The invention relates to plastic pallets and more particularly to a light weight, rigid plastic pallet comprising deck and runner structures, all of which are of twin-sheet construction.
It is generally known to fabricate industrial pallets from sheets of thermoformable plastic material. In general, once the sheets are extruded, they are thermoformed into the appropriate shape and fused together, sometimes with reinforcing structures between the thermoformed and fused sheets for added rigidity. Examples are illustrated in U.S. Pat. Nos. 5,391,251, 5,043,296 and 5,404,829 wherein the inventor is Lyle H. Shuert, the inventor of the present pallet.
The present invention is a pallet made primarily of polymeric sheet materials fabricated to provide deck and runner structures, both of which are of at least partly hollow, twin-sheet construction. As such, the pallet exhibits relatively light weight, a high degree of stiffness or rigidity and, for added rigidity, can accommodate reinforcing structures in several locations.
In illustrative embodiments hereinafter described in detail, a pallet which embodies the invention includes a deck structure, having a top load surface, and one or more runner structures attached to the bottom of the deck. The load surface may be fabricated in such a way as to exhibit an enhanced friction characteristic. This can, for example, be accomplished by extruding a layer of a thermoplastic olefin such as Vyran® or Santoprene® onto the plastic which is used to thermoform the components of the pallet. The higher friction quality can also be imparted to areas of the pallet such as the forklift openings. Alternatively, polyethylene surfaces can be brushed to increase friction characteristics.
Further in accordance with are illustrative embodiment hereinafter described in detail, the pallet can provide four-way forklift entry, in one direction by virtue of the spacing between the runner structures and in the orthogonal direction by virtue of the configurations of the runner structures; i.e., the runner structures are separately formed to have a “W” shape which provides not only the necessary forklift openings but strong load bearing structure as well.
The various features and advantages of the present invention will be best understood from a reading from the following specification which is to be taken with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views and wherein:
Referring to the figures, there is shown a pallet 10 comprising an upper deck structure 12 and three individual runner structures 14, 16, 18 which are formed independently of the deck structure 12 and thereafter fused to the bottom surface of the deck structure 12 to form a unitary pallet structure. The geometric shape of the pallet 10 is essentially rectangular and in a commercial embodiment may be 600 mm by 800 mm. As such, it may function as a “half pallet” wherein two such pallets are placed on top of a master pallet which may be of the same or different structure. These dimensions and use descriptions are merely illustrative as pallets incorporating the present invention may be fabricated in various sizes and shapes and used in various combinations as well as by themselves.
The deck structure 12 comprises a thermoformed plastic top sheet 20 of generally rectangular configuration and a coextensive thermoformed plastic bottom sheet 22, the sheets 20 and 22 having substantially the same overall dimensions but having different surface features as hereinafter described. The top sheet 20 of the deck structure 12 and the bottom sheet 22 of the deck structure 12 are peripherally fused together partly as shown at 24 in
The steps 26, 28, 30 form peripheral landings which overlie mating peripheral areas of the lower sheet 22 and are knitted to the lower sheet 22 to form a substantially continuous knitting line along the entire periphery of the deck structure 12. Inwardly directed peripheral slots 32 are also formed in the upper sheet 20 of the deck structure 12. These slots provide small vertical beam areas which add stiffness to the deck 12 and help fix a reinforcing beam 40 in position as hereinafter described.
The bottom sheet 22 of the deck structure 12, best shown in
Additionally, the bottom sheet 22 has formed thereover, a plurality of upwardly extending knob-like spacers 38 which may be cylindrical or pyramidal or both, but generally have flat top surfaces. These spacers occupy the interior volume which is defined between the top deck sheet 20 and the bottom deck sheet 22 when the two are fused together. Spacers 38 provide substantial rigidity over the entire loading surface of the deck 12. The fusing process is such as to join or knit the top surfaces of the spacers 38 to the bottom surface of the top sheet 20 as shown in
The spacers 38 are arranged in such a way as to provide room for a quadrangular channel which receives a quadrangular metal reinforcing frame 40 made up of four metal beams 40a, 40b, 40c and 40d, the geometrical arrangement being best shown in
It will be understood by those persons skilled in the thermoforming arts that the plastic materials which are most likely to be used to manufacture the deck sheets 20, 22 are fused or knitted together when hot and may shrink slightly during the cooling process. This shrinkage is such as to require the beams of the frame 40 to be initially arranged with some slight gaps between them; the shrinkage takes up these gaps and pulls the frame tightly together to form a well unified structure. It also causes the top sheet slots 32 to bear tightly against beams 40.
The bottom sheet 22 is also thermoformed so as to define a generally rectangular upstanding central tower 44 having a center recess 46. This tower 44 has a height which is essentially the same as the height of the spacers 38 and, as such, contacts and fuses to the bottom surface of the top sheet 20 in the joining process. The tower resists deflection of the load surface in the center of the deck.
Turning now to the runner structures 14, 16, 18, it will be noted that the end runners 14, 18 are substantially identical in width and length whereas the center runner 16 is wider and, in this embodiment, unreinforced. This is essentially a design choice and all of the runners may optionally be of the same design. The spacing between the runner structures is best shown in
Continuing now with a more detailed description of the runner structures, runner structure 18 comprises a thermoformed bottom sheet or plate 48 having a generally rectangular flat sole portion 50 bounded by upturned vertical end structures 52, 54. Upstanding sidewalls 56, 58 are formed centrally between the end sections 52, 54. A groove 60 is formed in the each wall 52, 54 to provide a rib on the interior surface. These ribs match up with ribs 67 in the end walls of the top parts 64. Those ribs can be fused together where they meet and touch in the final fabrication process. Parallel ribs 94 formed on the inside of the plate 48 provide a place for a reinforcing beam 62 in the runner. Upper element 64 has raised sections 69, 71 complemental to the ribs 94.
The top sheet element 64 has a soft or undulating “W” shape with upstanding end walls 64, 66 and a raised center section 70 having a flat top surface 72 within which an opening 74 is formed. The top element 64 is fused to the bottom plate 48 with the pultruded rod 62 trapped between them. It will also be noted that the upstanding end walls 66, 68 have peripheral lips 73 which rest atop the peripheral surfaces 75 of the end walls 52, 54 and are knit to them in the joining or fusing process.
The other runner structure 14 comprises a bottom sheet 76 forming a sole plate and a top sheet 78 fused to the sole plate in a manner which is identical to the runner 18 and will not be described in detail because of this identity. The runner structure 14 also contains an encapsulated reinforcing beam 80 in the form of a composite pultrusion which rests within a track formed by the raised track wall structures 94 in the sole plate 76. Both runners 18 and 14 provide “footprints” corresponding to the shape and surface areas of the sole plate sheets 50 and 76.
The center runner structure 16, as stated above, is generally similar to the end runners 14, 18 but is wider and, because of this width, accommodate two grooves 84 in the end walls lower plate 82 as well as two complemental ribs 85 in the upper sheet 86. Top sheet 86 also has a soft “W” shape with end walls and a raised center structure 88 with a top surface 90 having a center opening 92. The ribs 85 in the top sheet 86 are also discontinuous as shown in
The final step in the fabrication of the pallet 10 is to fuse or join the three runner structures 14, 16, 18 to the bottom surface of the deck 12 as shown in
As indicated above, the pallet 10 is preferably constructed from co-extruded sheet material as to provide a high friction surface on the top or load surface of the deck 12 as well as on the exposed areas of the lower sheet of the deck 12 which form the top surfaces of the four forklift opening traces. It will be appreciated that one set of forklift openings is formed by the spacing between the runner structures 14, 16, 18 as shown in
The co-extrusion process extrudes a sheet of polymeric deck material, such as polyethylene, through one opening of a die and a layer of a rubber-polyolefin blend through a parallel opening and the two materials are merged or joined together to form a composite sheet. The die openings are, of course, geometrically sized and shaped to put the olefin surface material only where it is desired and avoid placing it where a fusing step is to be carried out later in the fabrication of the finished pallet. Other techniques may be used to increase surface friction as explained above.
The runner structures 14, 16, 18, as best shown in
The gages of the plastic sheets may be selected to achieve desired weight targets as will be apparent to those skilled in the fabrication of plastic pallets and like articles.
The fabrication process for the pallet 10 may be essentially as follows: sheets of thermoformable polymeric material are extruded in the desired thickness and areas or cut from larger previously extruded sheets. The individual sheets 20, 22, 50, 64, 76, 78, 82 and 86 are all thermoformed into the shapes as generally shown. The reinforcing structures 40, 62 and 80 are put in place and the structures 12, 14, 16 and 18 are formed by fusing. Thereafter the runners 14, 16 and 18 or the structure 100 are joined to the deck 12. The olefin coating is created as described above or an alternative technique is used to rough-up the otherwise smooth, low friction polyethylene surface. A flame retardant may be added to the extruded plastic material prior to extrusion as desired or as required by local regulation or law.
Number | Name | Date | Kind |
---|---|---|---|
4606278 | Shuert | Aug 1986 | A |
4735154 | Hemery | Apr 1988 | A |
5042396 | Shuert | Aug 1991 | A |
5117762 | Shuert | Jun 1992 | A |
5197396 | Breezer et al. | Mar 1993 | A |
5391251 | Shuert | Feb 1995 | A |
5404829 | Shuert | Apr 1995 | A |
5413052 | Breezer et al. | May 1995 | A |
5596933 | Knight et al. | Jan 1997 | A |
7216415 | Hentges et al. | May 2007 | B2 |
7343865 | Shuert | Mar 2008 | B2 |
20030075082 | Apps | Apr 2003 | A1 |
20040159267 | Markling et al. | Aug 2004 | A1 |
20040168618 | Muirhead | Sep 2004 | A1 |
20060075939 | Shuert | Apr 2006 | A1 |
20110174198 | Seger | Jul 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120227640 A1 | Sep 2012 | US |