Plastic corrugated container with sealed edges

Information

  • Patent Grant
  • 11702241
  • Patent Number
    11,702,241
  • Date Filed
    Friday, March 8, 2019
    5 years ago
  • Date Issued
    Tuesday, July 18, 2023
    a year ago
Abstract
A reusable plastic container is provided. The container includes a plastic container body having opposing side panels and opposing end panels. The container body also includes top side panel flaps attached to a top portion of each side panel, and bottom side panel flaps attached to a bottom portion of each side panel. The container body has top end panel flaps attached to a top portion of each end panel, and bottom end panel flaps attached to a bottom portion of each end panel. The top and bottom side panel flaps are each defined with respect to the side panels by a fold line. The fold lines including at least one scored portion and at least one welded portion.
Description
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


FIELD OF THE INVENTION

The present invention generally relates to a reusable plastic corrugated container that is capable of being used interchangeably within and interchangeably with expendable corrugated containers in existing automated packaging equipment and to a method and apparatus for forming the container.


BACKGROUND OF THE INVENTION

Reusable plastic packaging has in recent years been used to store and transport all manner of goods and materials via air, highway, and rail. Such goods and materials run the gamut, including general merchandise, health and beauty aids, automotive parts, beverage, bakery, pharmaceuticals, and food products.


Reusable packaging typically lasts for multiple trips making it more cost effective than wood fiber corrugated or other disposable packaging, which is typically discarded after a single use. Plastic packaging is both reusable and recyclable, and therefore, environmentally friendly.


Until the present invention, one drawback to plastic packaging is that it cannot be used with existing automated corrugated paper packaging equipment. An example of such equipment is shown in U.S. Pat. No. 7,886,503 to Chase, et al. Such equipment is designed for new corrugated paper boxes. New paper corrugated boxes are almost perfectly straight and flat. Existing reusable plastic packaging such as plastic corrugated boxes, however, have top and bottom flaps that do not return to a sufficiently flat position after they have been used and broken down. Thus, existing plastic corrugated boxes will not work with automated corrugated paper packaging equipment to allow them to be reused.


The plastic corrugated container of the present invention provides a reusable plastic container that can be used interchangeably with existing automated paper corrugated packaging equipment. Fold lines for the top and bottom flaps include a combination of welded and scored portions that return the flaps to a substantially planar configuration with the container end and side panels after each use.


SUMMARY OF THE INVENTION

The present invention relates to a reusable corrugated plastic container in the form of a rectangular box. The container is formed from a flat blank of extruded plastic. The extruded plastic includes a first outer layer, a second outer layer and a plurality of flutes between the first outer layer and second outer layer. The blank is converted with fold lines between the side and end walls of the container with top and bottom flaps extending from the top and bottom portions of the side and end walls. These fold lines are designed to include both scored portions (i.e., partially crushed) and welded portions (e.g., heat welded). Prior to folding, the flaps are substantially coplanar with the respective side or end wall.


The welded portions of the fold line allow the top and bottom flaps to be easily folded in existing package erecting machines. The welded portions substantially keep their form over time. The scored portions also allow for folding of the flap, however, these portions also allow the memory of the plastic to recover over time to enable the flaps to again become coplanar with the respective side or end walls after use. This facilitates the reuse of the container after a first (or subsequent) use because the package erecting and packing machinery requires the containers to be straight.


In one embodiment of the present invention, a reusable plastic container is provided. The container includes a plastic container body having opposing side panels and opposing end panels. The container body also includes top side panel flaps attached to a top portion of each side panel, and bottom side panel flaps attached to a bottom portion of each side panel. The container body has top end panel flaps attached to a top portion of each end panel, and bottom end panel flaps attached to a bottom portion of each end panel. The top and bottom side panel flaps are each defined with respect to the side panels by a fold line. Each of the fold lines including at least one scored portion and at least one welded portion. Additional score and/or weld lines can be provided as desired or needed. Further other fold lines in the container can be formed in a similar manner, having both scored and welded portions in a single line.


In another embodiment, the present invention provides a blank for a reusable plastic container. The blank includes a first end panel having first and second ends and top and bottom portions, and a first side panel having first and second ends and top and bottom portions. The first end of the first side panel is attached to the second end of the first end panel. A second end panel has first and second ends and top and bottom portions. The first end of the second end panel is attached to the second end of the first side panel. A second side panel has first and second ends and top and bottom portions. The first end of the second side panel is attached to the second end of the second end panel. A top flap is attached along top flap fold lines to the top portion of each of the first and second end panels, and first and second side panels. A bottom flap is attached along bottom flap fold lines to the bottom portion of each of the first and second end panels, and first and second side panels. At least one of the top and bottom flap fold lines includes at least one welded portion and at least one scored portion. Again, additional scored and welded portions can be provided, and other fold lines in the blank can include a combination of scored and welded portions.


In a further embodiment, an apparatus for making a reusable plastic container from a blank is provided. The apparatus includes a bottom platen and a top platen. At least one of the top or bottom platens includes a rule for creating a fold line having at least one score forming portion for forming at least one scored portion of the fold line. The rule also has at least one weld forming portion for forming at least one welded portion of the fold line. A heating element is provided either against the weld forming portion of the rule, or on an opposing platen to provide heat for the weld in the fold line.


In another embodiment, a method for making a reusable plastic container is provided. The method includes the steps of providing a plastic corrugated blank, and creating a fold line in the blank. The step of creating the fold line includes scoring a first portion of the fold line and welding a second portion of the fold line.


In another embodiment, a fold line for a plastic corrugated container is provided. The fold line includes at least one scored portion, and at least one welded portion.


Additionally, the blank can be formed to have smooth outer edges. This can be accomplished after or part of an extruding process by pressing a generally C-shaped hot plate against the edges of the extruded sheet.


The blank can be provided with a connecting segment on either end of the blank having a reduced thickness. The connecting segments are used to connect the ends together for form a functional container. The connecting segment must be such that the partially broken down container would lay flat to be used with existing packaging equipment.


Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following Figures.





BRIEF DESCRIPTION OF THE FIGURES

To understand the present invention, it will now be described by way of example, with reference to the accompanying Figures in which:



FIG. 1 is a plan view of a plastic corrugated blank having fold lines of an embodiment of the present invention.



FIG. 2 is an enlarged view of section 2 of FIG. 1 showing the scored portion and welded portion of a fold line of an embodiment of the present invention.



FIG. 3 is a perspective view of a welded portion of a fold line of an embodiment of the present invention.



FIG. 4 is a perspective view of a scored portion of a fold line of an embodiment of the present invention.



FIG. 5 is a partially erected plastic corrugated container of an embodiment of the present invention.



FIG. 6 is a plan view of a plastic corrugated blank having fold lines of an embodiment of the present invention.



FIG. 7A is a schematic view of an apparatus for making a plastic corrugated blank in accord with an embodiment of the present invention.



FIG. 7B is a schematic view of an apparatus for making a plastic corrugated blank in accord with an embodiment of the present invention.



FIG. 8A is a schematic view of an apparatus for making a plastic corrugated blank in accord with an embodiment of the present invention.



FIG. 8B is a schematic view of an apparatus for making a plastic corrugated blank in accord with an embodiment of the present invention.



FIG. 9A is a schematic view of an apparatus for making a plastic corrugated blank in accord with an embodiment of the present invention.



FIG. 9B is a schematic view of an apparatus for making a plastic corrugated blank in accord with an embodiment of the present invention.



FIG. 10 is a schematic view of an apparatus for making a plastic corrugated blank in accord with an embodiment of the present invention.



FIG. 11A is a schematic view of a tab and cutout in a plastic corrugated blank in accord with an embodiment of the present invention before engagement.



FIG. 11B is a schematic view of a tab and cutout in a plastic corrugated blank in accord with an embodiment of the present invention after engagement



FIG. 12 is a perspective of a stack of pre-erected containers for use with a packaging erector machine.



FIG. 13 is a perspective view of a stack of partially constructed and/or broken down containers for use with a packaging erector machine.





DETAILED DESCRIPTION OF THE INVENTION

While this invention is susceptible of embodiments in many different forms, there is shown in the Figures, and will herein be described in detail, preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention, and is not intended to limit the broad aspect of the invention to the embodiments illustrated.


Referring to the drawings, in an embodiment of the present invention shown in FIG. 5, an erected and partially set up plastic corrugated box or container 10 is provided. The container 10 includes a container body 12 having a first end panel 14 and a second end panel 16, and a first side panel 18 and a second side panel 20. The first and second end panels 14 and 16 each have top portions 22 and bottom portions 24. The first and second side panels 18 and 20 also each have top portions 26 and bottom portions 28.


Bottom end panel flaps 30 are attached to the bottom portions 22 of the first and second end panels 14 and 16 along fold lines 32. Top end panel flaps 34 are attached to the top portions 22 of the first and second end panels 14 and 16 along fold lines 36. Bottom side panel flaps 38 are attached to the bottom portions 28 of the first and second side panels 18 and 20 along fold lines 40. Top side panel flaps 42 are attached to the top portions 26 of the first and second side panels 18 and 20 along fold lines 43.


The container 10 is formed from a plastic blank 44 shown in FIGS. 1 and 2. The blank 44 is an extruded sheet of plastic having a first layer 66 and a second layer 68, and a plurality of flutes 70 between them. (See FIGS. 3 and 4). The blank 44 includes the first end panel 14 having a first end 46 and a second end 48. The first side panel 18 has a first end 50 and a second end 52. The first end 50 of the first side panel 18 is attached to the second end 48 of the first end panel 14. The second end panel 16 has a first end 54 and a second end 56. The first end 54 of the second end panel 16 is attached to the second end 52 of the first side panel 18. The second side panel 20 includes a first end 58 and a second end 60.


The first end 58 of the second side panel 20 is attached to the second end 56 of the second end panel 16. In this pre-erected position, the bottom and top side and end panel flaps 30, 34, 38 and 42 are substantially planar with respect to their respective side and end panels 14, 16, 18 and 20. The bottom and top side and end panel flaps 30, 34, 38 and 42 are folded into an erected position to create the container 10. FIG. 5 shows a partially erected container 10 with the bottom side and end panel flaps 30 and 38 folded and the top side and end panel flaps 34 and 42 not yet folded. In a fully erected position, the top side and end panel flaps 34 and 42 are folded to enclose the container 10. After the container 10 is used, it is knocked down to a pre-erected (totally flat) or a partially broken down (one end of the blank still attached to the other end) position for transport and storage.


In one embodiment, a tab 62 is attached to the second end 56 of the second side panel 16. The tab 62 engages with a cutout 64 in the first end 46 of the first end panel 14. The tab 62 and cutout 64 are sized and shaped such that when engaged, as shown in FIGS. 11A and 11B, the tab 62 and cutout 64 form a connection between the first end panel 14 and second side panel 20 such that the panels are substantially coplanar as shown in FIG. 11B, and do not add thickness to the wall sections at this point. This becomes important when a large number of partially constructed or broken down containers are stacked (or positioned side by side) for a container erecting machine (See FIG. 12). Even a slight increase in thickness (above the double wall thickness of the remainder of the collapsed container) would result in a bulge in this area that could cause problems with the machinery.


In another embodiment, the tab or manufacturers joint flap 62 can be extruded to a thickness of approximately ⅓ the thickness of the second side panel 20. Where the tab or manufacturers joint flap 62 and side panel 20 overlap can be fastened, such as by gluing, and welded to a thickness equal to or less than the thickness of the side panel 20 to remove the memory from the plastic, and provide a container 10 with coplanar end and side panels. This does not add thickness allowing the container 10 to work with existing paper corrugated packaging machinery. This embodiment does not require a cutout 64. The tab or manufacturers joint flap 62 may extend the length of the second end 60 of the second end panel 20.


The blank 44 is preferably a corrugated plastic sheet. The blank 44 includes a first layer 66 and a second layer 68. Between the first layer 66 and second layer 68 are flutes 70. The blank 44 is formed as a single, integral sheet, preferably by an extrusion process. Plastic corrugated containers can be made to suit particular size, stiffness, resilience, and strength requirements by varying a variety of characteristics or parameters, such as the thickness of the first and second layers 66 and 68, the overall thickness of the blank 44, the number of flutes 70, the plastic resin used, or other characteristics of the blank 44 material. Typical ranges for such parameters include 67-100 flutes per foot, blank thickness of 2 to 10 mm, and plastic material density of 400 to 1,000 grams per square meter. Typical materials for the blank 44 can include plastic materials such as high density polypropylene and high density polyethylene.


Scored fold lines are known in the art and have been used extensively with paperboard containers such as cardboard. Scored fold lines are typically formed by crushing or partially crushing one or both sides of the blank along the desired fold line. This weakens the blank material so that it can be folded along such line. In addition, the crushed score line can include perforations at intervals along its length.


It has been found that given time, the score lines formed in plastic corrugated packaging in this manner have a memory, meaning the material has a tendency to return to its original pre-erected substantially planar position. Over time, typically on the order of days, the memory of the material essentially makes the score lines disappear, making folding the blank along these score lines a second time difficult if not impossible. The material is too stiff to be used in existing automated packaging equipment.


It has also been found that welding the first and second layers 66 and 68 of the blank 44 together allows for easy folding, but substantially negates the memory of the material. Welded score lines have not been previously used in connection with plastic corrugated packaging. Welding only (without providing a scored portion) may hinder the material from being used on existing corrugated paper packaging equipment as the top and bottom side and end panel flaps will not return to their pre-erected substantially planar configuration with the side and end panels (See FIG. 13).


To overcome this problem, a combination of welding and scoring the fold lines of the present invention is used. This provides the desired combination of ease of foldability and memory to permit the top and bottom side and end panel flaps to be folded and return to substantially their pre-erected planar configuration with the side and end panels after use and knock down. Thus, plastic packaging made in accord with the present invention can be reused and can be erected again using existing packaging equipment.


To this end, the fold lines 32, 26, 40 and 43 include at least one welded portion 72 (FIG. 3) and at least one scored portion 74 (FIG. 4). Additional welded portions 72 and/or scored portions 74 can be used for each fold line. In an embodiment shown in FIGS. 1, 2, 5 and 6, scored portions 74 are located at the first and second ends 50, 52, 58 and 60 of the side panels 18 and 20, and the first and second ends 46, 48, 54 and 56 of the end panels 14 and 16.


The scored portions 74 can be sized and spaced along the fold lines 32, 36, 40 and 43 to achieve desired foldability and memory characteristics such that the bottom and top end and side panel flaps 30, 34, 38 and 42 return to their substantially pre-erected position to allow it to be used with existing packaging equipment. The scored portions 74 can be crushed and may include perforations. The remainder of the fold lines 32, 36, 40 and 43 between the scored portions 74 include welded portions 72.


As an example, in a plastic corrugated container 10 having dimensions 12 inches wide by 20 inches long by 8 inches high, and made of a material high density polypropylene, having a blank 44 thickness of 3-4 mm, and ninety flutes 70 per foot, it has been found that scored portions of approximately 1½ inches in length at the first and second ends 46, 48, 50, 52, 54, 56, 58 and 60 of the side and end panels 14, 16, 18 and 20 provides the desired characteristics. For longer side panels 18 and 20 as shown in FIG. 6, additional scored portions 74 can be located along the length of the fold lines 32, 36, 40 and 43. Alternatively, the scored portions 74 can be of longer or shorter length to achieve the same desired result. The same is true of the shorter end panels 14 and 16 of FIG. 6, wherein only one scored portion 74 may be desired or necessary.


The welded portion 72 and scored portion 74 are formed using an apparatus 76, which includes a bottom platen 78 and a top platen 80. In one embodiment shown in FIGS. 7A and 7B, the top platen 80 includes a rule 82. FIG. 7A shows the apparatus before fold lines 32, 36, 40 and 43 are formed in the blank 44. FIG. 7B shows the blank 44 are the fold lines are formed. The rule 82 includes a weld-forming portion 84 and score-forming portion 86. The score forming portion 86 is recessed with respect to the weld-forming portion 84.


For the welded portions 72 of the fold lines 32, 35, 40 and 43, the rule 82 is heated by a heating element or heater 88. The heater 88 heats the rule 82 to a temperature sufficient to form a welded portion 72 along the fold lines 32, 36, 40 and 43. This temperature will depend at least in part on the material used. Alternately, the bottom platen 78 can be heated at portions aligning with the weld-forming portions 84 of the rule 82 to the same effect. The rule 82 can include serrations in the score-forming portion 86.


In operation, the bottom platen 78 remains stationary while the top platen 80 is moved in a vertical direction. The blank 44 is placed between the bottom platen 78 and top platen 80. The top platen 80 including the rule 82 is lowered. The rule 82 contacts the blank 44. The weld-forming portion 84 welds the first layer 66 of the blank 44 to the second layer 68. The score-forming portion 86, since it is recessed from the weld-forming portion 84, forms the scored portion 74 of the fold lines 32, 36, 40 and 43.



FIGS. 8A and 8B are similar to FIGS. 7A and 7B, but show an embodiment where scored portions 74 and welded portions 72 are formed alternately at selected desired intervals along the fold lines 32, 36, 40 and 43 as shown in the blank 44 of FIG. 6. This embodiment may be desirable where, for instance, the length of the side panels 18 and 20 and end panels 14 and 16 of the container 10 and blank 44 is such that the return strength of these panels is sufficient to return flaps 30, 24, 38 and 42 to substantially their pre-erected position.



FIG. 9A shows an embodiment where the bottom platen 78 rather than the top platen 80 is heated as shown in FIGS. 7A, 7B, 8A, and 8B. FIG. 9B shows an embodiment where both the top and bottom platens 78 and 80 are heated, including the rule 82.



FIG. 10 shows an apparatus 96 for sealing an end 98 of the bottom and top side and end flaps 30, 34, 38 and 42. Sealing is desirable in certain applications such as transport and storage of food items. Sealing prevents food materials from lodging in the interstices of the flutes 70, and bacteria from growing therein. The apparatus 96 includes a heated sealing bar 100 with a generally C-shaped section 102. The heated sealing bar 100 contacts the end 98 of a flap 30, 34, 38 or 42 and partially melts the end 98 to seal it and create a smooth arcuate surface. In the past, heat scoring was used to seal the edges. However, this produces a sharp edge that can be hazardous to those handling the containers.


While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention and the scope of protection is only limited by the scope of the accompanying Claims.

Claims
  • 1. A blank for forming a reusable plastic container including a manufacturer's joint comprising: a multilayer corrugated plastic sheet having a first planar outer layer, a second planar outer layer and plurality of spaced apart ribs between the first planar outer layer and the second planar outer layer, the sheet having a first thickness, a first plurality of side panels connected together along fold lines, the plastic sheet has a first lateral edge having a second thickness and a second lateral edge opposed to the first lateral edge having a third thickness, the sheet is folded onto itself and a portion of the first lateral edge is connected to a portion of the second lateral edge along the manufacturer's joint to form a polygonal hoop where the combination of the second thickness and the third thickness is equal to the first thickness, the hoop is movable from a pre-erected condition where the hoop is flat, to an erected position where the first plurality of side panels define a chamber with openings at opposed ends into the chamber, the sheet also having a second plurality of end panels connected by hinges integral with the sheet to the first plurality of side panels, the second plurality of end panels are foldable from an open position where they are coplanar with the first plurality of side panels to a closed position where they seal the openings into the chamber, wherein the hinges have a memory to bias the second plurality of panels into a position coplanar with the first plurality of side panels, and wherein the hinges maintain their foldability after the container has been knocked down from the erected position into the pre-erected condition for reuse.
  • 2. The blank of claim 1 wherein the container can be erected again from a used blank using packaging equipment.
  • 3. The blank of claim 1 wherein the second plurality of end panels have a smooth outer edge.
  • 4. The blank of claim 3 wherein the smooth outer edge is generally C-shaped.
  • 5. The blank of claim 4 wherein the smooth outer edge is blunt.
  • 6. The blank of claim 1 wherein the plastic sheet being formed by an extrusion process.
  • 7. The blank of claim 1 wherein the plastic sheet has a density of 400 grams per square meter to 1,000 grams be square meter.
  • 8. The blank of claim 7 wherein the blank is fabricated from high density polypropylene, or high density polyethylene.
  • 9. The blank of claim 1 wherein a first portion of the hinges is scored.
  • 10. The blank of claim 9 wherein a portion of the first portion has serrations.
  • 11. The blank of claim 9 wherein the scored portion is crushed.
  • 12. The blank of claim 9 further comprising a second portion of the hinges are welded.
  • 13. The blank of claim 12 wherein the hinges further comprising a third portion and a fourth portion, the third portion being the same as the first portion and the fourth portion being the same as the second portion.
  • 14. The blank of claim 1 wherein a portion of the hinges is welded.
  • 15. The blank of claim 1 wherein the manufacturer's joint comprises an overlap of a tab extending from the first lateral edge with a cutout on the second lateral edge.
  • 16. The blank of claim 15 wherein manufacturer's joint does not add thickness to the blank beyond the thickness of adjacent side panels and adjacent end panels.
  • 17. The blank of claim 16 wherein the manufacturer's joint includes an adhesive.
  • 18. The blank of claim 1 wherein the first lateral edge and the second lateral edge are extruded to a thickness of ⅓ that of the thickness of the side panels.
  • 19. The blank of claim 1 wherein the multilayer blank has a first outer layer, a second outer layer and a core material between the first outer layer and the second outer layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present Application is a continuation of U.S. patent application Ser. No. 14/265,977 filed Apr. 30, 2014, titled “Plastic Corrugated Container with Sealed Edges,” which is a continuation of U.S. patent application Ser. No. 13/273,019 filed Oct. 13, 2011, now U.S. Pat. No. 8,864,017, titled “Plastic Corrugated Container with Improved Fold Lines and Method and Apparatus for Making Same,” the contents of which are incorporated herein by reference.

US Referenced Citations (225)
Number Name Date Kind
1101927 Hawkins et al. Jun 1914 A
1733566 Weaver Oct 1929 A
2533773 De La Foret Dec 1950 A
2751136 Moore Jun 1956 A
3199763 Anderson Aug 1965 A
3203288 Blumer Aug 1965 A
3349446 Haygeman Oct 1967 A
3350492 Grootenboer Oct 1967 A
3406052 Peters Oct 1968 A
3414184 Loheed Dec 1968 A
3562041 Robertson Feb 1971 A
3611884 Hottendorf Oct 1971 A
3635451 Wagner Jan 1972 A
3687170 Malone Aug 1972 A
3727825 Troth Apr 1973 A
3727826 Shepherd Apr 1973 A
3768724 Hill Oct 1973 A
3796307 McKinney Mar 1974 A
3883065 Presnick May 1975 A
3884132 Snodgrass May 1975 A
3900550 Oliver et al. Aug 1975 A
3907193 Heller Sep 1975 A
3929536 Maughan Dec 1975 A
3973721 Nakane Aug 1976 A
3977310 Keck et al. Aug 1976 A
3981213 Lopman Sep 1976 A
4011798 Bambara et al. Mar 1977 A
4027058 Wootten May 1977 A
4064206 Seufert Dec 1977 A
4090903 Matsui May 1978 A
4106623 Carroll et al. Aug 1978 A
4121754 Hackenberg Oct 1978 A
4239150 Schadowski et al. Dec 1980 A
4267223 Swartz May 1981 A
4313547 Osborne Feb 1982 A
4348449 Seufert Sep 1982 A
4353495 Jes Oct 1982 A
4356053 LoMaglio Oct 1982 A
4358498 Chavannes Nov 1982 A
4415515 Rosenberg Nov 1983 A
4441948 Gillard et al. Apr 1984 A
1477013 Herrin Oct 1984 A
4477522 Sheehan Oct 1984 A
4482417 Hulber et al. Nov 1984 A
4507348 Nagata et al. Mar 1985 A
4515648 Kolbe et al. May 1985 A
4517790 Kreager May 1985 A
4530196 O'Bryan Jul 1985 A
4535929 Sherman, II Aug 1985 A
4559259 Cetrelli Dec 1985 A
4596541 Ward, Sr. et al. Jun 1986 A
4601407 Gillard Jul 1986 A
4604083 Barny et al. Aug 1986 A
4605454 Sayovitz et al. Aug 1986 A
4623072 Lorenz Nov 1986 A
4655389 Marsh Apr 1987 A
4733916 Seufert Mar 1988 A
4767393 Smith Aug 1988 A
4784269 Griffith Nov 1988 A
4865201 Liebel Sep 1989 A
4906510 Todor, Jr. et al. Mar 1990 A
4938413 Wolfe Jul 1990 A
4946430 Kohmann Aug 1990 A
4948039 Amatangelo Aug 1990 A
4960207 Tabler et al. Oct 1990 A
5012930 Hansen May 1991 A
5021042 Resnick et al. Jun 1991 A
5054265 Perigo et al. Oct 1991 A
5114034 Miller May 1992 A
5158525 Nikkel Oct 1992 A
5163609 Muise, Jr. Nov 1992 A
5183672 Fetterhoff et al. Feb 1993 A
5190213 Horwitz Mar 1993 A
5202065 Lenander et al. Apr 1993 A
5232149 Stoll Aug 1993 A
5255842 Rosen Oct 1993 A
5268138 Fetterhoff et al. Dec 1993 A
5304056 Fetterhoff Apr 1994 A
5325602 Nainis et al. Jul 1994 A
5340632 Chappuis Aug 1994 A
5351846 Carter Oct 1994 A
5356696 Fetterhoff Oct 1994 A
5384002 Leatherman Jan 1995 A
5466211 Komarek et al. Nov 1995 A
5497939 Heiskell Mar 1996 A
5501758 Nitardy Mar 1996 A
5503324 Bacchetti et al. Apr 1996 A
5533956 Komarek et al. Jul 1996 A
5564623 Kiley Oct 1996 A
5597111 Mackinnon et al. Jan 1997 A
5658644 Ho et al. Aug 1997 A
5681422 Marschke Oct 1997 A
5733411 Bett Mar 1998 A
5765688 Bertram et al. Jun 1998 A
5873807 Lauderbaugh et al. Feb 1999 A
5878554 Loree et al. Mar 1999 A
5881902 Ackermann Mar 1999 A
5887782 Mueller Mar 1999 A
5908135 Bradford et al. Jun 1999 A
5913766 Reed et al. Jun 1999 A
5924627 Wilder et al. Jul 1999 A
5944252 Connelly et al. Aug 1999 A
5965238 Saitoh et al. Oct 1999 A
6007470 Komarek et al. Dec 1999 A
6039101 MacKinnon Mar 2000 A
6056840 Mills et al. May 2000 A
6071225 Kucharski Jun 2000 A
6102279 Dowd Aug 2000 A
6102280 Dowd Aug 2000 A
6120629 Shannon et al. Sep 2000 A
6138903 Baker Oct 2000 A
6159137 Lee et al. Dec 2000 A
6203482 Sandford Mar 2001 B1
6228234 Oshima et al. May 2001 B1
6257484 Dowd Jul 2001 B1
6338234 Muise et al. Jan 2002 B1
6349876 Dowd Feb 2002 B1
6450398 Muise et al. Sep 2002 B1
6572519 Harris Jun 2003 B1
6578759 Ortiz Jun 2003 B1
6592711 Kubik Jul 2003 B1
6655434 Danko Dec 2003 B2
6676010 Roseth et al. Jan 2004 B1
6689033 Plemons et al. Feb 2004 B2
6705515 Dowd Mar 2004 B2
6719191 Christensen et al. Apr 2004 B1
6759114 Wu et al. Jul 2004 B2
6761307 Matsuoka Jul 2004 B2
6769548 Morell et al. Aug 2004 B2
6902103 Machery Jun 2005 B2
6926192 Dowd Aug 2005 B1
6938818 Moorman et al. Sep 2005 B2
6994662 Jornborn et al. Feb 2006 B2
7025841 Owen Apr 2006 B2
7028834 Karpel Apr 2006 B2
7069856 Hartka et al. Jul 2006 B2
7326168 Kocherga et al. Feb 2008 B2
7384497 Christensen et al. Jun 2008 B2
7452316 Cals et al. Nov 2008 B2
D608634 Riedi Jan 2010 S
7640662 Haglid Jan 2010 B2
7670275 Schaack Mar 2010 B2
7682300 Graham et al. Mar 2010 B2
7726480 Nazari Jun 2010 B2
7784674 Grigsby Aug 2010 B2
7870992 Schille et al. Jan 2011 B2
7886503 Chase et al. Feb 2011 B2
7951252 Danko May 2011 B2
8418912 Goodrich Apr 2013 B1
8662133 Ninomiya et al. Mar 2014 B2
8662378 Mehta Mar 2014 B2
8864017 McMahon Oct 2014 B2
9126711 Hermosillo et al. Sep 2015 B2
9302806 Perkins Apr 2016 B2
9555918 McMahon Jan 2017 B2
9573722 Capogrosso Feb 2017 B1
9604750 McMahon et al. Mar 2017 B2
9630736 Oliveira Apr 2017 B2
9630739 McMahon et al. Apr 2017 B2
10199811 Chu et al. Feb 2019 B2
10392153 Mehta Aug 2019 B2
10583955 Ackroyd et al. Mar 2020 B2
10625916 Balazs Apr 2020 B2
20010022211 Walsh Sep 2001 A1
20010027992 Strong Oct 2001 A1
20010046584 Danko Nov 2001 A1
20020007607 Matlack et al. Jan 2002 A1
20020011513 Dowd Jan 2002 A1
20020026742 Washington Mar 2002 A1
20020125594 Sung et al. Sep 2002 A1
20030010817 Lingle et al. Jan 2003 A1
20030102361 Terashima et al. Jun 2003 A1
20030127773 Feistel et al. Jul 2003 A1
20030215613 Jan et al. Nov 2003 A1
20030235660 Blanchard Dec 2003 A1
20040222542 Jan et al. Nov 2004 A1
20040248717 Calugi Dec 2004 A1
20050006446 Stafford, Jr. Jan 2005 A1
20050067084 Kagan Mar 2005 A1
20050067477 McClure Mar 2005 A1
20050150244 Hillmann et al. Jul 2005 A1
20050202215 Temple, II et al. Sep 2005 A1
20050209076 Boutron et al. Sep 2005 A1
20060089071 Leidig et al. Apr 2006 A1
20060169757 McDowell Aug 2006 A1
20070069428 Pfaff et al. Mar 2007 A1
20070228129 Habeger, Jr. et al. Oct 2007 A1
20070241900 Sasazaki Oct 2007 A1
20070296890 Mizushima Dec 2007 A1
20080003869 Wu et al. Jan 2008 A1
20080003870 Wu et al. Jan 2008 A1
20080048367 Falat Feb 2008 A1
20080247682 Murray Oct 2008 A1
20090011173 Thiagarajan Jan 2009 A1
20090280973 Graham et al. Nov 2009 A1
20100078466 Stack, Jr. Apr 2010 A1
20100105534 Nazari Apr 2010 A1
20100147840 Dowd Jun 2010 A1
20100155460 Mehta Jun 2010 A1
20110069911 Ackerman Mar 2011 A1
20110101081 Dowd May 2011 A1
20110303740 Schuld Dec 2011 A1
20120118880 Wnek May 2012 A1
20130048704 Lewis et al. Feb 2013 A1
20130055407 McMahon Apr 2013 A1
20130092726 McMahon Apr 2013 A1
20140231496 McMahon Aug 2014 A1
20140231497 McMahon Aug 2014 A1
20140367458 Smith Dec 2014 A1
20140367459 Smith Dec 2014 A1
20140374303 Martinez Dec 2014 A1
20150174849 McMahon et al. Jun 2015 A1
20150174850 McMahon et al. Jun 2015 A1
20150175297 McMahon et al. Jun 2015 A1
20150175298 McMahon et al. Jun 2015 A1
20150210421 Whittles et al. Jul 2015 A1
20160096651 Klein Apr 2016 A1
20160102196 Dodd Apr 2016 A1
20170066214 Polikov Mar 2017 A1
20170291731 Balazs et al. Oct 2017 A1
20170369221 Balazs Dec 2017 A1
20180105316 McMahon et al. Apr 2018 A1
20180362207 McMahon et al. Dec 2018 A1
20190270542 McMahon Sep 2019 A1
20190300210 Ponti Oct 2019 A1
Foreign Referenced Citations (71)
Number Date Country
2935978 Apr 2013 CA
2961959 Apr 2016 CA
2851357 Aug 2016 CA
3028971 Dec 2017 CA
9110957 Nov 1991 DE
102010041663 Mar 2012 DE
0054856 Jun 1982 EP
0330228 Aug 1989 EP
0330228 Aug 1989 EP
0399657 Nov 1990 EP
0459672 Dec 1991 EP
0535998 Apr 1993 EP
0566338 Oct 1993 EP
0731233 Sep 1996 EP
1488912 Dec 2004 EP
1880947 Jan 2008 EP
1787801 Aug 2009 EP
1799432 Jan 2010 EP
2766269 Aug 2014 EP
2766269 Dec 2016 EP
3170759 May 2017 EP
3170760 May 2017 EP
3089917 Jun 2018 EP
3486188 May 2019 EP
3865415 Aug 2021 EP
1593730 Jul 1981 GB
2199017 Jun 1988 GB
2249520 May 1992 GB
2271095 Apr 1994 GB
2276120 Sep 1994 GB
2299048 Sep 1996 GB
S597014 Jan 1984 JP
3266630 Nov 1991 JP
5146996 Jun 1993 JP
08-085148 Apr 1996 JP
2003340936 May 2002 JP
2003062917 Mar 2003 JP
2003104361 Apr 2003 JP
2005343554 Dec 2005 JP
2006001136 Jan 2006 JP
2009006556 Jan 2009 JP
20020006235 Jan 2002 KR
20100137130 Dec 2010 KR
10-2016-0054489 May 2016 KR
9503047 Feb 1997 MX
343734 Nov 2016 MX
2017004472 Jun 2017 MX
353612 Jan 2018 MX
364678 May 2019 MX
356126 Apr 1999 TW
416925 Jan 2001 TW
200619094 Jun 2006 TW
306060 Feb 2009 TW
201345796 Nov 2013 TW
I555683 Nov 2016 TW
201716293 May 2017 TW
201716294 May 2017 TW
I600591 Oct 2017 TW
I600592 Oct 2017 TW
9309032 May 1993 WO
2005120965 Dec 2005 WO
2006034502 Mar 2006 WO
2007105964 Sep 2009 WO
2010049880 May 2010 WO
2012055429 May 2012 WO
2013055407 Apr 2013 WO
2015100249 Jul 2015 WO
2016057256 Apr 2016 WO
2017223392 Dec 2017 WO
2018156604 Aug 2018 WO
2018236801 Dec 2018 WO
Non-Patent Literature Citations (34)
Entry
European Patent Office, Communication pursuant to Article 94(3) EPC for European Application No. 17816258.2, dated Jul. 24, 2020, 5 pages.
European Patent Office, Communication pursuant to Rule 164(1) EPC, Partial Supplementary European Search Report for EP 18821166.8, dated Feb. 23, 2021, 12 pages.
The International Bureau of WIPO, International Preliminary Report on Patentability for PCT/US2012/038316, dated Apr. 15, 2014, 9 pages.
European Patent Office, Extended European Search Report for EP 18174415.2, dated Mar. 26, 2019, 7 pages.
European Patent Office, International Search Report for PCT/US2012/038316, dated Aug. 2, 2012, 5 pages.
European Patent Office, Extended European Search Report for EP 15849285.0, dated Feb. 7, 2018, 8 pages.
European Patent Office, Written Opinion of International Searching Authority for PCT/US2012/038316, dated Aug. 2, 2012, 8 pages.
European Patent Office, Extended European Search Report for EP Application No. 18821166.8, dated May 28, 2021, 10 pages.
European Patent Office, Extended European Search Report for EP Application No. 21166046.9, dated Jun. 30, 2021, 7 pages.
Tri-Pack Plastics Ltd.; Web pages for “Chilled Foods,” “Polypropylene Packaging,” “Tree Tubes,” “Transit Packaging,” and “Returnable Post”; retrieved Jan. 18, 2010 from <http://www.tri-pack.co.uk/> and related sites, 9 pages.
Wikipedia article: “Corrugated Fiberboard”; retrieved from <http://en.wikipedia.org/w/index.php?title=Corrugated_fiberboard&oldid=648589914> on Mar. 3, 2015, 7 pages.
European Patent Office, Partial International Search Report for PCT/US2014/071926 dated Apr. 28, 2015, 5 pages.
European Patent Office, International Search Report for PCT/US2014/071926 dated Jun. 30, 2015, 6 pages.
Taiwanese Patent Office, Search Report for Taiwanese Application No. 101137741, dated Jun. 23, 2016, 1 page, with English translation.
European Patent Office, Extended European Search Report for EP 16204731.0, dated Feb. 3, 2017, 9 pages.
European Patent Office, Extended European Search Report for EP 16204728.6, dated Feb. 3, 2017, 10 pages.
Taiwanese Intellectual Property Office, Office Action and Search Report for TW Application No. 105123775, dated Mar. 8, 2017, with English translation, 5 pages.
Taiwanese Intellectual Property Office, Office Action and Search Report for TW Application No. 105123777, dated Mar. 8, 2017, with English translation, 5 pages.
European Patent Office, Written Opinion of the International Searching Authority for PCT/US2014/071926, dated Jun. 30, 2015, 6 pages.
The International Bureau of WIPO, International Preliminary Report on Patentability for PCT/US2014/071926, dated Jun. 28, 2016, 7 pages.
The International Bureau of WIPO, International Preliminary Report on Patentability for PCT/US2015/052618, dated Apr. 11, 2017, 5 pages.
Russia's Federal Institute of Industrial Property, Written Opinion of the International Searching Authority for PCT/US2015/052618, dated Feb. 18, 2016, 4 pages.
Russia's Federal Institute of Industrial Property, International Search Report for PCT/US2015/052618, dated Feb. 18, 2016, 2 pages.
European Patent Office; Communication Pursuant to Article 94(3) EPC for EP 14825566.4, dated Dec. 2, 2017, 5 pages.
Taiwanese Intellectual Property Office, Office Action and Search Report for TW Application No. 104132707, dated Jan. 24, 2019, with English translation, 9 pages.
Korean Intellectual Property Office, International Search Report for PCT/US2017/038912, dated Oct. 27, 2017, 3 pages.
Korean Intellectual Property Office, Written Opinion of the International Searching Authority for PCT/US2017/038912, dated Oct. 27, 2017, 9 pages.
The International Bureau of WIPO, International Preliminary Report on Patentability for PCT/US2017/038912, dated Dec. 25, 2018, 10 pages.
Korean Intellectual Property Office, International Search Report for PCT/US2018/018983, dated Jun. 21, 2018, 5 pages.
Korean Intellectual Property Office, Written Opinion of the International Searching Authority for PCT/US2018/018983, dated Jun. 21, 2018, 8 pages.
Korean Intellectual Property Office, International Search Report for PCT/US2018/038182, dated Oct. 17, 2018, 3 pages.
Korean Intellectual Property Office, Written Opinion of the International Searching Authority for PCT/US2018/038182, dated Oct. 17, 2018, 6 pages.
European Patent Office, Extended European Search Report for EP 17816258.2, dated Oct. 18, 2019, 12 pages.
European Patent Office, Communication pursuant to Article 94(3) EPC for EP 15849285.0, dated Nov. 18, 2019, 6 pages.
Related Publications (1)
Number Date Country
20190270542 A1 Sep 2019 US
Continuations (2)
Number Date Country
Parent 14265977 Apr 2014 US
Child 16296540 US
Parent 13273019 Oct 2011 US
Child 14265977 US