(Not Applicable)
The present invention relates generally to concrete forming equipment and, more particularly, to a uniquely configured disc dowel system that is specifically adapted to prevent relative vertical movement of adjacently disposed concrete slabs.
During construction of concrete pavement such as for sidewalks, driveways, roads and flooring in buildings, cracks may occur due to uncontrolled shrinkage or contraction of the concrete. Such cracks are the result of a slight decrease in the overall volume of the concrete as water is lost from the concrete mixture during curing. Typical contraction rates for concrete are about one-sixteenth of an inch for every ten feet of length. Thus, large cracks may develop in concrete where the overall length of the pavement is fairly large. In addition, the cracks may continue to develop months after the concrete is poured due to induced stresses in the concrete.
One of the most effective ways of controlling the location and direction of the cracks is to include longitudinal control joints or contraction joints in the concrete. Contraction joints are typically comprised of forms having substantially vertical panels that are positioned above the ground or subgrade and held in place utilizing stakes that are driven into the subgrade at spaced intervals. The forms act to subdivide or partition the concrete into multiple sections or slabs that allow the concrete to crack in straight lines along the contraction joint. By including contraction joints, the slabs may move freely away from the contraction joint during concrete shrinkage and thus prevent random cracking elsewhere.
In one system of concrete construction, forms are installed above the subgrade to create a checkerboard pattern of slabs. A first batch of wet concrete mixture is poured into alternating slabs of the checkerboard pattern. After curing, forms may be removed and the remaining slabs in the checkerboard pattern are poured from a second batch of concrete. Although effective in providing longitudinal contraction joints to prevent random cracking, the checkerboard system of concrete pavement construction is both labor intensive and time consuming due to the need to remove the forms and due to the waiting period between the curing of the first batch and the pouring of the second batch of concrete.
In another system of concrete construction known as monolithic pour technique, the pour joints are installed above the subgrade in the checkerboard pattern. However, all of the slabs of the checkerboard pattern are poured in a single pour thereby reducing pour time as well as increasing labor productivity. An upper edge of the forms then serves as a screed rail for striking off or screeding the surface of the concrete so that the desired finish or texture may be applied to the surface before the concrete cures. The pour joints, comprised of vertically disposed forms, remain embedded in the concrete and provide a parting plane from which the slabs may move freely away during curing. The pour joints additionally allow for horizontal displacement of the slabs caused by thermal expansion and contraction of the slabs during normal everyday use.
Unfortunately, vertical displacement of adjacent slabs may also occur at a joint due to settling or swelling of the substrate below the slab or as a result of vertical loads created by vehicular traffic passing over the slabs. The vehicular traffic as well as the settling or swelling of the subgrade may create a height differential between adjacent slabs. Such height differential may result in an unwanted step or fault in a concrete sidewalk or roadway or in flooring of a building creating a pedestrian or vehicular hazard. Furthermore, such a step may allow for the imposition of increased stresses on the corner of the concrete slab at the joint resulting in degradation and spalling of the slab. In order to limit relative vertical displacement of adjacent slabs such that steps are prevented from forming at the joints, a form of vertical load transfer between the slabs is necessary.
One system for limiting relative vertical displacement and for transferring loads between slabs is provided by key joints. In key joint systems, the form is configured to impart a tongue and groove shape to respective ones of adjacent slabs. Typically preformed of steel, such a key joint imparts the tongue and groove shape to adjacent slabs in order to allow for contraction and expansion of the adjacent slabs while limiting the relative vertical displacement thereof due to vertical load transfer between the tongue and groove. The tongue of one slab is configured to mechanically interact with the mating groove of an adjacent slab in order to provide reactive shear forces across the joint when a vertical load is place on one of the slabs. In this manner, the top surfaces of the adjacent slabs are maintained at the same level despite swelling or settling of the subgrade underneath either one of the slabs. Additionally, edge stresses of each of the slabs are minimized such that chipping and spalling of the slab corners may be reduced.
Although the key joint presents several advantages regarding its effectiveness in transferring loads between adjacent slabs, key joints also possess certain deficiencies that detract from their overall utility. Perhaps the most significant of these deficiencies is that the tongue of the key joint may shear off under certain loading conditions. Furthermore, the face of the key joint may spall or crack above or below the groove under load. The location of the shearing or spalling is dependent on whether the load is applied on the tongue side of the joint or the groove side of the joint. If the vertical load is applied on the tongue side, the failure will occur at the bottom portion of the groove. Conversely, if the vertical load is applied on the groove side of the joint, the failure will occur near the upper surface of the slab upon which the load is applied.
Shear failure of the tongue and groove may also occur due to opening of the key joint as a result of shrinkage of the concrete slab. As the key joint opens up over time, the groove side may become unsupported as the tongue moves away. Vertical loading of this unsupported concrete causes cracking and spalling parallel to the joint. Such cracking and spalling may occur rapidly if hard-wheeled traffic such as forklifts are moving across the joint. Another deficiency associated with key joint systems is related to the size, configuration and vertical placement of the tongue and groove within the key joint. If excessively large key joints are formed in adjacent slabs or if the tongue and groove are biased toward an upper surface of the slabs instead of being placed at a more preferable midheight location, spalls may occur at the key joint. Such spalls occurring from this type of deficiency typically run the entire length of the longitudinal key joint and are difficult to repair.
Other systems for limiting relative vertical displacement and for transferring loads between adjacent slabs involve methods of placing slip dowels within edge portions of the slabs across a pour joint as disclosed in U.S. Pat. Nos. 5,487,249, 5,678,952, 5,934,821, 6,210,070, 5,005,331, D419,700 and D459,205, each of which is issued to Shaw et al. Each one of these patents discloses various alternatives for installing slip dowels across the pour joint. The slip dowels are typically configured as smooth steel dowel rods that are placed within the edge portions in a manner such that the concrete slabs may slide freely along the slip dowels thereby permitting expansion and contraction of the slabs while simultaneously maintaining the slabs in a common plane and thus prevent unevenness or steps from forming at the joint. However, in order to function effectively, the slip dowels must be accurately positioned parallel within the adjoining concrete slabs. The positioning of the slip dowels in a non-parallel fashion prevents the desired slippage and thus defeats the purpose of the slip dowel system.
In addition, the individual dowel rods must be placed within one or both of the slabs in such a manner so as to permit unhindered slippage or movement of the dowel rod within the cured concrete slab(s). Unfortunately, because such slip dowels must be perfectly aligned in order to allow the adjacent concrete slabs to slide freely away from the joint, installation of slip dowels is labor intensive. In addition, slip dowels allow movement of the concrete slabs in one direction only (i.e., normal to the joint) while not permitting any lateral movement of the slabs (i.e., parallel to the joint) which may result in cracking of the slabs outside of the joint. Furthermore, because the dowel rods are extended outwardly from each side of the joint prior to pouring of the concrete and because of their relatively small diameter, the dowel rods present a safety hazard to personnel who may be injured by contact with rough, exposed ends of the dowel rods. Finally, such dowel rods may be accidentally bent as a result of contact with equipment and site traffic during construction resulting in misalignment of the dowel rods and locking of the joint.
In an effort to alleviate the labor intensive installation and inherently hazardous nature of the above-described slip dowel system as well as allow the slabs to move both normally and laterally relative to the joint, a diamond plate dowel system has been developed for limiting relative vertical displacement and for transferring loads between slabs. The diamond plate dowel system is typically comprised of a pocket former that is attached to a side of a concrete form such as a wooden form. The pocket former is configured such that opposing corners of the diamond plate are aligned with the joint. After pouring the slab on one side of the joint which encases the pocket therein, a diamond shaped plate is inserted into the pocket former immediately prior to pouring the abutting slab on the opposite side of the joint. The diamond plate allows the slabs to move unrestrained both normally and laterally relative to the form as the gap between the slabs opens up. In addition, the diamond plate has increased surface area as compared to dowel placement systems. The surface are of the diamond plate is also oriented as it is widest where the maximum shear and bearing loads are the greatest (i.e., along the joint) and narrowest where the loads on the diamond plate are at a minimum (i.e., away from the joint).
Unfortunately, the diamond plate dowel system suffers from several inherent drawbacks. One of these drawbacks is related to the orientation of the diamond plate which, as was earlier mentioned, is at its widest point along the joint and which tapers to a point at a distance away from the joint. Although such orientation may provide certain load-bearing benefits regarding relative vertical displacement of the adjacent slabs, the same orientation also creates certain drawbacks during lateral displacement of the slabs. Ideally, when the slabs are disposed in abutting relationship with one another at the joint, the perimeter edge of the diamond plate is also disposed in abutting or nearly-abutting contact with the interior compartment of the pocket former within which the diamond plate is slidably disposed. However, when the adjacent slabs move laterally away from one another (i.e., in opposite directions away from the joint to create a gap between the slabs), a spacing develops the perimeter of the diamond plate and the interior compartment increases.
As the slabs move further away from one another (i.e., the amount of laterally opposing displacement increases), the spacing proportionately increases between the perimeter of the diamond plate and the interior of the pocket former. Unfortunately, the increase in such spacing allows the slabs to move sideways relative to one another (i.e., along the joint) which, in turn, may result in the creation of gaps at joints between other slabs. In a concrete walkway or roadway system that is comprised of a checkerboard system of many slabs each having criss-crossing joints, the development of gaps at the numerous cross-crossing joints may create pedestrian or vehicular hazards. In addition, the aesthetics of the concrete walkway or roadway system deteriorates over time with the unsightly creation of gaps at the joints.
As can be seen, there exists a need in the art for a dowel system capable of minimizing laterally sideways displacement (i.e., along the joint) of adjacent concrete slabs while allowing for laterally opposing displacement (away from the joint) of the slabs. Furthermore, there exists a need for a dowel system that may be readily installed within adjacent concrete slabs and which is configured to maintain the slabs in a common plane while allowing for laterally opposing movement of the slabs. Finally, there exists a need for a dowel system of simple and low cost construction and which may be easily installed with a minimum of labor and which does not present a safety hazard during installation.
The present invention specifically addresses and alleviates the above-referenced deficiencies associated with dowel systems of the prior art. More particularly, the present invention is a disc dowel system that is specifically adapted to minimize relative vertical displacement of adjacently disposed concrete slabs while allowing relative horizontal movement thereof. The disc dowel system comprises a dowel plate and corresponding pocket former installed at a pour joint between a first concrete pour and a second concrete pour disposed above a subgrade or a substrate. The disc dowel system may further include a positioner bracket for positioning the pocket former within the first pour.
The dowel plate has a generally orthogonal (i.e., square, rectangular) shape that is divided into an embedded portion and a slidable portion. The slidable portion is configured to be laterally slidable within the pocket former while the embedded portion is configured to be substantially encapsulated or embedded within the second pour such that it is rigidly affixed therewithin after the concrete cures or hardens. Advantageously, the dowel plate is provided in the generally orthogonal shape in order to minimize laterally sideways movement (i.e., parallel to the joint) of an adjacent pair of slabs during laterally opposing motion of the slabs (i.e., perpendicular to the joint).
The pocket former has a horizontally-extending interior compartment which may be bounded by a pair of spaced apart, upper and lower former plates defining generally planar, upper and lower inner surfaces. The interior compartment may have an open, generally straight side defining a compartment opening and an opposing pair of compartment sides and a compartment end collectively defining the interior compartment. Crush ribs may be provided on each one of the compartment sides and which are configured to deflect or crush when the dowel plate bears thereagainst. The interior compartment is preferably configured to be complementary to the dowel plate and, in this regard, may have an orthogonally shaped compartment perimeter. The interior compartment is also preferably configured with the spacing between the upper and lower former plates being complementary to a thickness of the dowel plate such that a sliding fit is provided therebetween. In this manner, the pocket former creates a void in the first pour such that the dowel plate may be slidably received within the form. In one embodiment, the interior compartment and a perimeter edge of the dowel plate are in nearly-abutting contact (or abutting) contact with one another.
The embedded portion of the dowel plate is rigidly encapsulated within the second pour and the slidable portion of the dowel plate is slidably disposed within the pocket former such that the dowel plate permits substantially unrestrained relative horizontal movement of the first and second pours in the horizontal direction while restricting relative vertical movement thereof caused by vertical loading. Horizontal movement relative to the pour joint may occur due to uncontrolled shrinkage or contraction of the concrete mixture as water is lost during curing. As was mentioned above, the crush ribs are configured to deflect to allow relative side-to-side horizontal motion of the first and second pours. Vertical loading may be comprised of shear, bearing and flexural loads or any combination thereof caused by settling or swelling of the substrate underlying the first and/or second pours. The vertical loading may also be caused by vehicular or pedestrian traffic passing over the first and second pours.
The disc dowel system may include a positioner bracket that is mounted to a removable concrete form. The positioner bracket facilitates positioning the pocket former during pouring of the first pour. In certain methods of concrete pavement construction, pour joints are typically formed by using a wooden stud or a sheet metal form as the removable concrete form. Such concrete form is typically staked to the substrate along a desired location of the pour joint. The pocket former is positioned adjacent the concrete form such that the interior compartment is substantially horizontally outwardly extending away from the concrete form.
Wet concrete is then poured on a side of the concrete form to create the first pour which encapsulates the pocket former. The concrete form is then removed, exposing a pour face of the pour joint along the first pour with the dowel plate opening formed in the pour face. After the slidable portion of the dowel plate is inserted through the dowel plate opening and into the pocket former, the embedded portion remains exposed on an opposite side of the pour joint. Wet concrete is then poured on the opposite side of the pour joint to create the second pour which rigidly encapsulates the embedded portion of the dowel plate therewithin.
The positioner bracket includes a vertically-disposed base flange and a horizontally disposed plate portion that extends from the base flange. The base flange is rigidly attachable to the concrete form by any variety of means such as with fasteners. The plate portion of the positioner bracket is configured to be complementary to the interior compartment such that the positioner bracket may slidably receive the pocket former with a relatively snug fit. In this manner, the pocket former is held in a generally horizontal orientation during pouring of the first pour and prior to removal of the concrete form and positioner bracket after which the slidable portion of the dowel plate may be inserted into the interior compartment with the subsequent pouring of the second pour to encapsulate the embedded portion therewithin.
A rib insert may be included with the disc dowel system to facilitate movement of the dowel plate within the pocket former such as may occur during relative movement between the first and second pours. The rib insert may be a separately installed component configured to be insertable into the pocket former and is preferably sized and shaped to fit within the interior compartment along the sides and end thereof. The rib insert may have a plurality of resiliently deflectable biasing members and a deflection member extending laterally outwardly to directly engage the side edges and end edge of the dowel plate. The biasing members and deflection member further facilitate centering of the dowel plate within the pocket former to accommodate movement of the dowel plate in opposing lateral directions and in substantially equal amounts.
These as well as other features of the present invention will become more apparent upon reference to the drawings wherein:
Referring now to the drawings wherein the showings are for purposes of illustrating the present invention and not for purposes of limiting the same,
As can be seen in
As can be seen in
In order to facilitate the transfer of vertical loads across the pour joint 18 between the first pour 14 and the second pour 16, it is contemplated that the dowel plate 22 may be fabricated of a load-bearing material having favorable strength properties. The dowel plate 22 may be fabricated from metal plate such as carbon steel plate. A galvanized coating may be included on the dowel plate 22 in order to provide maximum protection of the metal from exposure to concrete which may otherwise result in corrosion for the embedded portion 58. Other coatings for the metal plate are contemplated and may include powder coatings and epoxy coatings. In addition, the dowel plate 22 may be fabricated from materials other than metal plate such as fiber glass, carbon fiber, Kevlar, or high density and/or high strength materials such as polymeric material or reinforced plastic or any combination of metal and polymeric material.
Referring still to
It is contemplated that the interior compartment 42 may be configured in a variety of alternative shapes with the spacing between the upper and lower former plates 76, 78 being complementary to a thickness of the dowel plate 22 such that a relatively snug, sliding fit is provided therebetween. For example, it is contemplated that the compartment opening 50 is sized to receive the dowel plate 22 therethrough with a minimum gap between edges of the dowel plate 22 and the compartment opening 50. As is shown in
Referring briefly to
The crush ribs 84 may be integrally formed with the pocket former 26 and may generally protrude laterally outwardly therefrom as shown in
Regardless of their configuration, the crush ribs 84 are preferably configured to deflect or crush when the dowel plate 22 moves laterally within the interior compartment 42 causing the dowel plate 22 to bear against the crush ribs 84. Such deflection or crushing of the crush rib 84 may be caused by relative lateral (i.e., horizontal) movement of the first and second pours 14, 16. Each one of the crush ribs 84 may have arcuately contoured proximal ends 86 which terminate inwardly from the open straight side 48 of the interior compartment 42 of the pocket former 26. The arcuate proximal ends 86 may facilitate slidable insertion of the dowel plate 22 into the interior compartment 42. As was earlier mentioned, lateral movement of the dowel plate 22 within the interior compartment 42 is facilitated by the deflection or collapse of either or both of the crush ribs 84.
Importantly, the pocket former 26 is configured to create a void in the first pour 14 such that the dowel plate 22 may be simply slid into the pocket former 26 until a perimeter of the dowel plate 22 is substantially in abutment with the compartment end 82. If the interior compartment 42 includes crush ribs 84, the dowel plate 22 is preferably sized to fit between the crush ribs 84 disposed on each of the opposing compartment sides 80. The dowel plate 22 does not penetrate through the pocket former 26 but preferably is configured to snugly fit therewithin. The pocket former 26 may be configured with internal removable spacers (not shown) that separate the upper and lower inner surfaces 44, 46 during pouring and curing of the first pour 14 such that the upper and lower former plates 76, 78 of the pocket former 26 resist flexure. In this manner, a spacing between the upper and lower former plates 76, 78 is maintained such that the interior compartment 42 will not collapse under the pressure of wet concrete.
As can be seen in
Perpendicular movement relative to the pour joint 18 may occur due to uncontrolled shrinkage or contraction of the concrete mixture as water or moisture is lost during curing. However, due to the orthogonal shape of the dowel plate 22 and the complementary configuration of the interior compartment 42 of the pocket former 26, the disc dowel system 10 allows substantially unrestrained laterally opposing horizontal movement of the first and second pours 14, 16. By allowing the first and second pours 14, 16 to move in a horizontal direction away from one another along the pour joint 18, residual stress accumulations may be reduced which may prevent random cracking of the concrete elsewhere.
Referring still to
The vertical loading may also be caused by vehicular or pedestrian traffic passing over the first and second pours 14, 16. In order to transfer such vertical loads across the pour joint 18, an exemplary dowel plate 22 may be sized with a plate thickness of about one-quarter inch and a maximum width at the pour joint 18 of about six inches although the dowel plate 22 may be provided in any thickness. For configurations wherein the dowel plate 22 has a square or rectangular shape, the dowel plate 22 may have a width of about six inches. Typical spacings between disc dowel systems 10 may be about sixteen inches from approximate centers of the installed dowel plates 22 along the pour joint 18 although it is contemplated that the dowel placement system may be installed at any spacing.
Referring briefly back to
Referring still to
Referring now to
Wet concrete may then be poured on a side of the concrete form 56 to create the first pour 14 which encapsulates the pocket former 26. The concrete form 56 is then removed, exposing the pour face 20 of the pour joint 18 along the first pour 14 with the dowel plate opening 24 being formed in the pour face 20. After the slidable portion 60 of the dowel plate 22 is inserted through the dowel plate opening 24 and into the pocket former 26, the embedded portion 58 remains exposed on an opposite side of the pour joint 18. Wet concrete may then be poured on the opposite side of the pour joint 18 to create the second pour 16 which rigidly encapsulates the embedded portion 58 of the dowel plate 22 therewithin.
In the disc dowel system 10, the positioner bracket 62 may be mounted on the concrete form 56 to aid in positioning the pocket former 26. In this regard, the positioner bracket 62 is configured to hold the pocket former 26 in a substantially horizontal orientation during pouring and curing of the first pour 14. Referring to
The base flange 64 may be disposed in abutting contact with the concrete form 56 and may be affixed thereto by a variety of means such as with fasteners. Toward this end, the base flange 64 may include a pair of apertures 66 extending through the base flange 64 at opposing ends, as is shown in
As can be seen in
Referring still to
Regarding the material from which the pocket former 26 and positioner bracket 62 may be fabricated, it is contemplated that polymeric or plastic material may preferably be used. The pocket former 26 and positioner bracket 62 may each be separately injection molded of high-density plastic material such as polyethylene plastic in order to impart sufficient strength and stiffness to the pocket former 26 and the positioner bracket 62. Alternatively, it is contemplated that the pocket former 26 and positioner bracket 62 may each be fabricated from materials such as fiberglass and carbon fiber. The former alignment ribs 40, alignment grooves 54 and perimeter flange 34, if included, may also be integrally formed with the pocket former 26 as a unitary structure by way of injection molding. Likewise, the base flange 64, plate portion 68, apertures 66 and positioner alignment ribs 74 may be integrally formed as a unitary structure of the positioner bracket 62 in an injection molding process.
Referring now to
In a broad sense, the rib insert 90 may comprise a spaced pair of side members 92 that may be optionally interconnected by a connecting member 102. Each of the side members 92 may be configured to extend along at least a portion of respective ones of the compartment sides 80. In this regard, the spacing between the side members 92 is preferably such that the side members 92 generally are abutted against the compartment sides 80 of the interior compartment 42. Furthermore, the side members 92 of the compartment sides 80 are preferably configured as generally elongate elements having a height that is generally complementary to a height of the interior compartment 42. In this manner, the side members 92 preferably fit snugly within the interior compartment 42 and are abutted against the respective ones of the compartment sides 80.
As was earlier mentioned, each of the side members 92 is preferably configured to extend at least along a portion and, more preferably, along substantial length of adjacent ones of the compartment sides 80 when the rib insert 90 is installed into the pocket former 26. The side members 92 are preferably configured to resiliently deflect such that the dowel plate 22 permits relative horizontal movement of the first and second pours 14, 16 while resisting relative vertical movement thereof.
Resilient deflection of the side members 92 is facilitated by configuring each of the side members 92 with at least one and, more preferably, a plurality of laterally outwardly extending biasing members 94 which are preferably sized and configured to bear against a side edge 132 of the dowel plate 22 as may occur during installation of the dowel plate and/or during relative horizontal movement of the first and second pours 14, 16. Although
Regarding their orientation, the biasing members 94 preferably extend along a direction toward the connecting member 102 as can be seen in the figures. In addition, the biasing members 94 are generally shown as being straight, elongate members. However, it is contemplated that the biasing members 94 may be configured in any variety of alternative shapes, sizes and configurations. For example, each of the biasing members 94 may have a generally arcuate shape, an arch shape or any other suitable shape to provide the desirable deflection characteristic when bearing against the side edges 132 of the dowel plate 22. Furthermore, each of the biasing members 94 may be provided with an enlarged and/or rounded bulb or nub 96 on free ends thereof.
As can be seen in the figures, the nubs 96 are generally rounded and may be preferably shaped in order to improve the ease with which each of the biasing members 94 may deflect at different angles relative to the side members 92. As can be seen, each of the biasing members 94 is preferably oriented to form an acute angle with the side member 92 from which they extend. However, it is contemplated that the biasing members 94 may be provided in any general orientation relative to the side member 92 including a perpendicular orientation.
Joining each of the side members 92 is the connecting member 102 which is also preferably configured to resiliently deflect in response to direct engagement with an end edge 134 of the dowel plate 22. The connecting member 102 is generally configured as a straight, elongate element that preferably has a cross-sectional shape and size similar to that of the side members 92 in order to simplify manufacturing. However, the relative cross-sectional shapes of the side member 92 and connecting member 102 can vary. Spaced along the connecting member 102 may be a plurality of bumpers 98. The connecting member 102 may further include a deflection member 104 which extends laterally outwardly from the connecting member 102 and is preferably configured to bear against the end edge 134 of the dowel plate 22 when the dowel plate 22 is installed within the pocket former 26.
As can be seen in the figures, the deflection member 104 is preferably comprised of a first portion 106, a second portion 108 and a third portion 110. The first portion 106 can be seen extending laterally from a central area of the connecting member 102. The first portion 106 extends laterally outwardly from the connecting member 102 and is disposed in non-perpendicular or angle relation thereto. The second portion 108 extends outwardly from a free end of the first portion 106 and is also oriented in non-perpendicular or angle relation to the first portion 106.
However, as can be seen in the figures, the second portion 108, which may be configured as a generally slight arcuate shape, is preferably arranged so as to be generally aligned or parallel with the connecting member 102 when the deflection member 104 is in the non-deflected state. The third portion 110 extends laterally from a free end of the second portion 108 opposite that from which the first portion 106 is connected. The third portion 110 also has a free end which extends toward a junction of the connecting member 102 with the first portion 106. In this regard, the first, second and third portions 106, 108, 110 form a generally open triangle in order to facilitate resilient deflection thereof when bearing against the end edge 134 of the dowel plate 22.
The bumpers 98 may be installed in spaced relation along each of the first, second and third portions 106, 108, 110 as shown in the figures. Additionally, the second portion 108 may include a relief 112 formed generally mid-span of the second portion 108 in order to facilitate bending of two halves forming the second portion 108. Likewise, each of the junctions between the first and second portions 106, 108 and second and third portions 108, 110 may also be provided with a relief 112 in order to facilitate bending or relative angular positioning therebetween.
Although shown in a generally open triangular shape, the deflection member 104 comprised of the first, second and third portions 106, 108, 110 may be provided in a wide variety of shapes and sizes suitable to provide the desired resilient deflection characteristics of the deflecting member 104 in order to allow relative movement of the end edge 134 of the dowel plate 22 within the interior compartment 42.
Referring to
At the proximal end 86 of each of the side members 92 is preferably disposed a locking mechanism 114 which may be formed thereon in order to facilitate engagement of the rib insert 90 to the pocket former 26. More specifically, the locking mechanism 114 may be comprised of an L-shaped flange 116 configured to engage a detent 120 formed in the pocket former 26 on the base flange 64 adjacent respective sides of the interior compartment 42. As can be seen in the figures, the L-shaped flange 116 is oriented preferably perpendicularly relative to the side member 92 and may further include a biasing member 94 extending angularly outwardly therefrom similar to the orientation of the other biasing members 94 formed on the side member 92. The biasing member 94 extending from the L-shaped flange 116 may further include a nub 96 formed thereon in order to facilitate deflection of the biasing member 94 when bearing against the side edge 132 of the dowel plate 22.
On an end of the L-shaped flange 116 opposite that from which the biasing member 94 is formed may be a tab 118 comprising an inwardly directed flange. The tab 118 may be specifically configured complementary to the detents 120 formed in the pocket former 26 in order to facilitate engagement and locking of the rib insert 90 to the pocket former 26. Although the locking mechanism 114 is configured as the L-shaped flange 116 having the tab 118 formed thereon, it is contemplated that the locking mechanism 114 may be configured in any suitable shape and size sufficient to securely attach the rib insert 90 to the pocket former 26 when the rib insert 90 is inserted into the interior compartment 42.
Referring still to
As can be seen in the figures, each of the bosses 130 is generally configured as an elongate cylindrical element extending laterally outwardly from the base flange 64 along a direction similar to that from which the interior compartment 42 extends. However, the bosses 130 may be provided in any cross-sectional shape and size. Strength may be provided in order to stabilize the elongate boss 130 by means of the web 126 which interconnects the boss 130 to the adjacent most one of the compartment sides 80. By providing the bosses 130 on the base flange 64 for mounting the pocket former 26 to the concrete form 56, the above mentioned positioner bracket 62 may be omitted from the process for installing the pocket former 26 in a manner as will be described in greater detail below.
The embodiment of the pocket former 26 illustrated in
In this manner, the stiffener ribs 122 facilitate maintenance of the desired spacing between the upper and lower inner surfaces 44, 46 of the interior compartment 42 such that the interior compartment 42 for slidably receiving the slidable portion 60 of the dowel plate 22 thereinto. Although shown as being provided in a generally diagonal orientation and being formed on both of the upper and lower exterior surfaces 70, 72, it is contemplated that the stiffener ribs 122 may be provided in any number and in any orientation and configuration or shape other than that shown in the figures. For example, it is contemplated that the stiffener ribs 122 may be formed in a criss-cross pattern or in a generally perpendicular orientation relative to the base plate.
The method of installing the dowel plate 22 within the pour joint 18 using the disc dowel system 10 will now be described with reference to
If the disc dowel system 10 includes a positioner bracket 62 for facilitating the installation of the pocket former 26 within the first pour 14, the positioner bracket 62 is secured to the concrete form 56 by initially placing the base flange 64 in abutting contact with a side of the concrete form 56. The base flange 64 may be approximately vertically centered on the side of the concrete form 56 such that the plate portion 68 extends substantially horizontally outwardly from the concrete form 56, as can be seen in
After the positioner bracket 62 is secured to the concrete form 56, the pocket former 26 is slidably extended over the positioner bracket 62 until the open straight side 48 of the pocket former 26 is in substantially abutting contact with the base flange 64, as shown in
The chamfered edges of the upper and lower former plates 76, 78 may prevent leakage of wet concrete between the pocket former 26 and the positioner bracket 62 which may otherwise hinder the removal of the positioner bracket 62 from the pocket former 26 after the concrete has cured or hardened. If positioner alignment ribs 74 and complementary alignment grooves 54 are included with respective ones of the positioner bracket 62 and the pocket former 26 as is illustrated in
After the pocket former 26 is slidably extended over the positioner bracket 62, the first pour 14 of concrete is made about the pocket former 26 such that the pocket former 26 is rigidly encapsulated therewithin, as shown in
Subsequent to curing and hardening of the first pour 14 of concrete, the concrete form 56 is removed exposing the pour face 20 of the pour joint 18. The removal of the concrete form 56 also causes the positioner bracket 62 to be removed from within the pocket former 26. The positioner bracket 62 remains in rigid attachment to the concrete form 56. Separating the positioner bracket 62 from the concrete form 56 may allow multiple uses of the positioner bracket 62. Removal of the concrete form 56 exposes the dowel plate opening 24 in the pour face 20 of the pour joint 18, as may be seen in
After the concrete form 56 and the positioner bracket 62 are removed and the concrete has cured and hardened, the slidable portion 60 of the dowel plate 22 may be inserted through the open straight side 48 and into the interior compartment 42 of the pocket former 26 leaving the embedded portion 58 exposed on an opposite side of the pour joint 18. The dowel plate 22 may be sized and configured to be complementary to the interior compartment 42 such that a relatively snug, sliding fit is provided between the dowel plate 22 and the pocket former 26. In this manner, vertical play or looseness between the dowel plate 22 and the interior compartment 42 may be minimized such that vertical loads may be effectively transferred across the pour joint 18 between the first and second pours 14, 16 in order to maintain a common plane therebetween. If crush ribs 84 are included in the pocket former 26, the dowel plate 22 is preferably sized to fit between the crush ribs 84 extending along the compartment sides 80.
After the dowel plate 22 is inserted into the pocket former 26, the second pour 16 of concrete is made such that the embedded portion 58 of the dowel plate 22 is rigidly encapsulated therewithin with the slidable portion 60 being slidably disposed within the pocket former 26. Due to the snug fit between the dowel plate 22 and the pocket former 26, the concrete of the second pour 16 is prevented from seeping into the interior compartment 42 of the pocket former 26 which may otherwise cause the dowel plate 22 to bond to the pocket former 26.
The method of installing the pocket former 26 in the embodiment illustrated in
Next, the pocket former 26 may be secured or mounted to the concrete form 56 by extending fasteners 124 such as nails through each of the apertures 66 formed in the bosses 130 and passing into the concrete form 56 in a manner such that the base flange 64 of the pocket former 26 is disposed in generally abutting contact with the concrete form 56. The desired quantity of pocket formers 26 are generally installed along the concrete form 56 in spaced relation to one another as required in order to provide the restrictions against relative vertical movement between the first and second pours 14, 16.
Following securing of the pocket former 26 to the concrete form 56, the first pour 14 of wet concrete may be poured in a manner such that the pocket former 26 is rigidly encapsulated therewithin. Following curing of the first pour 14, the concrete form 56 may be removed from the first pour 14 in a manner such that the concrete form 56 is pulled away from the pour joint 18 such that the fasteners 124 are disengaged from the concrete form 56 which is typically comprised of a wood or otherwise generally soft material.
Following removal of the concrete form 56, portions of the fasteners 124 extending through the apertures 66 of the bosses 130 may now be exposed and therefore may be removed by any suitable means. The slidable portion 60 of the dowel plate 22 may then be inserted into the interior compartment 42 similar to that described above after which the second pour 16 may be poured in order that the embedded portion 58 of the dowel plate 22 is rigidly encapsulated therewithin. In this manner, the slideable portion 60 of the dowel plate 22 is slidably disposed within the pocket former 26.
Upon the occurrence of relative horizontal movement between the first and second pours 14, 16, the rib insert 90 provides the necessary resilient deflection in response to direct engagement with side edges 132 and/or end edge 134 of the slidable portion 60. In this manner, the rib insert 90 allows for relative horizontal movement of the first and second pours 14, 16 while resisting relative vertical movement of the first and second pours 14, 16. Advantageously, the inclusion of the rib insert 90 within the interior compartment 42 allows for centering of the dowel plate 22 within the pocket former 26 during installation and curing of the first and second pours 14, 16.
In this manner, the second pour 16 may move laterally or horizontally (i.e., along the pour joint 18) in equal proportions relative to the first pour 14 due to the centering of the dowel plate 22. Likewise, due to the inclusion of the deflection member 104 shown in
Additional modifications and improvements of the present invention may also be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of the present invention, and is not intended to serve as limitations of alternative devices within the spirit and scope of the invention.
This application is a continuation-in-part application of U.S. application Ser. No. 11/103,863, entitled DISK PLATE CONCRETE DOWEL SYSTEM, filed on Apr. 12, 2005 now abandoned, which is a continuation of U.S. application Ser. No. 10/640,556, filed Aug. 13, 2003, now U.S. Pat. No. 6,926,463, the entire contents of each being expressly incorporated by reference herein. This application is also related to U.S. application Ser. No. 11/360,828, filed on Feb. 23, 2006 now U.S. Pat. No. 7,338,230, and to U.S. application Ser. No. 11/400,006, filed on Apr. 7, 2006 now U.S. Pat. No. 7,314,333, both of which are entitled PLATE CONCRETE DOWEL SYSTEM, the entire contents of both being expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
754215 | Hayward | Mar 1904 | A |
2096702 | Yeoman | Oct 1937 | A |
2166220 | Older | Jul 1939 | A |
2181005 | Westcott | Nov 1939 | A |
4077177 | Boothroyd et al. | Mar 1978 | A |
4087072 | Olsen | May 1978 | A |
4252767 | Piazza et al. | Feb 1981 | A |
4493584 | Guntert | Jan 1985 | A |
4801425 | Michel et al. | Jan 1989 | A |
5005331 | Shaw et al. | Apr 1991 | A |
5046898 | McKinney | Sep 1991 | A |
5096155 | Fitzgerald | Mar 1992 | A |
5205942 | Fitzgerald | Apr 1993 | A |
5216862 | Shaw et al. | Jun 1993 | A |
5487249 | Shaw et al. | Jan 1996 | A |
5618125 | McPhee et al. | Apr 1997 | A |
5678952 | Shaw et al. | Oct 1997 | A |
5694730 | Del Rincon et al. | Dec 1997 | A |
5797231 | Kramer | Aug 1998 | A |
5934821 | Shaw et al. | Aug 1999 | A |
D419700 | Shaw et al. | Jan 2000 | S |
6018833 | Imm | Feb 2000 | A |
6123485 | Mirmiran et al. | Sep 2000 | A |
6145262 | Schrader et al. | Nov 2000 | A |
6210070 | Shaw et al. | Apr 2001 | B1 |
6243994 | Bernini | Jun 2001 | B1 |
6354053 | Kerrels | Mar 2002 | B1 |
6354760 | Boxall et al. | Mar 2002 | B1 |
D459205 | Shaw et al. | Jun 2002 | S |
6502359 | Rambo | Jan 2003 | B1 |
6517277 | Hu et al. | Feb 2003 | B2 |
6655869 | Deeb et al. | Dec 2003 | B1 |
6926463 | Shaw et al. | Aug 2005 | B2 |
Number | Date | Country |
---|---|---|
1 123 443 | Jan 2004 | EP |
1 389 648 | Feb 2004 | EP |
PCTF19900865 | Apr 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20080267704 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10640556 | Aug 2003 | US |
Child | 11103863 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11103863 | Apr 2005 | US |
Child | 12214770 | US |