Embodiments of this disclosure relate generally to heat exchangers. More specifically, the present disclosure relates to plate heat exchangers.
Plate Heat Exchangers (PHEs) and Brazed Plate Heat Exchangers (BPHEs) are formed of a series of plates that are stacked and sealed/brazed to form separate flow paths for two fluids. In many such PHEs and BPHEs, the fluids are typically refrigerant circulated through a first flow path and water or brine circulated through a second flow path, with the PHE or BPHE facilitating thermal energy exchange between the two fluids. PHEs and BPHEs are utilized in, for example, commercial or residential chillers.
In one embodiment, a plate heat exchanger includes a plurality of main plates stacked to define a first cavity to direct a first fluid therethrough and a second cavity to direct a second fluid therethrough, the second fluid different from and kept separated from the first fluid. Each main plate has one or more peaks and one or more valleys formed therein. A ratio of wavelength between adjacent peaks or between adjacent valleys of the main plate to an amplitude between a peak and an adjacent valley of the main plate is equal to or greater than 7.0.
Additionally or alternatively, in this or other embodiments the ratio is between 10 and 25.
Additionally or alternatively, in this or other embodiments the plurality of main plates includes one or more symmetric plates.
Additionally or alternatively, in this or other embodiments the one or more symmetric plates have a cross-sectional shape defined by a cosine wave.
Additionally or alternatively, in this or other embodiments the plurality of main plates includes one or more asymmetric plates.
Additionally or alternatively, in this or other embodiments the one or more asymmetric plates have a cross-sectional shape defined by a two-term Fourier cosine series.
Additionally or alternatively, in this or other embodiments the wavelength of the asymmetric plate is 18 millimeters or more.
Additionally or alternatively, in this or other embodiments the asymmetric plate includes a first amplitude of a first cosine mode greater than a second amplitude of a second cosine mode.
Additionally or alternatively, in this or other embodiments the first amplitude of the first cosine mode is 1.1 millimeters or less.
Additionally or alternatively, in this or other embodiments the second amplitude of the second cosine mode is 0.6 millimeters or less.
Additionally or alternatively, in this or other embodiments one or more symmetric plates are alternatingly stacked with the one or more asymmetric plates.
Additionally or alternatively, in this or other embodiments the main plates have a chevron angle of 35 degrees or greater.
In another embodiment, a plate for a plate heat exchanger at least partially defines a first cavity to direct a first fluid therethrough and a second cavity to direct a second fluid therethrough, the second fluid different from and kept separate from the first fluid. The plate has one or more peaks and one or more valleys formed therein. A ratio of wavelength between adjacent peaks or between adjacent valleys of the main plate to an amplitude between a peak and an adjacent valley of the main plate is equal to or greater than 7.0.
Additionally or alternatively, in this or other embodiments the ratio is between 10 and 25.
Additionally or alternatively, in this or other embodiments the plate has a cross-sectional shape defined by a cosine wave.
Additionally or alternatively, in this or other embodiments the plate has a cross-sectional shape defined by a two-term Fourier cosine series.
Additionally or alternatively, in this or other embodiments the wavelength of the plate is 18 millimeters or more.
Additionally or alternatively, in this or other embodiments the amplitude is 1.1 millimeters or less.
Additionally or alternatively, in this or other embodiments the amplitude is 0.6 millimeters or less.
Additionally or alternatively, in this or other embodiments the plate has a chevron angle of 35 degrees or greater.
The subject matter, which is regarded as the present disclosure, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the present disclosure, together with advantages and features, by way of example with reference to the drawings.
Symmetric PHEs or BPHEs are constructed such that the first flow path and the second flow path have equal flow areas for the two fluids. The symmetric construction, however, can lead to a mass flux of one or both fluids through the heat exchanger which is not optimal. For example, a mass flux of the refrigerant through the first flow path may be lower than desired, while additionally or alternatively, a mass flux of the water or brine through the second flow path may be greater than desired. As a result, refrigerant-side heat transfer underperforms, and liquid-side pressure drop can be too high, thus limiting capacity of a heat exchanger of a given size. In an attempt to correct the mass flow differences, some PHEs and BPHEs are constructed asymmetrically, with different flow areas for the two fluids. Asymmetric PHEs and BPHEs have limitations as well, however.
Referring now to
The plate heat exchanger 10 includes a first end plate 18 at a first end 20 of the plate heat exchanger 10 and a second end plate 22 located at a second end 24 of the plate heat exchanger 10, opposite the first end 20. The first end plate 18 and/or the second end plate 22 includes end plate openings 26 which can be substantially aligned with the openings 16 in the main plates to receive fluid fittings 28, 30, 32, 34 for entry of first fluid 36 and second fluid 38 into the plate heat exchanger 10, and for exit of first fluid 36 and second fluid 38 from the plate heat exchanger 10. For example, first fluid 36 may be input into the heat exchanger 10 via fitting 28 and output from the heat exchanger 10 via fitting 30, and second fluid 38 may be input into the heat exchanger 10 via fitting 32 and output from the heat exchanger 10 via fitting 34. While main plates 12 are shown having a rectangular shape in
Referring now to
The main plates 12 each have a wavelength λ between adjacent peaks 44 or between adjacent valleys 46. Further, the main plates 12 each have an amplitude A between a peak 44 and an adjacent valley 46. Wavelength λ and amplitude A together define an aspect ratio λ/A equal to or greater than 7.0. In some embodiments, the aspect ratio λ/A is between 10 and 25.
In some embodiments, the plurality of main plates 12 includes one or more symmetric plates 12a. The symmetric plates can be cross-sectionally shaped as cosine waves, as shown, other curvilinear forms, or may extend linearly between peaks 44 and valleys 46. In some embodiments, the wavelength λ of the symmetric plates 12a is 9 mm or greater. An aspect ratio λ/A of symmetric plates 12a is equal to or greater than 7.0. In some embodiments, the aspect ratio λ/A is between 10 and 25.
Additionally or alternatively, the plurality of main plates 12 can include one or more asymmetric plates 12b, an example of which is shown in
z=A
1 cos(2πx′/λ)−A2 cos(4πx/λ) Equation 1:
where A1 is a first cosine mode zero-to-peak amplitude, A2 is a second cosine mode zero-to-peak amplitude, λ is the wavelength. The resulting z is a “Z” position along the curve relative to a Z-axis at a given location x′ along the X-axis.
In some embodiments, the wavelength λ of the asymmetric plates 12b is 18 mm or greater. In some embodiments the first cosine mode amplitude A1 is 1.1 mm or less, while in other embodiments the second cosine mode amplitude A2 is 0.6 mm or less. The difference in highest and lowest points in this path is defined as a peak-to-peak amplitude A. The ratio λ/A is greater than or equal to 7. In some embodiments, the aspect ratio λ/A is between 10 and 25.
Referring now to
Some embodiments of heat exchanger 10 include only symmetric plates 12a. In some embodiments, the symmetric plates 12a have the same cross-sectional shape or geometric configuration, while in other embodiments the symmetric plates 12a may differ.
Further, as shown in
The heat exchanger 10 described herein with symmetric plates 12a alternatingly stacked with asymmetric plates 12b, having relatively long wavelengths 2\, and relatively small peak-to-peak amplitudes A demonstrates significant reductions of up to 30% material required for a given capacity heat exchanger at the same liquid-side pressure drop. Further, refrigerant charge for a given capacity heat exchanger may be significantly reduced, in some embodiments up to about 50 percent, resulting in significant cost savings. The heat exchanger 10 further provides a 2X capacity increase for a fixed heat exchanger physical envelope. The capacity increase may allow heat exchangers 10 to displace shell-and-tube heat exchangers in some applications.
While the disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various embodiments of the disclosure have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application claims the benefit of 62/426,714, filed Nov. 28, 2016, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62426714 | Nov 2016 | US |