Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof

Information

  • Patent Grant
  • 10189596
  • Patent Number
    10,189,596
  • Date Filed
    Friday, September 4, 2015
    9 years ago
  • Date Issued
    Tuesday, January 29, 2019
    6 years ago
Abstract
Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof. In particular, the disclosed subject matter involves container base configurations having particular up-stand geometries that can assist or facilitate elevated temperature processing and/or cooling processing of plastic containers.
Description
FIELD

The disclosed subject matter relates to base configurations for plastic containers, and systems, methods, and base molds thereof. In particular, the disclosed subject matter involves base configurations having particular up-stand geometries that can assist or facilitate elevated temperature processing and/or cooling processing of plastic containers.


SUMMARY

The Summary describes and identifies features of some embodiments. It is presented as a convenient summary of some embodiments, but not all. Further the Summary does not necessarily identify critical or essential features of the embodiments, inventions, or claims.


According to embodiments, a plastic container comprises: a sidewall configured to receive a label; a finish projecting from an upper end of said sidewall, said finish operative to receive a closure; and a base below said sidewall. The base has a bottom end that includes: a bearing portion defining a standing surface for plastic container; an up-stand geometry wall of a stacked configuration extending upward from said bearing portion; and an inner wall circumscribed by said up-stand geometry wall in end view of the plastic container, said inner wall and said up-stand geometry wall being cooperatively operative so as to accommodate pressure variation within the container after the container has been filled with a product and sealed with the closure, said inner wall being operative to flex in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure, whereas said up-stand geometry wall is operative to withstand movement as said inner wall flexes in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure.


Also included among embodiments described herein is a method comprising: providing a blow-molded plastic container, the plastic container including a sidewall configured to support a film label, a finish projecting from an upper end of the sidewall and operative to cooperatively receive a closure to sealingly enclose the plastic container, and a base extending from the sidewall to form a bottom enclosed end of the plastic container, wherein the bottom end has a standing ring upon which the container may rest, a rigid wall comprised of a plurality of stacked rings extending upward from the standing ring, and a movable wall extending inward from the rigid wall toward a central longitudinal axis of the container. The method also comprises hot-filling the plastic container via the finish with a product; sealing the hot-filled plastic container with the closure; cooling the hot-filled and sealed plastic container; and compensating for an internal pressure characteristic after hot-filling and sealing the plastic container, said compensating including substantially no movement of the rigid wall.


Embodiments also include a hot-fillable, blow-molded plastic wide-mouth jar configured to be filled with a viscous food product at a temperature from 185° F. to 205° F., which comprises: a cylindrical sidewall configured to support a wrap-around label; a wide-mouth threaded finish projecting from an upper end of said sidewall via a shoulder, said threaded finish operative to receive a closure, and said shoulder defining an upper label stop above said sidewall; and a base defining a lower label stop below said sidewall. The base has a bottom end that includes: a bearing portion defining a standing surface for the jar, the base being smooth and without surface features from said bearing portion to said lower label stop; an up-stand geometry wall of a stacked three-ring configuration circumscribed by said bearing portion and extending generally upward and radially inward from said bearing portion, a first ring of the stack being the bottom ring of the stack and having a first diameter, a second ring of the stack being the middle ring of the stack and having a second diameter and a third ring of the stack being the top ring and having a third diameter, the first diameter being greater than the second and third diameters, and the second diameter being greater than the third diameter. The bottom end of the base also includes an inner wall circumscribed by said up-stand geometry wall, said inner wall and said up-stand geometry wall are cooperatively operative so as to accommodate pressure variation within the jar after the jar has been hot-filled with the product at the temperature from 185° F. to 205° F. and sealed with the closure, said inner wall being operative to flex in response to the pressure variation within the jar after the jar has been hot-filled and sealed with the closure, whereas said up-stand geometry wall is operative to withstand movement as said inner wall flexes in response to the pressure variation within the jar after the jar has been hot-filled and sealed with the lid.


Embodiments also include a plastic container comprising: a sidewall configured to receive a label; a finish projecting from an upper end of said sidewall, said finish operative to receive a closure; and a base below said sidewall. The base has a bottom end that includes: a bearing portion defining a standing surface for plastic container; an up-stand geometry wall of a stacked configuration extending upward from said bearing portion; and an inner wall circumscribed by said up-stand geometry wall in end view of the plastic container, said inner wall and said up-stand geometry wall being cooperatively operative so as to accommodate pressure variation within the container after the container has been filled with a product and sealed with the closure, said inner wall being operative to flex in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure, whereas said up-stand geometry wall is operative to withstand movement as said inner wall flexes in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure. Optionally, the stacked configuration of the up-stand geometry wall includes a plurality of stacked rings, the rings all having a same circumference. Optionally, the stacked configuration of the up-stand geometry wall includes a plurality of stacked rings, the rings each having a different circumference.


In embodiments, a base mold to form a bottom end portion of a base of a plastic wide-mouth jar, the bottom end portion of the plastic jar having a bottom bearing surface of the jar, a rigid ringed wall extending upward from the bottom bearing surface and an inner flexible wall arranged inwardly of the ringed wall, wherein the base mold comprises: a body portion; a bearing surface forming portion to form a portion of the bottom bearing surface; a ringed wall forming portion to form the rigid ringed wall; a lip portion to form a ridge of the bottom end portion; and an inner flexible wall forming portion to form the inner flexible wall. The ringed wall forming portion may be comprised of a stack of three ring protrusions to form the rigid ringed wall, respective maximum diameters of the ring protrusions decreasing in value from the bottom of the stack to the top of the stack. Optionally, the inner flexible wall forming portion can include an upwardly protruding gate portion. Optionally, the base mold further can includes a ridge forming portion between said ringed wall forming portion and said inner flexible wall forming portion to form a ridge.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will hereinafter be described in detail below with reference to the accompanying drawings, wherein like reference numerals represent like elements. The accompanying drawings have not necessarily been drawn to scale. Any values dimensions illustrated in the accompanying graphs and figures are for illustration purposes only and may not represent actual or preferred values or dimensions. Where applicable, some features may not be illustrated to assist in the description of underlying features.



FIG. 1 is a side view of a plastic container according to embodiments of the disclosed subject matter.



FIG. 2 is a side view of another plastic container according to embodiments of the disclosed subject matter.



FIG. 3A is a cross section view of a base portion of a container according to embodiments of the disclosed subject matter.



FIG. 3B is a magnified view of the circled portion of the base portion of FIG. 3A.



FIG. 3C is a bottom end view of the base portion of FIG. 3A.



FIG. 4A is a cross section view of a base portion of a container according to embodiments of the disclosed subject matter.



FIG. 4B is cross section view of the base portion shown in FIG. 4A with a base mold according to embodiments of the disclosed subject matter.



FIG. 4C is a bottom perspective view of the base portion of FIG. 4A.



FIG. 5A is a base mold according to embodiments of the disclosed subject matter.



FIG. 5B is another base mold according to embodiments of the disclosed subject matter.



FIG. 6 shows a cross section view of an alternative embodiment of a base portion of a container according to the disclosed subject matter.



FIG. 7 shows a cross section view of another alternative embodiment of a base portion of a container according to the disclosed subject matter.



FIGS. 8A-8E illustrate alternative base mold embodiments according to the disclosed subject matter.



FIG. 9A is a cross section view of a base portion of a plastic container according to embodiments of the disclosed subject matter, similar to the base portion shown in FIG. 4A but without a ridge portion.



FIG. 9B is a cross section view of a base portion of a plastic container without a ridge portion according to embodiments of the disclosed subject matter.



FIG. 10 is a flow chart for a method according to embodiments of the disclosed subject matter.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended as a description of various embodiments of the disclosed subject matter and is not intended to represent the only embodiments in which the disclosed subject matter may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the disclosed subject matter. However, it will be apparent to those skilled in the art that the disclosed subject matter may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form in order to avoid obscuring the concepts of the disclosed subject matter.


The disclosed subject matter relates to base configurations for plastic containers, and systems, methods, and base molds thereof. In particular, the disclosed subject matter involves base configurations having particular up-stand geometries that assist or facilitate elevated temperature processing, such as hot-filling, pasteurization, and/or retort processing. Optionally, plastic containers according to embodiments of the disclosed subject matter also may be configured and operative to accommodate internal forces caused by post elevated temperature processing, such as temperature-induced forces from varying temperatures in transit to or in storage at a distributor (e.g., wholesale or retail vendor), for example, prolonged effects of the weight of the product stored therein over time, etc., and/or cooling operations (including exposure to ambient temperature) after or between elevated temperature processing.


Generally speaking, in various embodiments, plastic containers according to embodiments of the disclosed subject matter have a base portion with a bottom end having an up-stand wall of a particular geometry. The up-stand wall can resist movement in response to pressure variations or forces within the container and can facilitate movement or otherwise work in conjunction with a movable portion of the bottom end of the container base.


Thus, while an up-stand wall remains stationary or substantially stationary, a bottom end portion of the container can move in response to internal pressures within the container when hot-filled and sealed, for instance. Optionally, the bottom end portion may be constructed and operative to move downwardly and axially outward in response to internal pressures, such as headspace pressure or under the weight of the product, and also to move upwardly and axially inward in response to a different internal pressure, such as an internal vacuum created within the container due to cooling or cooling processing of the container. Alternatively, the bottom end portion may be constructed and operative to resist movement in one direction, for example, a downward and axially outward direction, in response to internal pressures (e.g., headspace pressure, product weight, etc.), but may be constructed and operative to move upward and axially inward in response to a different internal pressure, such as an internal vacuum created within the container due to cooling or cooling processing of the container.


Meanwhile, the up-stand wall may extend from the standing or support portion of the container vertically or substantially vertically, angling or sloping radially inward. The up-stand wall can be constructed and operative to remain stationary during movement of the movable bottom end portion of the container. Optionally, the up-stand wall may be constructed and operative to move or flex radially inward slightly during movement of the movable bottom end portion. Optionally, the up-stand wall may be constructed and operative to move or flex radially outward during movement of the movable bottom end portion. In the case of jars, for example, the up-stand wall can remain rigid or stationary in response to relatively higher temperatures and pressures typically involved in jar applications.


In various embodiments, the up-stand geometry can be of a stacked ring or rib configuration. Any suitable number of rings or ribs can be stacked, such as two, three, four, or five. The rings can be stacked directly vertically on top of one another, or may taper inward with each successive ring. Alternatively, only one ring may be implemented. Such use of up-stand geometry, and in particular, stacked ring configurations according to embodiments of the disclosed subject matter may provide the ability to use less material to form a jar, for instance, while providing desired container characteristics, such as the container's ability to compensate for internal pressure variations within the container after hot filling and sealing.


Plastic containers according to embodiments of the disclosed subject matter can be of any suitable configuration. For example, embodiments may include jars, such as wide-mouth jars, and base configurations thereof. Embodiments may also include single serve containers, bottles, jugs, asymmetrical containers, or the like, and base configurations thereof. Thus, embodiments of the disclosed subject matter can be filled with and contain any suitable product including a fluent, semi-fluent, or viscous food product, such as applesauce, spaghetti sauce, relishes, baby foods, brine, jelly, and the like, or a non-food product such as water, tea, juice, isotonic drinks or the like.


Plastic containers according to embodiments of the disclosed subject matter can be of any suitable size. For example, embodiments include containers with internal volumes of 24 oz., 45 oz., 48 oz., or 66 oz. Also, container sizes can include single-serving and multiple-serving size containers. Further, embodiments can also include containers with mouth diameters of 38 mm, 55 mm or higher, for instance.


Hot-fill processing can include filling a product into the container at any temperature in a range of at or about 130° F. to at or about 205° F. or in a range of at or about 185° F. to at or about 205° F. For example, a wide-mouth jar can be filled with a hot product at a temperature of at or about 205° F. Optionally, the hot-fill temperature can be above 205° F., such as 208° F. As another example, a single-serve container, such as for an isotonic, can be filled with a hot product at a temperature of 185° F. or slightly below.


Plastic containers according to embodiments of the disclosed subject matter can be capped or sealed using any suitable closure, such as a plastic or metallic threaded cap or lid, a foil seal, a lug closure, a plastic or metallic snap-fit lid or cap, etc.


Plastic containers according to embodiments of the disclosed subject matter can also optionally be subjected to through processing, such as pasteurization and/or retort processing.


Pasteurization can involve heating a filled and sealed container and/or the product therein to any temperature in the range of at or about 200° F. to at or about 215° F. or at or about 218° F. for any time period at or about five minutes to at or about forty minutes, for instance. In various embodiments, a hot rain spray may be used to heat the container and its contents.


Retort processing for food products, for instance, can involve heating a filled and sealed container and/or the product therein to any temperature in the range of at or about 230° F. to at or about 270° F. for any time period at or about twenty minutes to at or about forty minutes, for instance. Overpressure also may be applied to the container by any suitable means, such as a pressure chamber.



FIG. 1 is a side view of a plastic container in the form of a blow-molded plastic wide-mouth jar 100 according to embodiments of the disclosed subject matter. Jar 100 is shown in FIG. 1 in its empty condition, after blow-molding, but before hot-filling and sealing with a closure, and in the absence of any internal or external applied forces.


Jar 100 can be configured and operative to undergo elevated temperature processing, such as hot-filling, pasteurization, and/or retort processing. For example, jar 100 may receive a food product as described herein at an elevated temperature as described herein, such as at a temperature from 185° F. to 205° F. Jar 100 also can be constructed and operative to undergo cooling processing or cool-down operations. Jar 100 is further constructed and operative to accommodate or react in a certain manner to any of the aforementioned forces or pressures. Jar 100 also may be subjected to forces caused by post hot-fill and cooling operations, such as temperature-induced forces from varying temperatures in transit to or in storage at a distributor (e.g., wholesale or retail vendor), prolonged effects of the weight of the product stored therein over time, etc.


Jar 100 can include tubular sidewall 130, a threaded finish 110 operative to receive a threaded closure (e.g., a lid), a shoulder or dome 120, and a base 140. As indicated earlier, threaded finish 110 can be a wide-mouth finish and may be of any suitable dimension. For instance, the wide-mouth finish may have a diameter of 55 mm. Of course finishes and corresponding enclosures other than those that are threaded may be implemented. Jar 100 also may have upper and lower label bumpers or stops 121, 131. Label bumpers may define a label area between which a label, such as a wrap-around label, can be affixed to sidewall 130. Optionally, sidewall 130 may include a plurality of concentric ribs 135, circumscribing the sidewall 130 horizontally. Ribs 135 may be provided to reinforce the sidewall 130 and resist paneling, denting, barreling, ovalization, and/or other unwanted deformation of the sidewall 130, for example, in response to hot-filling, pasteurization, and/or retort processing. Not explicitly shown, one or more supplemental vacuum panels may be located on the dome 120 in order to prevent unwanted deformation of sidewall 130, for instance. Thus, the one or more supplemental vacuum panels may take up a portion of in induced vacuum caused by cooling a filled and sealed jar 100, and, as will be discussed in more detail below, an inner wall may flex or move to take up or remove a second portion of the induced vacuum.



FIG. 2 is a side view of another plastic container in the form of a jar 200 according to embodiments of the disclosed subject matter. As can be seen, jar 200 is similar to jar 100, but without ribs 135 in its sidewall 230. Upper and lower label bumpers or stops 121, 131 are shown more pronounced in FIG. 2, however, their dimensions in relation to sidewall 230 may be similar to or the same as shown in the jar 100 of FIG. 1. Additionally, jar 200 also may include one or more supplemental vacuum panels. Such one or more supplemental vacuum panels may be located on the dome 120 and/or in the sidewall 230 and/or between bumper stop 131 and the bottom standing support formed by the base 140. Accordingly, as with the one or more supplemental vacuum panels mentioned above for jar 100, the one or more supplemental vacuum panels may take up a portion of in induced vacuum caused by cooling a filled and sealed jar 200, and an inner wall may flex or move inward into the jar 200 to take up or remove a second portion of the induced vacuum.



FIGS. 3A-3C show views of base 140 and in particular a bottom end thereof, with FIG. 3A being a cross section view of base 140, FIG. 3B being a magnified view of the circled portion of FIG. 3A, and FIG. 3C being a bottom end view of base 140.


Generally speaking, the bottom end of the base 140 is constructed and operative to be responsive to elevated temperature processing, such as during and after hot-filling and sealing and optionally during pasteurization and/or retort processing. The bottom end may also be subjected to forces caused by post hot-fill and cooling operations, such as temperature-induced forces from varying temperatures in transit to or in storage at a distributor (e.g., wholesale or retail vendor), prolonged effects of the weight of the product stored therein over time, etc., and can accommodate such forces, such as by preventing a portion of the bottom end from setting and/or moving to a non-recoverable position. As indicated above, an up-stand wall is constructed and operative to remain stationary or substantially stationary in response to elevated temperature processing and associated movement a movable bottom end portion of the container.


The bottom end of base 140 includes a bearing portion 142, for example, a standing ring that can define a bearing or standing surface of the jar. Optionally, the base 140 can be smooth and without surface features from bearing portion 142 to lower label bumper or stop 131.


The bottom end of base 140 can also include an up-stand geometric wall 144 of a stacked three-ring configuration circumscribed by the bearing portion 142. As can be seen, up-stand wall 144 can extend generally upward and radially inward from the bearing portion 142. However, alternatively, in various embodiments, up-stand wall 144 may extend only axially upward without extending radially inward. As yet another option, up-stand wall 144 may extend axially upward and slightly radially outward.


In embodiments, up-stand wall 144 can include a plurality of rings. FIGS. 3A-C show three rings, 144A, 144B, and 144C, for example. Ring 144A can have a first diameter or circumference, ring 144B can have a second diameter or circumference, and ring 144C can have a third diameter or circumference, wherein the first diameter (or circumference) can be greater than the second and third diameters (or circumferences), and the second diameter (or circumference) can be greater than the third diameter (or circumference). See in particular FIG. 3C. As will be discussed later, embodiments of the disclosed subject matter are not limited to three rings. Further, embodiments are not limited to rings all having different diameters or circumferences. Thus, in various embodiments, none of the rings may have the same diameters or circumferences, or, alternatively, only some of the rings may have the same or different diameters or circumferences. In yet another embodiment, all of the rings may have the same diameter or circumference.


Rings 144A, 144B, and 144C can have same or different amounts of vertical extension, d1, d2, d3. Thus, some or all of the rings 144A, 144B, 144C can have a same vertical extension dy, and/or some or all of the rings 144A, 144B, 144C can have a same radius of curvature. Optionally, none of the rings 144A, 144B, 144C can have a same vertical extension dy and/or a same radius of curvature. Similarly, rings 144A, 144B, and 144C can have the same or different amounts of horizontal extension radially inward dx. In FIG. 3B, for instance, rings 144A and 144B have the same horizontal extension radially inward and ring 144C extends in the x direction more than does either of rings 144A or 144B. Further, rings 144A, 144B, and 144C can have same or different radii of curvatures.


In various embodiments, up-stand wall 144 can extend from bearing portion 142 axially upward to an apex thereof. Thus, at an uppermost portion of a top ring (ring 144C in the case of the embodiment shown in FIGS. 3A-3C) may exist a ridge 146. Ridge 146 can be at a junction between up-stand wall 144 and an inner wall 148. As shown in FIG. 3A, the apex of up-stand wall 144 can be a ridge or rim 146 that is circular in end view of the jar. From the top of ridge 146, there may be a relatively sharp drop off to an inner wall 148. Alternatively, there may be no ridge and the top of the up-stand wall 144, and the up-stand wall 144 can transition gradually horizontally, tangentially, or at a subtle radius downward or upward to inner wall 148. In the case of no ridge or ridge 146, in various embodiments, the inner wall 148 may extend horizontally, downward (e.g., by an angle), or at a subtle radius downward or upward. Thus, inner wall 148 can be formed at a decline (ridge 146 or no ridge) with respect to horizontal, represented by an angle. The angle can be any suitable angle. In various embodiments, the angle can be 3°, 8°, 10° any angle from 3° to 12°, from 3° to 14°, from 8° to 12°, or from 8° to 14°. Alternatively, as indicated above, inner wall 148 may not be at an angle, and may horizontally extend, or, inner wall 148 may be at an incline with respect to horizontal in its as-formed state.


Inner wall 148 can be of any suitable configuration and can move as described herein. In various embodiments, inner wall 148 can be as set forth in U.S. application Ser. No. 13/210,358 filed on Aug. 15, 2011, the entire content of which is hereby incorporated by reference into the present application.


Inner wall 148 can be circumscribed by the up-stand wall 144, and the inner wall 148 and up-stand wall 144 can be cooperatively operative so as to accommodate pressure variation within the jar after the jar has been hot-filled with a product at a filling temperature as described herein and sealed with an enclosure (e.g., a threaded lid).


The straight, “middle” dashed line in FIG. 3A indicates that inner wall 148 can be of any suitable configuration, with more specific examples being provided later. In various embodiments, the inner wall 148 can flex in response to the pressure variation within the jar after the jar has been hot-filled with a product at a filling temperature as described herein and sealed with an enclosure. For instance, inner wall 148 may flex downward as shown by dashed line 148(1) in response to an internal pressure P(1). Internal pressure P(1) may be caused by elevated temperature of a hot product being filled into the jar and then the jar being sealed, for example (i.e., headspace pressure). Internal pressure P(1) also may be caused by elevated temperature of a product upon pasteurization or retort processing at an elevated temperature. Optionally, inner wall 148 can be constructed so that it is at or above a horizontal plane running through the bearing surface at all times during the downward flexing of the inner wall 148.


Optionally or alternatively, inner wall 148 may flex upward as shown by dashed line 148(2) in response to an external pressure P(2), which is shown outside the jar, but can be representative of a force caused by an internal vacuum created by cooling a hot-filled product. Up-stand wall 144 is configured and operative to withstand or substantially withstand movement as the inner wall 148 flexes in response to the pressure variation within the jar after the jar has been hot-filled and sealed with the lid.



FIGS. 4A-4C show an example of a jar base 142 with a three-ring up-stand wall 144A-C and with a particular configuration for the inner wall 448, with FIG. 4B also showing a base mold 500B for forming the jar base 142 shown in FIGS. 4A-4C. Inner wall 448 can be relatively flat with the exception of concentric rings 450A, 450B. Inner wall 448 also may include a nose cone 452 with a gate 454, which may be used for injection of plastic when blow molding the jar.


Generally speaking, inner wall 448 can move upward and/or downward by any suitable angle. Further, alternatively, in various embodiments, the angle of movement may be entirely below the initial, blow molded position of inner wall 448. Alternatively, the angle of movement may be entirely above the initial, blow molded position of inner wall 448. Or the angle of movement can bisect or split the initial blow molded position. In various embodiments, the initial blow molded position for inner wall 448 may be horizontal, or, alternatively, it may be three degrees above or below horizontal.


In various embodiments, inner wall 448 can flex downward, with concentric rings 450A, 450B controlling the extent to which the inner wall 448 may flex downward. Optionally, concentric rings 450A, 450B may assist inner wall 448 move back upward, for example to the initial blow molded position of the inner wan 448 or, for example, above the initial blow molded position. Such movement above the initial blow molded position may relieve some or all of an induced vacuum and even create a positive pressure within the jar.


Optionally, inner wall 448 also can have a nose cone (or gate riser) 452 with a gate 454 located at a central longitudinal axis of the jar, which may be used for injection of plastic when blow molding the jar. In various embodiments, nose cone 452 may serve as an anti-inverting portion that is constructed and operative to move downward in response to the increased pressure and/or upward in response to the decreased pressure without deforming or without substantially deforming as it moves upward and/or downward with the inner wall 448.


Another example, FIG. 9A shows, is a cross section, a base portion according to embodiments of the disclosed subject matter, without a ridge, and with item 146 now representing a horizontal, or declined, or subtle radial downward transition from up-stand wall 144 to inner wall 148.



FIG. 9B shows, in cross section, yet another example of a base portion according to embodiments of the disclosed subject matter without a ridge, with item 146 now representing a curved downward or parabolic transition from up-stand wall 144 to inner wall 148. Optionally, inner wall 148 can be curved axially outward along a single major radius.



FIG. 5A is a base mold 500A to form a bottom end portion of a base of a plastic container according to embodiments of the disclosed subject matter. Base mold 500A include a body portion 502, a bearing surface forming portion 542 to form a portion of the bottom bearing surface, a ringed wall forming portion 544 to form the rigid ringed wall, a lip portion 546 to form a ridge of the bottom end portion, and an inner wall forming portion 548 to form a inner wall of a container. Ringed wall forming portion 544A-C may be comprised of a stack of three ring protrusions 544A-C to form a ringed wall of a container, wherein respective maximum diameters of the ring protrusions decrease in value from the bottom of the stack to the top of the stack.


Note that portion 548 shown in FIG. 5A is intended to indicate that any suitable inner wall can be formed (including as shown). FIG. 5B, for example, shows a base mold 500B with a specific inner wall forming portion 548. Base molds according to embodiments of the disclosed subject matter can for bottom end portions of container bases according container embodiments of the disclosed subject matter. Not explicitly shown by FIGS. 5A and 5B, base molds according to embodiments of the disclosed subject matter can be ridgeless (i.e., without a ridge forming portion or lip portion 546).



FIGS. 6 and 7 show alternative embodiments of up-stand wall 144. More specifically, up-stand wall 144 in FIG. 6 is comprised of four rings 144A-D, and up-stand wall 144 in FIG. 7 is comprised of two rings. The number of rings for up-stand wall 144 may be set for a particular container based on the food product or non-food product to be filled into the container. Rings 144 shown in FIGS. 6 and 7 can be of different configurations (e.g., different lengths of curvature (i.e., arc length), different heights, x-axis direction length, y-axis length, etc.).



FIGS. 8A-8E illustrate alternative base molds 800A-800E and respective up-stand geometries 844A-844E according to embodiments of the disclosed subject matter. Thus, this disclosure covers corresponding container bases and in particular up-stand wall configurations formed by these base molds 800A-800E and variations thereof.



FIG. 10 is a flow chart for a method 1000 according to embodiments of the disclosed subject matter.


Methods according to embodiments of the disclosed subject matter can include providing a plastic container as set forth herein (S1002). Providing a plastic container can include blow molding or otherwise forming the container. Providing a plastic container also can include packaging, shipping, and/or delivery of a container. Methods can also include filling, for example, hot-filling the container with a product such as described herein, at a temperature as described herein (S1004). After filling, the container can be sealed with a closure such as described herein (S1006). After filling and sealing the container, a base portion of the container can accommodate or act in response to an internal pressure or force in the filled and sealed container such as described herein (S1008). As indicated above, internal pressure within the sealed and filled container can be caused by hot-filling the container, pasteurization processing to the container, retort processing to the container, or cooling processing to the container. The container base portion can accommodate or act responsively as set forth herein based on the internal pressure or force and the particular configuration and construction of the base portion as set forth herein.


Though containers in the form of wide-mouth jars have been particularly discussed above and shown in various figures, embodiments of the disclosed subject matter are not limited to wide-mouth jars and can include plastic containers of any suitable shape or configuration and for any suitable use, including bottles, jugs, asymmetrical containers, single-serve containers or the like. Also, embodiments of the disclosed subject matter shown in the drawings have circular cross-sectional shapes with reference to a central longitudinal axis. However, embodiments of the disclosed subject matter are not limited to containers having circular cross sections and thus container cross sections can be square, rectangular, oval, or asymmetrical.


Further, as indicated above, hot-filling below 185° F. (e.g., 180° F.) or above 205° F. is also embodied in aspects of the disclosed subject matter. Pasteurizing and/or retort temperatures above 185°, above 200° F., or above 205° F. (e.g., 215° F.) are also embodied in aspects of the disclosed subject matter.


Containers, as set forth according to embodiments of the disclosed subject matter can be mode of a thermoplastic made in any suitable way, for example, blow molded (including injection) PET, PEN, or blends thereof. Additionally, optionally, containers according to embodiments of the disclosed subject matter can be multilayered, including a layer of gas barrier material, a layer of scrap material, and/or a polyester resin modified for ultra-violet (“UV”) light protection or resistance.


Having now described embodiments of the disclosed subject matter, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Thus, although particular configurations have been discussed herein, other configurations can also be employed. Numerous modifications and other embodiments (e.g., combinations, rearrangements, etc.) are enabled by the present disclosure and are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the disclosed subject matter and any equivalents thereto. Features of the disclosed embodiments can be combined, rearranged, omitted, etc., within the scope of the invention to produce additional embodiments. Furthermore, certain features may sometimes be used to advantage without a corresponding use of other features. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents, and variations that are within the spirit and scope of the present invention.

Claims
  • 1. A method comprising: providing a blow-molded plastic container, the plastic container including a sidewall configured to support a film label, a finish projecting from an upper end of the sidewall and operative to cooperatively receive a closure to sealingly enclose the plastic container, and a base extending from the sidewall to form a bottom enclosed end of the plastic container, wherein the bottom end comprises: an annular bearing portion defining a standing surface for the container, the base being smooth and without surface features from said bearing portion to a lower label stop,a cylindrical wall including a first concave ring, a second concave ring, and a third concave ring, the cylindrical wall circumscribed by said bearing portion and extending continuously upward from said bearing portion toward said finish generally in a radially inward direction, the first concave ring being continuous throughout a first circumference of the cylindrical wall and defined by a first diameter and a first cross-sectional radius, the second concave ring extending directly from the first concave ring and being continuous throughout a second circumference of the cylindrical wall and defined by a second diameter and a second cross-sectional radius, and the third concave ring extending directly from the second concave ring and being continuous throughout a third circumference of the cylindrical wall and defined by a third diameter and a third cross-sectional radius, the first diameter being greater than the second and third diameters, and the second diameter being greater than the third diameter, andan inner wall circumscribed by said cylindrical wall with an annular shoulder therebetween,hot-filling the plastic container via the finish with a product;sealing the hot-filled plastic container with the closure; andcooling the hot-filled and sealed plastic container;wherein an internal pressure characteristic after hot-filling and sealing the plastic container is compensated by the inner wall with substantially no movement of the cylindrical wall.
  • 2. The method of claim 1, wherein each of the first, second, and third concave rings has a different circumference.
  • 3. The method of claim 1, further comprising: blow molding the plastic container using a mold comprised of a base mold that forms the cylindrical wall and the inner wall;conveying the plastic container with its annular bearing portion resting on a flat surface while the internal pressure is compensated by the inner wall; andperforming at least one of pasteurization and retort processing on the filled and sealed container after said filling and sealing.
  • 4. The method of claim 1, wherein the plastic container is a wide-mouth jar.
  • 5. The method of claim 1, wherein a temperature of the hot-filled product upon filling is from 200° F. to 205° F.
  • 6. The method of claim 5, wherein the internal pressure is compensated by movement of the inner wall outward in response to an overpressure created in the hot-filled and sealed container.
  • 7. The method of claim 5, wherein said inner wall and said cylindrical wall are cooperatively operative so as to accommodate pressure variation within the container after the container has been hot-filled with a product at a temperature from 200° F. to 205° F. and sealed with the closure, said inner wall being operative to flex in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure, whereas said cylindrical wall is operative to withstand movement as said inner wall flexes in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure.
  • 8. The method of claim 1, wherein the plastic container is a wide-mouth jar,wherein a temperature of the hot-filled product upon filling is from 200° F. to 205° F.,wherein the base is smooth and without surface features from the bearing portion to the sidewall,wherein the first concave ring has a greater circumference than the third concave ring, andwherein the internal pressure is compensated by movement of the inner wall outward in response to an overpressure created in the hot-filled and sealed jar.
  • 9. The method of claim 1, wherein the base is smooth and without surface features from the bearing portion to the sidewall.
  • 10. The method of claim 1, wherein the first concave ring has a greater circumference than the third concave ring.
  • 11. The method of claim 10, wherein the second concave ring has a circumference between the respective circumferences of the third and first concave rings.
  • 12. The method of claim 1, wherein the cylindrical wall further includes a fourth concave ring extending directly from the third concave ring and defined by a fourth diameter and having a fourth cross-sectional radius, the first, second, and third diameters being greater than the fourth diameter.
  • 13. The method of claim 1, wherein the plastic container is a wide-mouth jar, wherein a temperature of the hot-filled product upon filling is from 185° F. to 205° F.
  • 14. The method of claim 13, wherein the internal pressure is compensated by movement of the inner wall inward in response to a vacuum created by said cooling, said movement inward reducing the vacuum.
  • 15. The method of claim 13, wherein said inner wall and said cylindrical wall are cooperatively operative so as to accommodate pressure variation within the container after the container has been hot-filled with a product at a temperature from 185° F. to 205° F. and sealed with the closure, said inner wall being operative to flex in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure, whereas said cylindrical wall is operative to withstand movement as said inner wall flexes in response to the pressure variation within the container after the container has been hot-filled and sealed with the closure.
  • 16. The method of claim 15, wherein the pressure variation is headspace pressure associated with the hot-filling with the product at the temperature from 185° F. to 205° F. and sealing the container, said inner wall being configured and operative to flex downward in response to the headspace pressure, andsaid sidewall withstands movement in response to the pressure variation.
  • 17. The method of claim 16, wherein said inner wall is constructed so as to be at or above the bearing surface at all times when the inner wall flexes in response to the headspace pressure.
  • 18. The method of claim 15, wherein the pressure variation is an internal vacuum associated with cooling of the hot-filled and sealed container, said inner wall being configured and operative to flex upward and inward in response to the vacuum, andsaid sidewall withstands movement in response to the vacuum.
  • 19. The method according to claim 18, wherein the upward and inward flexing of said inner wall at least partially reduces the vacuum in the container.
  • 20. The method of claim 1, wherein the plastic container is a wide-mouth jar, wherein a temperature of the hot-filled product upon filling is from 185° F. to 205° F.,wherein the base is smooth and without surface features from the bearing portion to the sidewall, wherein the first concave ring has a greater circumference than the third concave ring, andwherein the internal pressure is compensated by movement of the inner wall inward in response to a vacuum created by said cooling, said movement inward reducing the vacuum.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/210,350 filed Aug. 15, 2011, which is incorporated by reference herein in its entirety.

US Referenced Citations (415)
Number Name Date Kind
91754 Lawrence Jun 1869 A
163747 Cummings May 1875 A
1351496 Spooner Aug 1920 A
1499239 Malmquist Jun 1924 A
2027430 Hansen Jan 1936 A
2142257 Saeta Jan 1937 A
D110624 Mekeel, Jr. Jul 1938 S
2124959 Vogel Jul 1938 A
2378324 Ray et al. Jun 1945 A
2880902 Owsen Apr 1959 A
2960248 Kuhlman Nov 1960 A
2971671 Shakman Feb 1961 A
2982440 Harrison May 1961 A
3043461 Glassco Jul 1962 A
3081002 Tauschinski et al. Mar 1963 A
3090478 Stanley May 1963 A
3142371 Rice et al. Jul 1964 A
3174655 Hurschman Mar 1965 A
3198861 Marvel Aug 1965 A
3201111 Afton Aug 1965 A
3301293 Santelli Jan 1967 A
3325031 Singier Jun 1967 A
3397724 Bolen et al. Aug 1968 A
3400853 Jacobsen Sep 1968 A
3409167 Blanchard Nov 1968 A
3417893 Lieberman Dec 1968 A
3426939 Young Feb 1969 A
3441982 Tsukahara et al. May 1969 A
3468443 Marcus Sep 1969 A
3482724 Heaton Dec 1969 A
3483908 Donovan Dec 1969 A
3485355 Stewart Dec 1969 A
3693828 Kneusel et al. Sep 1972 A
3704140 Petit et al. Nov 1972 A
3727783 Carmichael Apr 1973 A
3789785 Petit Feb 1974 A
3791508 Osborne et al. Feb 1974 A
3819789 Parker Jun 1974 A
3904069 Toukmanian Sep 1975 A
3918920 Barber Nov 1975 A
3935955 Das Feb 1976 A
3941237 MacGregor, Jr. Mar 1976 A
3942673 Lyu et al. Mar 1976 A
3949033 Uhlig Apr 1976 A
3956441 Uhliq May 1976 A
3979009 Walker Sep 1976 A
4035455 Rosenkranz et al. Jul 1977 A
4036926 Chang Jul 1977 A
4037752 Dulmaine et al. Jul 1977 A
4117062 Uhlig Sep 1978 A
4123217 Fischer et al. Oct 1978 A
4125632 Vosti et al. Nov 1978 A
4134510 Chang Jan 1979 A
4147271 Yamaguchi Apr 1979 A
4158624 Ford et al. Jun 1979 A
4170622 Uhlig Oct 1979 A
4174782 Obsomer Nov 1979 A
4177239 Gittner et al. Dec 1979 A
4219137 Hutchens Aug 1980 A
4231483 Dechenne et al. Nov 1980 A
4247012 Alberghini Jan 1981 A
4249666 Hubert et al. Feb 1981 A
4301933 Yoshino et al. Nov 1981 A
4318489 Snyder et al. Mar 1982 A
4318882 Agrawal et al. Mar 1982 A
4338765 Ohmori et al. Jul 1982 A
4355728 Ota et al. Oct 1982 A
4377191 Yamaguchi Mar 1983 A
4378328 Przytulla et al. Mar 1983 A
4381061 Cerny et al. Apr 1983 A
D269158 Gaunt May 1983 S
4386701 Galer Jun 1983 A
4407421 Waugh Oct 1983 A
4436216 Chang Mar 1984 A
4442944 Yoshino et al. Apr 1984 A
4444308 MacEwen Apr 1984 A
4450878 Takada et al. May 1984 A
4465199 Aoki Aug 1984 A
4495974 Pohorski Jan 1985 A
4497621 Kudert et al. Feb 1985 A
4497855 Agrawal et al. Feb 1985 A
4525401 Pocock et al. Jun 1985 A
4542029 Caner et al. Sep 1985 A
4547333 Takada Oct 1985 A
4585158 Wardlaw, III Apr 1986 A
4610366 Estes et al. Sep 1986 A
4628669 Herron et al. Dec 1986 A
4642968 McHenry et al. Feb 1987 A
4645078 Reyner Feb 1987 A
4667454 McHenry et al. May 1987 A
4684025 Copland et al. Aug 1987 A
4685273 Caner et al. Aug 1987 A
D292378 Brandt et al. Oct 1987 S
4701121 Jakobsen et al. Oct 1987 A
4723661 Hoppmann et al. Feb 1988 A
4724855 Jackson et al. Feb 1988 A
4725464 Collette Feb 1988 A
4747507 Fitzgerald et al. May 1988 A
4749092 Sugiura et al. Jun 1988 A
4769206 Reymann et al. Sep 1988 A
4773458 Touzani Sep 1988 A
4785949 Krishnakumar et al. Nov 1988 A
4785950 Miller et al. Nov 1988 A
4807424 Robinson et al. Feb 1989 A
4813556 Lawrence Mar 1989 A
4831050 Cassidy et al. May 1989 A
4836398 Leftault, Jr. et al. Jun 1989 A
4840289 Fait et al. Jun 1989 A
4850493 Howard, Jr. Jul 1989 A
4850494 Howard, Jr. Jul 1989 A
4865206 Behm et al. Sep 1989 A
4867323 Powers Sep 1989 A
4880129 McHenry et al. Nov 1989 A
4887730 Touzani Dec 1989 A
4892205 Powers et al. Jan 1990 A
4896205 Weber Jan 1990 A
4921147 Poirier May 1990 A
4927679 Beck May 1990 A
4962863 Wendling et al. Oct 1990 A
4967538 Leftault, Jr. et al. Nov 1990 A
4978015 Walker Dec 1990 A
4997692 Yoshino Mar 1991 A
5004109 Bartley et al. Apr 1991 A
5005716 Eberle Apr 1991 A
5014868 Wittig et al. May 1991 A
5020691 Nye Jun 1991 A
5024340 Alberghini et al. Jun 1991 A
5033254 Zenger Jul 1991 A
5054632 Alberghini et al. Oct 1991 A
5060453 Alberghini et al. Oct 1991 A
5067622 Garver et al. Nov 1991 A
5090180 Sorensen Feb 1992 A
5092474 Leigner Mar 1992 A
5122327 Spina et al. Jun 1992 A
5133468 Brunson et al. Jul 1992 A
5141121 Brown et al. Aug 1992 A
5178290 Ota et al. Jan 1993 A
5199587 Ota et al. Apr 1993 A
5199588 Hayashi Apr 1993 A
5201438 Norwood Apr 1993 A
5217737 Gygax et al. Jun 1993 A
5234126 Jonas et al. Aug 1993 A
5244106 Takacs Sep 1993 A
5251424 Zenger et al. Oct 1993 A
5255889 Collette et al. Oct 1993 A
5261544 Weaver, Jr. Nov 1993 A
5279433 Krishnakumar et al. Jan 1994 A
5281387 Collette et al. Jan 1994 A
5310043 Alcorn May 1994 A
5333761 Davis et al. Aug 1994 A
5337909 Vailliencourt Aug 1994 A
5337924 Dickie Aug 1994 A
5341946 Valliencourt et al. Aug 1994 A
5389332 Amari et al. Feb 1995 A
5392937 Prevot et al. Feb 1995 A
5405015 Bhatia et al. Apr 1995 A
5407086 Ota et al. Apr 1995 A
5411699 Collette et al. May 1995 A
5454481 Hsu Oct 1995 A
5472105 Krishnakumar et al. Dec 1995 A
5472181 Lowell Dec 1995 A
RE35140 Powers, Jr. Jan 1996 E
5484052 Pawloski et al. Jan 1996 A
D366831 Semersky et al. Feb 1996 S
5492245 Kalkanis Feb 1996 A
5503283 Semersky Apr 1996 A
5511966 Matsui Apr 1996 A
5543107 Malik et al. Aug 1996 A
5593063 Claydon et al. Jan 1997 A
5598941 Semersky et al. Feb 1997 A
5632397 Fandeux et al. May 1997 A
5642826 Melrose Jul 1997 A
5648133 Suzuki et al. Jul 1997 A
5672730 Cottman Sep 1997 A
5687874 Omori et al. Nov 1997 A
5690244 Darr Nov 1997 A
5697489 Deonarine et al. Dec 1997 A
5704504 Bueno Jan 1998 A
5713480 Petre et al. Feb 1998 A
5718030 Langmack et al. Feb 1998 A
5730314 Wiemann et al. Mar 1998 A
5730914 Ruppman, Sr. Mar 1998 A
5735420 Nakamaki et al. Apr 1998 A
5737827 Kuse et al. Apr 1998 A
5758802 Wallays Jun 1998 A
5762221 Tobias et al. Jun 1998 A
5780130 Hansen et al. Jul 1998 A
5785197 Slat Jul 1998 A
5819507 Kaneko et al. Oct 1998 A
5829614 Collette et al. Nov 1998 A
5860556 Robbins, III Jan 1999 A
5887739 Prevot et al. Mar 1999 A
5888598 Brewster et al. Mar 1999 A
5897090 Smith et al. Apr 1999 A
5906286 Matsuno et al. May 1999 A
5908128 Krishnakumar et al. Jun 1999 A
D413519 Eberle et al. Sep 1999 S
D415030 Searle et al. Oct 1999 S
5971184 Krishnakumar et al. Oct 1999 A
5976653 Collette et al. Nov 1999 A
5989661 Krishnakumar et al. Nov 1999 A
6016932 Gaydosh et al. Jan 2000 A
RE36639 Okhai Apr 2000 E
6045001 Seul Apr 2000 A
6051295 Schloss et al. Apr 2000 A
6063325 Nahill et al. May 2000 A
6065624 Steinke May 2000 A
6068110 Kumakiri et al. May 2000 A
6074596 Jacquet Jun 2000 A
6077554 Wiemann et al. Jun 2000 A
6090334 Matsuno et al. Jul 2000 A
6105815 Mazda Aug 2000 A
6113377 Clark Sep 2000 A
D433946 Rollend et al. Nov 2000 S
6176382 Bazlur Jan 2001 B1
D440877 Lichtman et al. Apr 2001 S
6209710 Mueller et al. Apr 2001 B1
6213325 Cheng et al. Apr 2001 B1
6217818 Collette et al. Apr 2001 B1
6228317 Smith et al. May 2001 B1
6230912 Rashid May 2001 B1
6248413 Barel et al. Jun 2001 B1
6253809 Paradies Jul 2001 B1
6273282 Ogg et al. Aug 2001 B1
6277321 Vailliencourt et al. Aug 2001 B1
6298638 Bettle Oct 2001 B1
D450595 Ogg et al. Nov 2001 S
6354427 Pickel et al. Mar 2002 B1
6375025 Mooney Apr 2002 B1
6390316 Mooney May 2002 B1
6409035 Darr et al. Jun 2002 B1
6413466 Boyd et al. Jul 2002 B1
6439413 Prevot et al. Aug 2002 B1
6460714 Silvers et al. Oct 2002 B1
6467639 Mooney Oct 2002 B2
6485669 Boyd et al. Nov 2002 B1
6494333 Sasaki et al. Dec 2002 B2
6502369 Andison et al. Jan 2003 B1
6514451 Boyd et al. Feb 2003 B1
6569376 Wurster et al. May 2003 B2
6585123 Pedmo et al. Jul 2003 B1
6585124 Boyd et al. Jul 2003 B2
6595380 Silvers Jul 2003 B2
6612451 Tobias et al. Sep 2003 B2
6635217 Britton Oct 2003 B1
D482976 Melrose Dec 2003 S
6662960 Hong et al. Dec 2003 B2
6672470 Wurster et al. Jan 2004 B2
6676883 Hutchinson et al. Jan 2004 B2
D492201 Pritchett et al. Jun 2004 S
6749075 Bourque et al. Jun 2004 B2
6749780 Tobias Jun 2004 B2
6763968 Boyd et al. Jul 2004 B1
6763969 Melrose et al. Jul 2004 B1
6769561 Futral et al. Aug 2004 B2
6779673 Melrose et al. Aug 2004 B2
6796450 Prevot et al. Sep 2004 B2
6896147 Trude May 2005 B2
6920992 Lane et al. Jul 2005 B2
6923334 Melrose et al. Aug 2005 B2
6929138 Melrose et al. Aug 2005 B2
6932230 Pedmo et al. Aug 2005 B2
6942116 Lisch et al. Sep 2005 B2
6974047 Kelley et al. Dec 2005 B2
6983858 Slat et al. Jan 2006 B2
6997336 Yourist et al. Feb 2006 B2
7017763 Kelley Mar 2006 B2
7051073 Dutta May 2006 B1
7051889 Boukobza May 2006 B2
7051890 Onoda et al. May 2006 B2
D522368 Darr et al. Jun 2006 S
7073675 Trude Jul 2006 B2
7077279 Melrose Jul 2006 B2
7080747 Lane et al. Jul 2006 B2
D531910 Melrose Nov 2006 S
7137520 Melrose Nov 2006 B1
7140505 Roubal et al. Nov 2006 B2
7150372 Lisch et al. Dec 2006 B2
D535884 Davis et al. Jan 2007 S
7159374 Abercrombie, III et al. Jan 2007 B2
D538168 Davis et al. Mar 2007 S
D547664 Davis et al. Jul 2007 S
7299941 McMahon et al. Nov 2007 B2
7334695 Bysick et al. Feb 2008 B2
7350657 Eaton et al. Apr 2008 B2
D572599 Melrose Jul 2008 S
7416089 Kraft et al. Aug 2008 B2
D576041 Melrose et al. Sep 2008 S
7451886 Lisch et al. Nov 2008 B2
7543713 Trude et al. Jun 2009 B2
7552834 Tanaka et al. Jun 2009 B2
7574846 Sheets et al. Aug 2009 B2
7694842 Melrose Apr 2010 B2
7726106 Kelley et al. Jun 2010 B2
7732035 Pedmo et al. Jun 2010 B2
7735304 Kelley et al. Jun 2010 B2
7748551 Gatewood et al. Jul 2010 B2
7780025 Simpson, Jr. et al. Aug 2010 B2
D623952 Yourist et al. Sep 2010 S
7799264 Trude Sep 2010 B2
7882971 Kelley et al. Feb 2011 B2
7900425 Bysick et al. Mar 2011 B2
7926243 Kelley et al. Apr 2011 B2
D637495 Gill et al. May 2011 S
D637913 Schlies et al. May 2011 S
D641244 Bysick et al. Jul 2011 S
7980404 Trude et al. Jul 2011 B2
8011166 Sheets et al. Sep 2011 B2
8017065 Trude et al. Sep 2011 B2
D646966 Gill et al. Oct 2011 S
8028498 Melrose Oct 2011 B2
8047388 Kelley et al. Nov 2011 B2
8075833 Kelley Dec 2011 B2
D653119 Hunter et al. Jan 2012 S
8096098 Kelley et al. Jan 2012 B2
D653550 Hunter Feb 2012 S
D653957 Yourist et al. Feb 2012 S
8162655 Trude et al. Apr 2012 B2
8171701 Kelley et al. May 2012 B2
8205749 Korpanty et al. Jun 2012 B2
8235704 Kelley Aug 2012 B2
8323555 Trude et al. Dec 2012 B2
20010035391 Young et al. Nov 2001 A1
20020063105 Darr et al. May 2002 A1
20020074336 Silvers Jun 2002 A1
20020096486 Bourque et al. Jul 2002 A1
20020153343 Tobias Oct 2002 A1
20020158038 Heisel et al. Oct 2002 A1
20030015491 Melrose et al. Jan 2003 A1
20030186006 Schmidt et al. Oct 2003 A1
20030196926 Tobias et al. Oct 2003 A1
20030205550 Prevot et al. Nov 2003 A1
20030217947 Ishikawa et al. Nov 2003 A1
20040000533 Kamineni et al. Jan 2004 A1
20040016716 Melrose et al. Jan 2004 A1
20040074864 Melrose et al. Apr 2004 A1
20040129669 Kelley et al. Jul 2004 A1
20040149677 Slat et al. Aug 2004 A1
20040159626 Trude Aug 2004 A1
20040164045 Kelley Aug 2004 A1
20040173565 Semersky et al. Sep 2004 A1
20040211746 Trude Oct 2004 A1
20040232103 Lisch et al. Nov 2004 A1
20050035083 Pedmo et al. Feb 2005 A1
20050211662 Eaton et al. Sep 2005 A1
20050218108 Bangi et al. Oct 2005 A1
20060006133 Lisch et al. Jan 2006 A1
20060051541 Steele Mar 2006 A1
20060113274 Keller et al. Jun 2006 A1
20060118508 Kraft et al. Jun 2006 A1
20060138074 Melrose Jun 2006 A1
20060138075 Roubal Jun 2006 A1
20060151425 Kelley et al. Jul 2006 A1
20060231985 Kelley Oct 2006 A1
20060243698 Melrose Nov 2006 A1
20060255005 Melrose Nov 2006 A1
20060261031 Melrose Nov 2006 A1
20070017892 Melrose Jan 2007 A1
20070045222 Denner et al. Mar 2007 A1
20070045312 Abercrombie, III et al. Mar 2007 A1
20070051073 Kelley et al. Mar 2007 A1
20070084821 Bysick Apr 2007 A1
20070125742 Simpson, Jr. et al. Jun 2007 A1
20070125743 Pritchett, Jr. et al. Jun 2007 A1
20070131644 Melrose Jun 2007 A1
20070181403 Sheets et al. Aug 2007 A1
20070199915 Denner et al. Aug 2007 A1
20070199916 Denner et al. Aug 2007 A1
20070215571 Trude Sep 2007 A1
20070235905 Trude et al. Oct 2007 A1
20080047964 Denner et al. Feb 2008 A1
20080156847 Hawk et al. Jul 2008 A1
20080257856 Melrose et al. Oct 2008 A1
20090090728 Trude et al. Apr 2009 A1
20090091067 Trude et al. Apr 2009 A1
20090092720 Trude et al. Apr 2009 A1
20090120530 Kelley et al. May 2009 A1
20090134117 Mooney May 2009 A1
20090159556 Patcheak Jun 2009 A1
20090202766 Beuerle et al. Aug 2009 A1
20090242575 Kamineni Oct 2009 A1
20090293436 Miyazaki et al. Dec 2009 A1
20100018838 Kelley et al. Jan 2010 A1
20100133228 Trude Jun 2010 A1
20100140838 Kelley et al. Jun 2010 A1
20100116778 Melrose Jul 2010 A1
20100163513 Pedmo Jul 2010 A1
20100170199 Kelley Jul 2010 A1
20100213204 Melrose Aug 2010 A1
20100219152 Derrien Sep 2010 A1
20100237083 Trude et al. Sep 2010 A1
20100270259 Russell et al. Oct 2010 A1
20100301058 Trude et al. Dec 2010 A1
20110017700 Patcheak Jan 2011 A1
20110049083 Scott et al. Mar 2011 A1
20110049084 Yourist et al. Mar 2011 A1
20110084046 Schlies et al. Apr 2011 A1
20110094618 Melrose Apr 2011 A1
20110108515 Gill et al. May 2011 A1
20110113731 Bysick et al. May 2011 A1
20110132865 Hunter et al. Jun 2011 A1
20110147392 Trude et al. Jun 2011 A1
20110210133 Melrose et al. Sep 2011 A1
20110266293 Kelley et al. Nov 2011 A1
20110284493 Yourist et al. Nov 2011 A1
20120074151 Gill et al. Mar 2012 A1
20120104010 Kelley May 2012 A1
20120107541 Nahill et al. May 2012 A1
20120118899 Wurster et al. May 2012 A1
20120132611 Trude et al. May 2012 A1
20120152964 Kelley et al. Jun 2012 A1
20120240515 Kelley et al. Sep 2012 A1
20120266565 Trude et al. Oct 2012 A1
20120267381 Trude et al. Oct 2012 A1
20130000259 Trude et al. Jan 2013 A1
Foreign Referenced Citations (105)
Number Date Country
2002257159 Mar 2007 AU
2077717 Mar 1993 CA
1761753 Jan 1972 DE
P2102319.8 Aug 1972 DE
3215866 Nov 1983 DE
225155 Jun 1987 EP
346518 Dec 1989 EP
0 502 391 Sep 1992 EP
0 505054 Sep 1992 EP
0521642 Jan 1993 EP
0551788 Jul 1993 EP
0572722 Dec 1993 EP
0666222 Aug 1995 EP
0 739 703 Oct 1996 EP
0609348 Jan 1997 EP
0916406 May 1999 EP
0957030 Nov 1999 EP
1063076 Dec 2000 EP
2248728 Nov 2010 EP
1571499 Jun 1969 FR
2607109 May 1988 FR
2919579 Feb 2009 FR
781103 Aug 1957 GB
1113988 May 1968 GB
2050919 Jan 1981 GB
2372977 Sep 2002 GB
S40-15909 Jun 1940 JP
48-31050 Apr 1973 JP
49-28628 Jul 1974 JP
54-070185 Jun 1979 JP
54-72181 Jun 1979 JP
35656830 May 1981 JP
S56-62911 May 1981 JP
56-72730 Jun 1981 JP
57-17730 Jan 1982 JP
57-37827 Feb 1982 JP
57-126310 Aug 1982 JP
57-210829 Dec 1982 JP
58-055005 Apr 1983 JP
61-192539 Aug 1986 JP
63-189224 Aug 1988 JP
64-004662 Feb 1989 JP
3-43342 Feb 1991 JP
03-076625 Apr 1991 JP
4-10012 Jan 1992 JP
5-193694 Aug 1993 JP
53-10239 Nov 1993 JP
H05-81009 Nov 1993 JP
06-270235 Sep 1994 JP
6-336238 Dec 1994 JP
07-300121 Nov 1995 JP
H08-048322 Feb 1996 JP
08-244747 Sep 1996 JP
8-253220 Oct 1996 JP
8282633 Oct 1996 JP
09-039934 Feb 1997 JP
9-110045 Apr 1997 JP
10-167226 Jun 1998 JP
10-181734 Jul 1998 JP
10-230919 Sep 1998 JP
3056271 Nov 1998 JP
11-218537 Aug 1999 JP
2000-229615 Aug 2000 JP
2002-127237 May 2002 JP
2002-160717 Jun 2002 JP
2002-326618 Nov 2002 JP
2003-095238 Apr 2003 JP
2004-026307 Jan 2004 JP
2006-501109 Jan 2006 JP
2007-216981 Aug 2007 JP
2008-189721 Aug 2008 JP
2009-001639 Jan 2009 JP
240448 Jun 1995 NZ
296014 Oct 1998 NZ
335565 Oct 1999 NZ
506684 Sep 2001 NZ
512423 Sep 2001 NZ
521694 Oct 2003 NZ
WO 9309031 May 1993 WO
WO 9312975 Jul 1993 WO
WO 9405555 Mar 1994 WO
WO 9406617 Mar 1994 WO
WO 9703885 Feb 1997 WO
WO 9714617 Apr 1997 WO
WO 9734808 Sep 1997 WO
WO 9734808 Sep 1997 WO
WO 9921770 May 1999 WO
WO 0038902 Jul 2000 WO
WO 0051895 Sep 2000 WO
WO 0112531 Feb 2001 WO
WO 0140081 Jun 2001 WO
WO 0174689 Oct 2001 WO
WO 0202418 Jan 2002 WO
WO 0218213 Mar 2002 WO
WO 02085755 Oct 2002 WO
WO 2004028910 Apr 2004 WO
WO 2004106176 Sep 2004 WO
WO 2004106175 Dec 2004 WO
WO 2005012091 Feb 2005 WO
WO 2005025999 Mar 2005 WO
WO 2005087628 Sep 2005 WO
WO 2006113428 Oct 2006 WO
WO 2007047574 Apr 2007 WO
WO 2007127337 Nov 2007 WO
WO 2010058098 May 2010 WO
Non-Patent Literature Citations (95)
Entry
U.S. Appl. No. 13/210,350 (U.S. Pat. No. 9,150,320), filed Aug. 15, 2011 (Oct. 6, 2015).
U.S. Appl. No. 13/210,358 (US 2013/0043202), filed Aug. 15, 2011 (Feb. 21, 2013).
U.S. Appl. No. 13/210,350, Mar. 29, 2013 Non-Final Office Action.
U.S. Appl. No. 13/210,350, Jul. 1, 2013 Response to Non-Final Office Action.
U.S. Appl. No. 13/210,350, Mar. 6, 2014 Final Office Action.
U.S. Appl. No. 13/210,350, May 6, 2014 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 13/210,350, Jun. 6, 2014 Request for Continued Examination (RCE).
U.S. Appl. No. 13/210,350, Jun. 3, 2015 Notice of Allowance.
U.S. Appl. No. 13/210,350, Sep. 3, 2015 Issue Fee Payment.
U.S. Appl. No. 13/210,358, Feb. 1, 2013 Non-Final Office Action.
U.S. Appl. No. 13/210,358, Apr. 19, 2013 Response to Non-Final Office Action.
U.S. Appl. No. 13/210,358, Jun. 12, 2013 Final Office Action.
U.S. Appl. No. 13/210,358, Aug. 12, 2013 Response after Final Action.
U.S. Appl. No. 13/210,358, Sep. 12, 2013 Response after Final Action.
U.S. Appl. No. 13/210,358, Sep. 12, 2013 Amendment and Request for Continued Examination (RCE).
U.S. Appl. No. 13/210,358, Oct. 18, 2013 Non-Final Office Action.
U.S. Appl. No. 13/210,358, Jan. 21, 2014 Response to Non-Final Office Action.
U.S. Appl. No. 13/210,358, Apr. 17, 2014 Final Office Action.
U.S. Appl. No. 13/210,358, Jun. 9, 2014 Response after Final Action.
U.S. Appl. No. 13/210,358, Aug. 18, 2014 Notice of Appeal Filed.
U.S. Appl. No. 13/210,358, Mar. 5, 2015 Appeal Brief Filed.
U.S. Appl. No. 13/210,358, May 15, 2015 Examiner's Answer to Appeal Brief.
U.S. Appl. No. 13/210,358, Jul. 15, 2015 Reply Brief Filed.
U.S. Appl. No. 12/770,824, filed Feb. 19, 2013, Trude.
U.S. Appl. No. 13/210,358, filed Aug. 15, 2011, Wurster et al.
U.S. Appl. No. 13/251,966, filed Oct. 3, 2011, Howell et al.
U.S. Appl. No. 13/410,902, filed Mar. 2, 2012, Gill.
U.S. Appl. No. 13/841,566, filed Mar. 15, 2013, Guerin.
U.S. Appl. No. 13/841,734, filed Mar. 15, 2013, Guerin.
“Application and Development of PET Plastic Bottle,” Publication of Tsing had Tongfang Optical Disc Co. Ltd., Issue 4, 2000, p. 41. (No English language translation available).
Australian Office Action dated Mar. 3, 2011 in Application No. 2010246525.
Australian Office Action dated Nov. 8, 2011, in Application No. 2011205106.
Communication dated Jun. 16, 2006, for European Application No. 04779595.0.
Communication dated Mar. 9, 2010 for European Application No. 09173 607.4 enclosing European search report and European search opinion dated Feb. 25, 2010.
U.S. Appl. No. 60/220,326, filed Jul. 24, 2000.
European Extended Search Report dated Feb. 20, 2015 in EP 12 82 3438.
European Search Report for EPA 10185697.9 dated Mar. 21, 2011.
Examination Report dated Jul. 25, 2012, in New Zealand Patent Application No. 593486.
Examination Report for counterpart New Zealand Application No. 545528 dated Jul. 1, 2008.
Examination Report for counterpart New Zealand Application No. 545528 dated Sep. 20, 2007.
Examination Report for counterpart New Zealand Application No. 569422 dated Jul. 1, 2008.
Examination Report for counterpart New Zealand Application No. 569422 dated Sep. 29, 2009.
Examination Report for New Zealand Application No. 550336 dated Mar. 26, 2009.
Examination Report for New Zealand Application No. 563134 dated Aug. 3, 2009.
Examiner Report dated Jul. 23, 2010, in Australian Application No. 2004261654.
Examiner Report dated May 26, 2010, in Australian Application No. 2004261654.
Examiner's Report dated Feb. 15, 2011 in Australian Application No. AU200630483.
Examiner's Report for Australian Application No. 2006236674 dated Nov. 6, 2009.
Examiner's Report for Australian Application No. 2006236674 dated Sep. 18, 2009.
Extended European Search Report for EPA 10185697.9 dated Jul. 6, 2011.
Final Official Notification dated Mar. 23, 2010 for Japanese Application No. 2006-522084.
International Preliminary Report on Patentability and Written Opinion dated Jun. 14, 2011 for PCT/US2009/066191. 7 pages.
International Search Report and Written Opinion dated Dec. 18, 2012, in PCT/US12/056330.
International Search Report and Written Opinion dated Mar. 15, 2010 for PCT/US2010/020045.
International Search Report and Written Opinion dated Sep. 8, 2009 for PCT/US2009/051023.
International Search Report and Written Opinion for PCT/US2007/006318 dated Sep. 11, 2007.
International Search Report and Written Opini398n for PCT/US2012/050251 dated Nov. 16, 2012.
International Search Report and Written Opinion for PCT/US2012/050256 dated Dec. 6, 2012.
International Search report dated Apr. 21, 2010 from corresponding PCT/US2009/066191 filed Dec. 1, 2009.
International Search Report for PCT/US06/40361 dated Feb. 26, 2007.
International Search Report for PCT/US2004/016405 dated Feb. 15, 2005.
International Search Report for PCT/US2004/024581 dated Jul. 25, 2005.
International Search Report for PCT/US2005/00837 4 dated Aug. 2, 2005.
International Search Report for PCT/US2006/014055 dated Aug. 24, 2006.
International Search Report for PCT/US2006/014055 dated Dec. 7, 2006.
IPRP (including Written Opinion) for PCT/US2004/016405 dated Nov. 25, 2005.
IPRP (including Written Opinion) for PCT/US2004/024581 dated Jan. 30, 2006.
IPRP (including Written Opinion) for PCT/US2005/008374 dated Sep. 13, 2006.
IPRP (including Written Opinion) for PCT/US2006/040361 dated Apr. 16, 2008.
IPRP (including Written Opinion) PCT/US2006/014055 dated Oct. 16, 2007.
IPRP (including Written Opinion) for PCT/US2007/006318 dated Sep. 16, 2008.
Japanese First Notice of Reasons for Rejection dated Aug. 23, 2011, in Application No. 2008-506738.
Japanese Second Notice of Reasons for Rejection dated Jun. 11, 2012, in Application No. 2008-506738.
Manas Chanda & Salil K. Roy, Plastics Technology Handbook, Fourth Edition, 2007 CRC Press, Taylor & Francis Group, pp. 2-34-2-37.
Office Action dated Aug. 14, 2012, in Japanese Patent Application No. 2008-535769.
Office Action dated Dec. 6, 2011, in Japanese Patent Application No. 2008-535769.
Office Action dated Feb. 3, 2010 for Canadian Application No. 2,604,231.
Office Action dated Feb. 5, 2013, in Mexican Patent Application No. MX/a/2008/004703.
Office Action dated Jul. 19, 2011, in Japanese Patent Application No. 2008-535769.
Office Action dated Jul. 26, 2010 for Canadian Application No. 2,527,001.
Office Action dated Oct. 31, 2011, in Australian Patent Application No. 2011203263.
Office Action for Application No. EP 06 750 165.0- 2307 dated Nov. 24, 2008.
Office Action for Chinese Application No. 200680012360.7 dated Jul. 10, 2009.
Office Action for Chinese Application No. 2006800380748 dated Jul. 10, 2009.
Office Action for European Application No. 07752979.0-2307 dated Aug. 21, 2009.
Office Action, Japanese Application No. 2008-506738 dated Aug. 23, 2011.
Official Notification for counterpart Japanese Application No. 2006-522084 dated May 19, 2009.
Patent Abstracts of Japan, vol. 012, No. 464; Dec. 6, 1988.
Patent Abstracts of Japan, vol. 015, No. 239, Jun. 20, 1991.
Patent Abstracts of Japan, vol. 2002, No. 09, Sep. 4, 2002.
Requisition dated Feb. 3, 2010 for Canadian Application No. 2,604,231.
Requisition dated Jan. 9, 2013 for Canadian Application No. 2,559,319.
Requisition dated May 25, 2010 for Canadian Application No. 2,534,266.
Taiwanese Office Action dated Jun. 10, 2012, Application No. 095113450.
Trial Decision dated Mar. 26, 2013, in Japanese Patent Application No. 2008-835739.
Related Publications (1)
Number Date Country
20150375883 A1 Dec 2015 US
Divisions (1)
Number Date Country
Parent 13210350 Aug 2011 US
Child 14846432 US