This application is the U.S. national phase of International Application No. PCT/EP2019/077474 filed Oct. 10, 2019 which designated the U.S. and claims priority to EP Patent Application No. 18200131.3 filed Oct. 12, 2018, the entire contents of each of which are hereby incorporated by reference.
The present invention relates to a plate heat exchanger arrangement according to the independent claim presented below. The invention relates also a modular structure comprising a plate heat exchanger arrangement according to the invention.
Plate and Shell-type plate heat exchangers are composed of a plate pack formed by heat exchange plates and an outer casing surrounding it, functioning as a pressure vessel. A plate pack is made up of several plate pairs. Each plate pair is typically formed of two heat exchange plates that are attached together at least at their outer periphery. Each heat exchange plate has at least two openings for the flow of a heat exchange medium. Adjacent plate pairs are attached to each other by attaching the openings of two adjacent plate pairs to each other. The inner parts of which plate pairs are arranged in connection with each other via flow passages formed by the openings of the heat exchange plates, wherein a primary circuit of the heat exchanger is formed between the openings in the heat exchange plates. A secondary circuit is formed between connections of the outer casing surrounding the plate pack, and they are arranged in connection with the spaces between the plate pairs of the plate pack. A heat exchange medium of the primary side flows in every other plate space and a heat exchange medium of the secondary side in every other plate space.
In some applications there might be need for several heat exchangers, but a space for the heat exchangers is limited, wherein it may be beneficial if heat exchangers can be arranged as compact as possible.
It is an object of the present invention to provide a plate heat exchanger arrangement which makes possible a compact structure of the plate heat exchanger.
It is especially an object of the present invention to provide a plate heat exchanger arrangement which makes possible to construct the flows of the multiple heat exchange mediums inside one plate pack.
It is also an object of the invention to provide a plate heat exchanger arrangement which can be used as a heat exchanger as such, but which can also be utilized in the modular structures.
Further, it is an object of the invention to provide a plate heat exchanger construction which is easy to manufacture.
In order to achieve among others the objects presented above, the invention is characterized by what is presented in the characterizing part of the enclosed independent claim. Some preferred embodiments of the invention will be described in the other claims.
A typical plate heat exchanger arrangement according to the invention comprises
In a typical plate heat exchanger arrangement according to the invention at least one partition plate is arranged between the heat exchange plates of the plate pack, which divides the plate pack to the separate plate pack parts, wherein the plate heat exchanger arrangement comprises an inlet connection and an outlet connection for each plate pack part, which are arranged in connection with the inner parts of the plate pairs of said plate pack part. In a typical plate heat exchanger arrangement according to the invention at least one inlet or outlet connection of the plate pack parts comprises a connection pipe, which is arranged inside a flow passage of the plate pack part between the end plate of the outer casing and the partition plate, wherein an end of said connection pipe is attached to said partition plate for forming a connection to the flow passage of said plate pack part and a second end of said connection pipe elongates through an end plate of the outer casing.
A typical modular structure according to the invention comprises at least two modules arranged inside the same outer casing, which modules are separated from each other by a partition wall, and at least one module comprises a plate heat exchanger arrangement according to an embodiment of the present invention comprising two plate pack parts.
The present invention is based on a structure of the plate pack, which comprises two or more plate pack parts in one plate pack. A structure of a plate pack according to the invention makes possible to arrange two or more separate heat exchange medium circulations in same plate pack. It has been found that a plate pack may be divided to two or more separate parts by arranging a partition plate between the heat exchange plates of the plate pack, wherein the partition plate separates the parts of the plate pack. Two or more plate pack parts in one plate pack are possible since it has been found that an inlet and/or an outlet connection of the plate pack part can be arranged through the flow passage of the adjacent plate pack part so that the connection comprises a connection pipe inside a flow passage of the plate pack part between the end plate of the outer casing and the partition plate. An end of said connection pipe is tightly attached to a partition plate for forming a connection to the flow passage of said plate pack part, wherein the heat exchange mediums inside the plate pack parts cannot mix to each other. In a plate heat exchanger arrangement according to the present invention at least one inlet or outlet connection of the plate pack parts comprises a double connection structure, i.e. through one opening in the end plate is arranged a connection to two plate pack parts.
A plate heat exchanger arrangement for two or more heat exchange mediums inside the same plate pack can be cooled/heated by using a single heat exchange medium in the shell side of the plate heat exchanger. This is advantageous if a space for the heat exchangers is limited. A shell side inlet and outlet connections can be formed regardless of the connections of the plate pack. In a typical embodiment according to the invention the shell side is common in all plate pack parts. A shell side can be constructed simply without complex structure which e.g. simplify a pipework required for the heat exchanger arrangement according to the invention.
A plate pack structure according to the present invention provides a completely welded structure and it does not affect the pressure-tightness of the heat exchanger.
A plate heat exchanger arrangement according to an embodiment of the invention provides a compact structure since the inlet and the outlet connections of the plate pack arrangement comprising two plate pack parts are possible to arrange through one end plate of the outer casing. This kind of plate heat exchanger arrangement according to the invention can be formed with an openable end plate structure.
A plate heat exchanger arrangement according to the invention also provides easily adaptable structure.
The invention will be described in more detail with reference to appended drawings, in which
A plate heat exchanger arrangement according to the invention comprises a plate pack and an outer casing surrounding it. The outer casing comprises a shell and a first end plate and a second end plate, which are arranged at the ends of the shell. In a typical embodiment the shell is a substantially horizontal cylindrical shell and the end plates are the vertical end plates. The term longitudinal direction of the outer casing or cylindrical shell used in this description refers to the direction between the end plates, typically it means the horizontal direction. If the cylindrical shell of the outer casing is a straight circular cylinder, then its longitudinal direction is the same as the direction of the central axis of the cylinder in question.
A plate pack is made up of several plate pairs. Each plate pair is typically formed of two heat exchange plates that are attached together at least at their outer periphery. Each heat exchange plate has at least two openings for a flow of a heat exchange medium. Adjacent plate pairs are attached to each other by attaching the openings of two adjacent plate pairs to each other. The inner parts of which plate pairs are arranged in connection with each other via flow passages formed by the openings of the heat exchange plates. In a plate pack, a heat exchange medium can flow from a plate pair to another via the openings. Heat exchange plates are typically circular heat exchange plates, wherein the plate pack is mainly circular cylinder in shape. A longitudinal direction of the plate pack is same as the longitudinal direction of the cylindrical shell.
In a plate heat exchanger arrangement according to the invention, a plate pack is divided two or more plate pack parts, which means that one plate pack formed of the plate pairs of the heat exchange plates comprises two or more parts comprising several the plate pairs. In a plate heat exchanger arrangement according to the invention, at least one partition plate is arranged between the heat exchange plates of the plate pack, which divides the plate pack to the separate plate pack parts. According to the present invention a plate pack may be divided to two, three or four plate pack parts by arranging partition plates between the heat exchange plates of the plate pack. The separate plate pack parts of the plate pack mean that the flow connection of the inner sides of the plate pairs inside the plate pack is blocked by the partition plate. A plate pack parts may have a different size, i.e. they may comprise a different amount of the plate pairs. The plate pack parts of the plate pack may be arranged on the basis of the requirement of an application.
According to an embodiment the partition plate arranged between the heat exchange plates of the plate pack has a thickness of about 5 to 20 mm. A partition plate is substantially thicker than the heat exchange plates of the plate pack. A partition plate is arranged between the heat exchange plates so that the outer edge of the partition plate is substantially in the same plane with the outer surface of the plate pack, i.e. a diameter of the partition plate is substantially the same as a diameter of the heat exchange plates of the plate pack. A partition plate may be welded to the heat exchange plates of the plate pack. A partition wall is used to block a flow connection between the plate pairs.
A plate heat exchanger arrangement according to the invention comprises an inlet connection and an outlet connection for each plate pack part, which connections are arranged in connection with the inner parts of the plate pairs of said plate pack part. The primary circuit of the plate pack part is thus formed between the inlet and outlet connection of said plate pack part. The inlet and outlet connections of the secondary circuit are arranged in connection with the inner side of the outer casing, in the spaces between the plate pairs. Typically, the primary circuits of the plate pack parts and the secondary circuit are separate from each other, i.e. the heat exchange medium flowing in the inner part of a plate pack part cannot get mixed with the heat exchange medium flowing in the outer casing and with the heat exchange medium flowing in the inner part of another plate pack part.
At least one inlet or outlet connection of the plate pack parts comprises a connection pipe, which is arranged inside a flow passage of the plate pack part between the end plate of the outer casing and the partition plate. An end of said connection pipe is attached to said partition plate for forming a connection to the flow passage of said plate pack part and a second end of said connection pipe elongates through an end plate of the outer casing. An end of the connection pipe is tightly attached to the partition plate for providing a tight structure and eliminating by-pass flow between the adjacent plate pack parts, although they are formed by using the same plate pack.
A connection pipe has an outer diameter smaller than a diameter of the flow passage of the plate pack part to which it is arranged, since outside of the connection pipe flows the heat exchange medium of said plate pack part. In a plate heat exchanger arrangement of the invention the plate pack parts are formed to one plate pack, wherein the diameter of the flow passages in all plate pack parts is typically same.
In an embodiment according to the invention, a plate pack comprises two separate parts, a first plate pack part and a second plate pack part, which plate pack parts are formed by arranging a partition plate between the heat exchange plates of the plate pack. A first plate pack part refers to the plate pack part, which is between the end plate of the outer casing and the partition plate and directly connected to the inlet and outlet connection arranged through the end plate of the outer casing. A second plate pack part refers to the plate pack part which is arranged behind the partition wall when seeing from the end plate comprising the inlet or outlet for the first plate pack part. An inlet and/or outlet connection of the second plate pack part comprises a connection pipe arranged inside a flow passage of the first plate pack part. An end of the connection pipe is attached to the partition plate for forming a connection to the flow passage of second plate pack part and a second end of said connection pipe elongates through an end plate of the outer casing. When both the inlet connection and the outlet connection of the second plate pack part is formed by arranging a connection pipe through the flow passages of the first plate pack part, the plate heat exchanger arrangement provides a compact structure with the openable end plate, since all inlet and outlet connection of the plate pack parts are arranged to the same end plate and therefore the plate heat exchanger arrangement can be manufactured with an openable end plate and the plate pack can be easily removed out from the outer casing, if required e.g. for cleaning.
In an embodiment according to the invention, the plate pack comprises two separate parts, a first plate pack part and a second plate pack part, and an inlet connection or an outlet connection of the second plate pack part comprise a connection pipe which is arranged inside a flow passage of the first plate pack part between the end plate of the outer casing and the partition plate. In said embodiment, an inlet connection of the first plate pack part may be formed by arranging a connection pipe through an outlet connection of the first plate pack part arranged at the end plate of the outer casing, wherein said connection pipe elongates inside the flow passage of the first plate pack part. Said inlet and outlet connections forms a double pipe connection which is arranged through the same opening at the end plate.
In an embodiment according to the invention, the plate pack comprises two partition plates, wherein the plate pack comprises three separate parts, a first plate pack part, a second plate pack part and a third plate pack part. An inlet and an outlet connection of the second plate pack part in a central part of the plate pack comprise a connection pipe which is arranged inside a flow passage of the first plate pack part and/or the third plate pack part between the end plate of the outer casing and the partition plate. An inlet and an outlet connection pipes are arranged through the flow passages of the first plate pack part and/or the third plate pack part depending on an application. In an embodiment according to the invention an inlet connection of the first plate pack part and an inlet connection of the third plate pack part are formed by arranging a connection pipe through an outlet connection of said plate pack part arranged at the end plate of the outer casing, wherein said connection pipe elongates inside the flow passage of said plate pack part.
In an embodiment according to the invention, the plate pack comprises three partition plates, wherein the plate pack comprises four separate parts, a first plate pack part, a second plate pack part, a third plate pack part and a fourth plate pack part. An inlet and an outlet connection of the second plate pack part and the third plate pack part in a central part of the plate pack comprise a connection pipe which is arranged inside a flow passage of the first plate pack part and the third plate pack part between the end plate of the outer casing and the partition plate.
A plate heat exchanger arrangement for two or more heat exchange mediums inside the same plate pack can be cooled/heated by using a single heat exchange medium in the shell side of the plate heat exchanger. A shell side inlet and outlet connections can be formed regardless of the connections of the plate pack. In a typical embodiment according to the invention the shell side is common in all plate pack parts. In the heat exchanger arrangement according to the invention an inlet and an outlet connection of the shell side is arranged through the outer casing of the heat exchanger. An inlet and an outlet connection of the shell side may be arranged through the end plate(s) or through the shell, or any combination of them. According to a preferred embodiment of the invention all the shell side inlet and outlet connections are arranged in the end plate of the heat exchanger, which may be advantageous, if also the inlet and outlet connections of the plate pack parts are arranged to the end plate. This provides a compact structure of the plate heat exchanger arrangement.
In an embodiment of the invention, a plate heat exchanger arrangement further comprises at least one stopper plate arranged between an outer surface of the plate pack and an inner surface of the shell for arranging multiple passes in the shell side of the heat exchanger. According to an embodiment of the invention the stopper plate is welded to a partition plate arranged between the heat exchange plates of the plate pack. A stopper plate is a substantially planar in the direction of the heat exchange plates and it is arranged to the plate heat exchanger structure in the direction of the heat exchange plates of the plate pack.
A plate heat exchanger arrangement according to the invention may be a heat exchanger as such, or it may be a part of the modular structure.
A modular structure according to the invention comprises at least two modules arranged inside the same outer casing, which modules are separated from each other by a partition wall, and at least one module comprises a plate heat exchanger arrangement according to invention, which arrangement comprises two plate pack parts. In an embodiment, the outer casing of the modules is continuous in the length of the modular structure. In a modular structure, a partition wall between the plate heat exchanger arrangement and the adjacent module is the end plate of the outer casing of said plate heat exchanger arrangement. The arrangement according to the invention provides a compact modular structure, since two heat exchange medium circulations can be arranged inside one module part. These kinds of the structures may be advantageous when a space for the heat exchanger applications is limited.
For the sake of clarity, the same reference numbers are used for corresponding parts in different embodiments.
The plate heat exchanger arrangements 1 presented in Figures comprise an outer casing, which is formed of a substantially horizontal cylindrical shell 3 and substantially vertical first and second end plates 4a, 4b. A plate pack 2 is arranged inside the outer casing. The plate pack 2 is formed by heat exchange plates having two openings and arranged on top of each other, in which plate pack the heat exchange plates are attached to each other as plate pairs, the inner parts of which plate pairs are arranged in connection with each other via flow passages 10a, 10b formed by the openings of the heat exchange plates.
In the embodiments presented in
In the embodiments presented in
In an embodiment presented in
Each plate pack part comprises several plate pairs of the plate pack 2. A number of the plate pairs may vary and a length of the plate pack parts in a longitudinal direction of the plate pack 2 may differ form each other.
The partition plate 5, 5a, 5b, 5c is arranged between the heat exchange plates so that the outer edge of the partition plate is substantially in the same plane with the outer surface of the plate pack. A partition plate or plates arranged between the plate pack parts is used to block a flow connection of the plate pack parts through the flow passages 10a, 10b. The partition plate comprises required opening(s) for inlet and/or outlet connections in order forming a connection to the flow passage of said plate pack part.
In
In
In
In
In an embodiment presented in
In
In an embodiment presented in
As shown in Figures, an outer diameter of the connection pipe 8, 9, 18, 19, 20 is smaller than a diameter of the flow passage 10a, 10b of the plate pack.
The plate heat exchanger arrangements presented in
Number | Date | Country | Kind |
---|---|---|---|
18200131 | Oct 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/077474 | 10/10/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/074641 | 4/16/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6089313 | Levy | Jul 2000 | A |
6158238 | Lampinen | Dec 2000 | A |
6168765 | Romatier | Jan 2001 | B1 |
6536511 | Nilsson | Mar 2003 | B1 |
9429367 | Jouanny | Aug 2016 | B2 |
10619944 | Cole et al. | Apr 2020 | B2 |
10989481 | Crawford | Apr 2021 | B2 |
20020179295 | Palanchon | Dec 2002 | A1 |
20050011639 | Kontu | Jan 2005 | A1 |
20060118284 | Tauren | Jun 2006 | A1 |
20070125527 | Flik | Jun 2007 | A1 |
20120060550 | Mann | Mar 2012 | A1 |
20120216562 | Kadle | Aug 2012 | A1 |
20130292099 | Cook | Nov 2013 | A1 |
20130306283 | Bader | Nov 2013 | A1 |
20150129181 | John | May 2015 | A1 |
20150325889 | Jung et al. | Nov 2015 | A1 |
20160025419 | Pitkänen | Jan 2016 | A1 |
20180112935 | Seo | Apr 2018 | A1 |
20180135916 | Sueyoshi | May 2018 | A1 |
Number | Date | Country |
---|---|---|
105358929 | Feb 2016 | CN |
2846736 | May 2004 | FR |
534313 | Mar 1941 | GB |
2011-7467 | Jan 2011 | JP |
469529 | Nov 2011 | JP |
2015-535069 | Dec 2015 | JP |
2016-183833 | Oct 2016 | JP |
2017-32250 | Feb 2017 | JP |
2042911 | Aug 1995 | RU |
2010149858 | Dec 2010 | WO |
2014162041 | Oct 2014 | WO |
Entry |
---|
Extended European Search Report for EP Application No. 18 200 131.3 dated Apr. 12, 2019, 5 pages. |
International Search Report and Written Opinion of the ISA for PCT/EP2019/077474 dated Nov. 28, 2019, 12 pages. |
IN Official Action, IN Appln No. 202147021002 dated Sep. 22, 2022. |
Search Report, CN Application No. 2019800671505, dated Oct. 10, 2019. |
Notice of Reasons for Refusal, Japanese Patent Application No. 2021-516693, dated Oct. 3, 2023. |
Number | Date | Country | |
---|---|---|---|
20210333051 A1 | Oct 2021 | US |