onto which a label may be secured. This label area is not substantially altered by the pasteurization process. Moreover, the land width to total rib width ratio discussed above provides ample support to a label to ensure its integrity and allow the information thereon to be easily viewed by consumers without the portions of the label extending between the lands


30


(and thus across the ribs) becoming substantially damages or altered due to normal wear and tear to which a beverage bottle will be subjected.




For example, a bottle according to the present invention was reheat stretch blow molded from PET having a diameter A of 2.832 inches at each land


30


(and thus a circumference of 8.897 inches), a panel portion height B of 7.683 inches, a rib depth C (as measured from the exterior of the land


30


to the exterior of the root wall


50


) of 0.120 inches, a rib width D (as measured between the opposing inner radius outer ends


46


) of 0.112 inches, a root wall


50


having a length E of 0.050 inches, the inner radii


44


having a radius of curvature of 0.031 inches and running for ninety degrees (90°), the outer radii


32


having a radius of curvature of 0.060 inches and running for ninety degrees (90°) with the straight wall


38


extending at an angle of fifteen degrees (15°) from perpendicular to the central longitudinal axis


52


. In this configuration, the depth to width ratio is 1.071:1. The lands


30


are 0.27 inches long, the total rib width is 0.2475 inches and the ribs


26


have a thickness F of 0.015-0.019 inches. The bottle was filled with water and pasteurized at 165° F. for a timer period in the range of ten (10) to twenty (20) minutes and then left to cool. The bottle exhibited no visible deformation once cooled.




From the foregoing description, it will be apparent that the plastic container of the present invention has a number of advantages, some of which have been described above and others of which are inherent in the bottle


10


of the present invention. Also, it will be understood that modifications can be made to the plastic container of the present invention without departing from the teachings of the invention. Accordingly the scope of the invention is only to be limited as necessitated by the accompanying claims.



Claims
  • 1. A plastic bottle configured to substantially resist deformation comprising a cylindrical wall defining a longitudinal axis having a plurality of annular ribs extending about the perimeter thereof, wherein the annular ribs each comprise a pair of opposing outer radii, a pair of substantially straight wall portions, one extending from each outer radii to a position inward of the bottle cylindrical wall, each annular rib further comprising a width and a depth and the ratio of the depth to width of each annular rib is approximately between 1.0:1.0 and 1.1:1.0.
  • 2. The bottle of claim 1, the substantially straight wall portion defining an angle of substantially fifteen degrees from perpendicular to the longitudinal axis.
  • 3. The bottle of claim 1 wherein each annular rib further comprises a pair of opposing inner radii, one extending from each substantially straight wall portion, and a root wall extending between the opposing inner radii.
  • 4. The bottle of claim 3 wherein the root wall is substantially straight.
  • 5. The bottle of claim 1 wherein the bottle cylindrical wall comprises a land located between each pair of adjacent annular ribs.
  • 6. The bottle of claim 5, each land having a width and the ratio of the width of each land an adjacent one of the plurality of annular ribs being between 1.09:1.0 and 1.3:1.0.
  • 7. The bottle of claim 6 wherein each land is substantially straight.
  • 8. The bottle of claim 7, the annular ribs and lands comprising a label panel and the lands providing a surface to which a label may be substantially adhered.
  • 9. The bottle of claim 1 being constructed of PET and the cylindrical wall having a thickness of between 0.015 and 0.019 inches.
  • 10. A plastic bottle configured to substantially resist deformation from pasteurization, the bottle comprising a cylindrical wall defining a longitudinal axis and having a plurality of ribs extending annularly about the longitudinal axis, each rib defining a width and a depth, the ratio of the depth to width of each annular rib being approximately between 1.0:1.0 and 1.1:1.0, and each of the plurality of ribs being separated from an adjacent one of the plurality of ribs by a land defining a land width, the ratio of the land width to rib width being between 1.09:1.0 and 1.3:1.0.
  • 11. The bottle of claim 10, the annular ribs each comprising a substantially straight wall portion extending inward of said bottle cylindrical wall.
  • 12. The bottle of claim 11, the substantially straight wall portion defining an angle of substantially fifteen degrees from perpendicular to the longitudinal axis.
  • 13. The bottle of claim 11, each annular rib further comprising a pair of opposing outer radii, one extending between an adjacent outer land and one of the substantially straight wall portions, a pair of opposing inner radii, one extending from each substantially straight wall portion, and a root wall extending between the opposing inner radii.
  • 14. The bottle of claim 13 wherein the root wall is substantially straight.
  • 15. The bottle of claim 10 wherein each land is substantially parallel to the longitudinal axis.
  • 16. The bottle of claim 15, the annular ribs and lands comprising a label panel and the lands providing a surface to which a label may be substantially adhered.
  • 17. The bottle of claim 10 being constructed of PET and the cylindrical wall having a thickness of between 0.015 and 0.019 inches.
  • 18. A plastic bottle configured to substantially resist deformation from pasteurization, comprising a cylindrical wall defining a longitudinal axis and having a plurality of annular ribs, each adjacent pair of annular ribs being separated by a land,each annular rib comprising an outer radius extending from each adjacent land, a substantially straight wall extending from each outer radius and directed substantially inward of the outer cylindrical wall, an inner radius extending from each substantially straight wall, and a root wall extending between the inner radii, each annular rib defining a width, and a depth, the ratio of the depth to width of each annular rib being approximately between 1.0:1.0 and 1.1:1.0, and each land defining a land width, the ratio of the land width to rib width being between 1.09:1.0 and 1.3:1.0.
  • 19. The bottle of claim 18, the substantially straight wall defining an angle of substantially fifteen degrees from perpendicular to the longitudinal axis.
  • 20. The bottle of claim 18 being constructed of PET and the cylindrical wall having a thickness of substantially between 0.015 and 0.019 inches.
US Referenced Citations (47)
Number Name Date Kind
D. 103496 Funkey Mar 1937
D. 105808 Schein Aug 1937
D. 112798 Watson Jan 1939
D. 112799 Watson Jan 1939
D. 112800 Watson Jan 1939
D. 218019 Lattraye et al. Jul 1970
D. 268324 Gautier Mar 1983
D. 275267 Gautier Aug 1984
D. 300511 Cramer Apr 1989
D. 329868 Sakaguchi et al. Sep 1992
D. 331881 Garver et al. Dec 1992
D. 339068 Bell et al. Sep 1993
D. 342674 Schollen et al. Dec 1993
D. 347391 Guertin May 1994
D. 348006 Feen Jun 1994
D. 348007 Feen Jun 1994
D. 348837 Feen Jul 1994
D. 351341 Hung Oct 1994
D. 356037 Jury Mar 1995
D. 359237 Nakamura Jun 1995
D. 370178 Petre et al. May 1996
D. 375462 David Nov 1996
D. 379306 Peykoff May 1997
D. 386088 Satoh Nov 1997
D. 392894 Steih et al. Mar 1998
D. 398539 Guislain Sep 1998
D. 400794 Takeuchi et al. Nov 1998
D. 401860 Granelli Dec 1998
D. 403243 Takeuchi et al. Dec 1998
D. 404306 Stienke Jan 1999
D. 409493 Waggaman et al. May 1999
D. 411750 Forecast et al. Jun 1999
D. 411803 Guertin Jul 1999
3225950 Josephsen et al. Dec 1965
3297194 Schafer et al. Jan 1967
3397724 Bolen et al. Aug 1968
3403804 Colombo Oct 1968
4497855 Agrawal et al. Feb 1985
4610366 Estes et al. Sep 1986
4818575 Hirata et al. Apr 1989
5024341 Dekerle Jun 1991
5067622 Garver et al. Nov 1991
5632397 Fandeux et al. May 1997
5690244 Darr Nov 1997
5704504 Bueno Jan 1998
5746339 Petre et al. May 1998
5908128 Krishnakumar et al. Jun 1999
Foreign Referenced Citations (1)
Number Date Country
189987 May 1957 AU