The present application generally relates to fluid pumping apparatuses and, more particularly, to a plate pump assembly for use with a subsurface pump that allows the pumping of solids along with fluids.
Fluid that is pumped from the ground is generally mixed with solid impurities such as sand, pebbles, limestone, and other sediment and debris. Certain kinds of pumped fluids, such as heavy crude, tend to contain a relatively large amount of solids. Because of these impurities, a number of problems are regularly encountered during fluid pumping operations.
Solid impurities can be harmful to a pumping apparatus and its components for a number of reasons. Conventional gear pumps, for example, are particularly susceptible to wear and damage from solid impurities that become entrained in the pump components during pumping operations. These solid impurities can cause damage, reduce effectiveness, and sometimes require a halt to pumping operations and replacement of the damaged components. In conventional gear pumps fluid is pumped using an upward and downward motion only, which requires more strength and force than a side-to-side motion. The exertion that conventional gear pumps undergo causes wear and tear on the gear pumps, eventually resulting in pump failure over time and a need for replacement pump components or a replacement pump altogether. This can be both time consuming and expensive.
Conventional rotary and reciprocating pumps that use gear, cams, and fins to move fluid are not efficient and become damaged when pumping high solids fluid. Most pumps of these designs use a rotary motion to move fluid. Rotation of fluid can create a centrifugal motion which causes solids to move outward to the outer regions of the pump wall. With this type of design, solids can be swept to the outer wall where they accumulate as high density slurry. The slurry can then be swept in a rotation motion where there is clearance between the pump components. This clearance can allow the concentration of solids to be forced into areas of tolerance causing abrasive damage to the rotor and stator. This damage can cause more tolerance and thus allow less fluid to be pumped at a given rpm. The solids can also cause the pump to seize and result in the pump being pulled out of service. This cost can be significant when the pump is in critical areas of fluids production.
The present application addresses these problems encountered in prior art pumping systems and provides other, related advantages.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the DESCRIPTION OF THE APPLICATION. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In accordance with one aspect of the present application, a pump assembly is provided. The pump assembly can include an upper plate and a lower plate. In addition the pump assembly can include at least one chamber having a lower valve and an upper valve. The pump assembly can also include a piston positioned within the at least one chamber. The pump assembly can include a drive shaft actuating the upper plate and the lower plate side-to-side alternately opening and closing the lower valve and the upper valve of the at least one chamber. The drive shaft can further actuate the piston positioned within the at least one chamber alternately increasing an area of the at least one chamber when receiving fluid through the lower valve and decreasing the area of the at least one chamber when pushing the fluid through the upper valve.
In accordance with another aspect of the present application, a method for pumping fluids by a plate assembly is provided. The method can include actuating a primary upper cam and a primary lower cam causing an upper plate and a lower plate to slidably move in a side-to-side direction that alternately conceals and reveals upper ports contained within an upper valve region and lower ports contained within a lower valve region in at least one chamber. In addition, the method can include actuating a secondary upper eccentric cam and a secondary lower eccentric cam causing a piston to move in a side-to side direction alternately increasing an area within the at least one chamber for receiving fluid from the lower ports and decreasing the area within the at least one chamber for compressing the received fluid to dispel through the upper ports.
In accordance with yet another aspect of the present application, an apparatus for regulating the pumping of fluids is provided. The apparatus can include a first chamber and a second chamber having lower valves and upper valves. In addition, the apparatus can include a primary upper eccentric cam and a primary lower eccentric cam connected to an upper plate and a lower plate. The apparatus can also include a secondary eccentric cam connected to a piston. The apparatus can include a drive shaft rotating the primary upper and lower eccentric cams actuating the upper and lower plates alternately concealing and revealing the lower and upper valves for the first and second chambers. The drive shaft can further rotate the secondary eccentric cam to actuate the piston alternately increasing an area of the first and second chambers when fluids are received through the lower valves and decreasing the area within the first and second chambers to push the fluids through the upper valves.
The novel features believed to be characteristic of the application are set forth in the appended claims. In the descriptions that follow, like parts are marked throughout the specification and drawings with the same numerals, respectively. The drawing figures are not necessarily drawn to scale and certain figures can be shown in exaggerated or generalized form in the interest of clarity and conciseness. The application itself, however, as well as a preferred mode of use, further objectives and advantages thereof, can be best understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein:
The foregoing description is provided to enable any person skilled in the relevant art to practice the various embodiments described herein. Various modifications to these embodiments can be readily apparent to those skilled in the relevant art, and generic principles defined herein can be applied to other embodiments. Thus, the claims are not intended to be limited to the embodiments shown and described herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” All structural and functional equivalents to the elements of the various embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the relevant art are expressly incorporated herein by reference and intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.
Generally described, the present application relates to fluid pumps and associated systems and, more particularly, to a plate pump assembly that can be adapted to operate in conjunction with a subsurface or other type of pump and provide enhanced pumping of various fluids as well as solid impurities that can be contained within certain types of fluids, such as heavy crude. In one illustrative embodiment, the plate pump assembly can include a first chamber and a second chamber with each chamber having a lower valve and an upper valve. Within the plate pump assembly, a primary upper eccentric cam and a primary lower eccentric cam can be provided. The primary upper eccentric cam and primary lower eccentric cam can be connected to an upper plate and a lower plate. Secondary lower and upper eccentric cams within the plate pump assembly can be connected to a piston that separates the first and second chambers.
The plate pump assembly can include a drive shaft. In operation, the drive shaft can rotate the primary upper eccentric cam and the primary lower eccentric cam to actuate the upper plate and the lower plate alternately concealing and revealing the lower valves and the upper valves for the first and second chambers. In addition, the drive shaft can further rotate the secondary lower and upper eccentric cams to actuate the piston alternately decreasing and increasing an area of the first and second chambers. When receiving fluids through the lower valves the area within the first or second chambers can be increased. The area within the first or second chambers can then be decreased to push the fluids through the upper valves. As will become apparent from the discussion below, the processes can be repeated to regulate fluid pumping.
In the embodiment provided above, typically the area within the first chamber increases when the area in the second chamber decreases. Alternatively, the area within the first chamber decreases and the area in the second chamber increases. When the area of a chamber increases, the chamber's upper valve is closed and the lower valve is opened to draw in fluid. The fluid can then be released when the lower valve is closed and the upper valve is opened allowing the fluid within the chamber to pass therethrough. By using the rotational movement of the drive shaft, instead of up and down motions used by conventional pumps, the plate pump assembly can remove the wear and tear caused by solid impurities when pumping fluids.
Typically, the plate pump assembly described herein is designed to be used in areas containing fluids with a large number of solids. The plates in the pump can transfer fluid without placing the fluid in a centrifugal motion. The plates can slide upon each other creating a tighter seal by the lapping motion created during the sliding of the plates on each other. The fluid can be moved upwards to the point of transfer by staging of plates. The fluid solids remain static as to their current state thus allowing the transfer of fluid and solids without causing additional damage the wall of the pump. The plates are synonymous to the rotor in placing the fluid in motion but unlike the rotor, the plates can transfer the fluid thru each stage of the pump without forcing the solids out of suspension into high density slurry. The wear can be minimized to create a pump that has long term pump efficiency. The plate pump can have a positive displacement so it can be operated at a low rpm without loss of efficiency.
The plate pump has the ability to pump larger particles of solids and high density fluid because of its open chamber design. The plate pump allows high density solids to move thru each chamber without being forced into a rotary motion of close tolerance pump components. The plates can be stacked upon each other utilizing the hydrostatic pressure to create a tighter seal among the plates thus creating better long term efficiency. While one embodiment of the plate pump assembly was described above, those skilled in the relevant art can appreciate that numerous other embodiments exist and are within the scope of the present application.
Referring to
A middle casing 26 can be situated above the lower casing 16, and house a piston 28, which is shown in
Continuing with a summary of the main components of the plate pump 10, an intake port 14 and a discharge port 52 can be positioned opposite one another on the plate pump 10. The plate pump 10 can define a plurality of bolt holes 54 running from the upper disk 50 through the upper casings 46 and 34, middle casing 26, lower casing 16, and the lower disk 12, through which bolts, not shown, can be inserted, such that multiple plate pumps 10 can be coupled together, as further discussed below. While in the shown embodiment, four bolt holes 54 are utilized, it would be possible to provide more than four or fewer than four bolt holes 54 on the plate pump 10.
A drive shaft 60 can run through a central portion of the components of the plate pump 10 and be positioned through primary upper and primary lower eccentric cams 62 and 72 as shown in
Referring to
Referring to
Fluid flow into and out of the chambers 30 and 32 will now be described. Fluid from a formation typically enters the plate pump 10 at a lower portion thereof through intake port 14. From there, fluid can enter the lower accumulator region 18 as depicted in
When the lower port 22 is concealed by the lower plate 74 lower port 24 is revealed, thereby allowing fluid to be drawn from the lower accumulator region 18 into the lower port 24, where it can then enter the chamber 32 as shown. In addition, upper port 44 can be concealed by upper plate 64. At this time, the piston 28 can be moving in a direction away from the chamber 32 and towards chamber 30. As the piston 28 is moved away, the area of the chamber 32 can increase resulting in more fluid being drawn from the lower accumulator region 18 through port 24.
Turning now to
As shown in
Depicted in
In accordance with the shown embodiment, chamber 30 can receive fluid while chamber 32 dispels the fluid. The upper plate 64 and lower plate 74 can alternate opening and closing the lower port 24 and upper port 44 of chamber 32 and the lower port 22 and upper port 42 of chamber 30. At the same time, the piston 28 can increase the area of the chambers 30 and 32 when drawing in fluid from the lower accumulator region 18 while decreasing the area of the chambers 30 and 32 when dispelling the fluid.
While two chambers 30 and 32 were provided, those skilled in the relevant art will appreciate that the plate pump 10 can have one or many chambers. The plate pump 10 can include a lower port and upper port with each chamber. Each port can be open and closed using the upper plate 64 and lower plate 74 described above. At the same time, the area of the chambers can be increased and decreased when pumping fluid through the piston 28.
In accordance with one embodiment, more than one plate pump 10 can be provided for use with a subsurface or other type pump, if desired, to provide for additional pumping of fluid. In such a case, multiple plate pumps 10 can be stacked above one another, as shown, for example, in
Compared with conventional gear pumps, the plate pump 10, with its sliding plates 64 and 74 and piston 28 provides for greater efficiency. The drive shaft 60 can be driven at a desired rpm, for example, 100 rpm. While an rpm at this rate can be slower than rpm rates utilized in conventional gear pumps, an rpm at this rate provides for sufficient pumping pressure, and allows a single plate pump 10 to pump hundreds of gallons of fluid per minute. In this regard, the side-to-side motion of the sliding plates 64 and 74 and piston 28, is easier than an upward lifting motion that is typically found on conventional gear pumps, and thus allows more fluid to be pumped over a given period of time compared with conventional gear pumps. In addition, the plate pump 10 allows solids to be pumped along with fluids and, being gear-less, there is no risk of solids becoming stuck in gears, as is often the case with conventional gear pumps. The plate pump 10 is thus a high tolerance pump without requiring the use of gears.
In accordance with one aspect of the present application, a pump assembly is provided. The pump assembly can include an upper plate and a lower plate. In addition the pump assembly can include at least one chamber having a lower valve and an upper valve. The pump assembly can also include a piston positioned within the at least one chamber. The pump assembly can include a drive shaft actuating the upper plate and the lower plate side-to-side alternately opening and closing the lower valve and the upper valve of the at least one chamber. The drive shaft can further actuate the piston positioned within the at least one chamber alternately increasing an area of the at least one chamber when receiving fluid through the lower valve and decreasing the area of the at least one chamber when pushing the fluid through the upper valve.
In one embodiment, the pump assembly can include an upper eccentric cam connected to the upper plate and a lower eccentric cam connected to the lower plate, the upper eccentric cam and the lower eccentric cam rotated by the drive shaft to actuate the upper plate and the lower plate. In one embodiment, the upper eccentric cam and the lower eccentric cam can be offset from one another causing the upper plate and the lower plate to slide in opposite side-to-side directions. In one embodiment, an intake port and a lower accumulator region can be in fluid communication with the lower valve and a discharge port and an upper accumulator region can be in fluid communication with the upper valve.
In one embodiment, the lower accumulator region can be oriented in a first direction and the upper accumulator region is oriented in a second direction that is opposite that of the lower accumulator region. In one embodiment, the lower accumulator region and the upper accumulator region can have a horseshoe shape. In one embodiment, the intake port and the discharge port can be positioned opposite one another on the pump assembly.
In one embodiment, the pump assembly can include a secondary cam connected to the drive shaft for actuating the piston. In one embodiment, the secondary cam can include an upper secondary cam and a lower secondary cam both rotated by the drive shaft to actuate the piston.
In accordance with another aspect of the present application, a method for pumping fluids by a plate assembly is provided. The method can include actuating a primary upper cam and a primary lower cam causing an upper plate and a lower plate to slidably move in a side-to-side direction that alternately conceals and reveals upper ports contained within an upper valve region and lower ports contained within a lower valve region in at least one chamber. In addition, the method can include actuating a secondary upper eccentric cam and a secondary lower eccentric cam causing a piston to move in a side-to side direction alternately increasing an area within the at least one chamber for receiving fluid from the lower ports and decreasing the area within the at least one chamber for compressing the received fluid to dispel through the upper ports.
In one embodiment, the primary upper cam, primary lower cam, secondary upper eccentric cam, and secondary lower eccentric cam can be rotated through a drive shaft centrally positioned within the plate assembly. In one embodiment, receiving the fluid can include opening the lower valve region and closing the upper valve region. In one embodiment, dispelling the fluid can include closing the lower valve region and opening the upper valve region.
In one embodiment, the method can include receiving the fluid through an intake port and channeling the fluid through a lower accumulator region to the lower ports. In one embodiment, the method can include dispelling the fluid through an upper accumulator region and channeling the fluid to a discharge port.
In accordance with yet another aspect of the present application, an apparatus for regulating the pumping of fluids is provided. The apparatus can include a first chamber and a second chamber having lower valves and upper valves. In addition, the apparatus can include a primary upper eccentric cam and a primary lower eccentric cam connected to an upper plate and a lower plate. The apparatus can also include a secondary eccentric cam connected to a piston. The apparatus can include a drive shaft rotating the primary upper and lower eccentric cams actuating the upper and lower plates alternately concealing and revealing the lower and upper valves for the first and second chambers. The drive shaft can further rotate the secondary eccentric cam to actuate the piston alternately increasing an area of the first and second chambers when fluids are received through the lower valves and decreasing the area within the first and second chambers to push the fluids through the upper valves.
In one embodiment, the upper plate and the lower plate slidably can move in a side-to-side direction. In one embodiment, the piston can slidably move in a side-to-side direction. In one embodiment, the secondary eccentric cam can include a secondary upper eccentric cam and a secondary lower eccentric cam. In one embodiment, the apparatus can include a motor rotating the drive shaft.
The foregoing description is provided to enable any person skilled in the relevant art to practice the various embodiments described herein. Various modifications to these embodiments can be readily apparent to those skilled in the relevant art, and generic principles defined herein can be applied to other embodiments. Thus, the claims are not intended to be limited to the embodiments shown and described herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” All structural and functional equivalents to the elements of the various embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the relevant art are expressly incorporated herein by reference and intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.
This application claims priority to U.S. Provisional Application Ser. No. 61/237,335 titled PLATE PUMP ASSEMBLY FOR USE WITH A SUBSURFACE PUMP that was filed on Aug. 27, 2009 by Michael Brent Ford and is hereby incorporated in its entirety.
Number | Date | Country | |
---|---|---|---|
61237335 | Aug 2009 | US |