The invention relates to a plate-shaped heat exchanger for a cooling device comprising at least one heat exchanger package, in particular for a motor vehicle, consisting of a plurality of openings for accommodating a tube conducting a coolant, wherein each opening is surrounded by a rim hole and a plurality of projections are distributed between the rim holes for heat exchange with the medium to be cooled.
Charge-air coolers of round tube construction are known which are represented in
A single plate-shaped heat exchanger 2 is illustrated in
In a known refinement according to
Owing to the often inhomogeneous flow of the charge air 6 against the charge-air cooler 1 with high charge-air mass flows, the plate-shaped heat exchangers 2 must in operation have a high mechanical stability to vibrations and oscillations to avoid breakages of the heat exchangers 2. It is therefore an object of the invention to provide a plate-shaped heat exchanger which allows a high heat transfer from the charge air to the coolant, while the pressure drop of the charge air is to be kept as low as possible.
According to the invention, the object is achieved in that a plurality of projections are arranged around a rim hole, wherein the projections have a shape which ensures a targeted heat conduction from the projections to the rim hole. As a result of such a shape of the projection, it is ensured that although the required turbulences for the heat exchange are generated by the projections on the plate-shaped heat exchanger and the turbulent air mass is fed to the rim hole, only a small pressure drop increase of the charge air occurs.
Advantageously, the projections are arranged approximately circularly around the rim hole. Such a circular arrangement ensures that the turbulent air which is produced by the projections is fed directly to the rim hole and thus, given an installation in a cooling device, to the round tube surrounded by the rim hole. Consequently, the heat exchange of the cooling device is improved.
In one refinement, the projection is of circular segment-like design. As a result of this circular segment-like shape of the projection, the new incoming flow of the charge air to generate turbulences is assisted and a transverse exchange between the various plate-like heat exchangers is ensured.
In a variant, the width and/or the length and/or the height of the circular segment-like projection and/or the spacing between two adjacent circular segment-like projections and/or the spacing of the circular segment-like projection to a rim hole depends on the heat conduction to be achieved from the circular segment-like projection to the rim hole. Consequently, the configuration of the plate-shaped heat exchanger can always be concretely adapted to the desired performance requirements of the cooling device.
In a development, the circular segment-like projections are arranged in two or more rows around the rim hole. Hence, the air flow in the direction of the rim hole is increased, and there is also an improvement in the heat conduction.
Advantageously, the projections are arranged in a ray-like manner around the rim hole. This has the advantage that new incoming flows of the charge air form very well to generate turbulences, while at the same time a short direct path for heat conduction to the rim holes and thus to the round tubes of the cooling device is present.
In one refinement, the ends of the ray-like projections that point in the direction of the rim hole are arranged approximately circularly around the rim hole, wherein there extends along the longitudinal extent of at least one ray-like projection a first material overhang which enables air exchange in the direction of the rim hole and in particular the width of the ray-like projection and/or the height of the ray-like projection and/or the depth of the ray-like projection depends on the heat conduction to be achieved from the ray-like projection to the rim hole. As a result of the material overhangs, the air flows are channeled, and the transverse exchange between the plate-shaped heat exchangers situated above one another is improved. This transverse exchange results in a more homogeneous impingement flow by the charge air. Owing to the design of the material overhangs, the targeted heat conduction to the rim hole is achieved in a structurally simple manner.
In a development, the ray-like projections are subdivided into at least two groups which are arranged around the rim hole in such a way that each group is positioned at a spacing from a line which runs approximately centrally through the rim hole and extends perpendicularly to an edge of the heat exchanger. Since the heat exchanger is designed as a strip-shaped sheet-metal stamping, it is necessary to individually separate it into the desired size of the individual plate-shaped heat exchangers. To ensure that the structure of the heat exchanger is not disturbed by the separating process, the invention advantageously provides the spacing between these groups.
In a further variant, the rim hole has, at a spacing from the surface of the heat exchanger, a second material overhang for receiving a heat exchanger situated above it. Thus, the rim hole itself serves as spacer for the heat exchanger situated above. It is therefore possible to dispense with additional spacers. As a result, the production process of the heat exchanger is simplified.
Advantageously, to increase the strength of the edge region of the heat exchanger, the edge region has a corrugation and/or at least one bead and/or at least one turbulator and/or at least one spacer is arranged in the edge region and/or the width of the edge region is reduced up to a first row of rim holes. By virtue of these measures, which can be carried out independently or in combination, the strength of the edge region of the plate-shaped heat exchanger is mechanically stabilized, with the result that cracks in this region are reliably avoided.
The invention permits numerous embodiments. Some of them will be explained in more detail with reference to the figures illustrated in the drawing, in which:
Identical features are denoted by identical reference signs.
By virtue of the charge air 6 which originates from a combustion engine and is conducted through the plate-shaped heat exchangers 2 which are stacked above one another and form a package, the heat contained in the charge air 6 is passed to the circular segment-like projections 10. The circular segment-like projections 10 here serve not only as heat exchangers but also simultaneously as turbulence generators, the laminar air flow of the charge air 6 being converted into a turbulent air flow. This conversion has the advantage that a good heat supply to all circular segment-like projections 10 takes place. As a result of the circular arrangement of the circular segment-like projections 10 around the rim hole 4 and thus the opening 7, a new incoming flow of the charge air 6 takes place to generate the turbulences at each circular segment-like projection 10, thereby improving the heat exchange from the circular segment-like projection 10 to the opening 7. The shape of the circular segment-like projections 10 produces an increase in their area, which is accompanied by an increased heat absorption from the charge air 6. Since the circular segment-like projections 10 also have openings (not shown further), for example in the form of slots, a transverse exchange of the charge air 6 between the different plate-shaped heat exchangers 2 which are arranged above one another is ensured. Consequently, in spite of an inhomogeneous flow against the plate-shaped heat exchangers in the cooling device, an improved heat exchange is achieved between charge air and coolant which flows through round tubes (not shown further) which are inserted into the openings 7.
Instead of the circular segment-like projections 10, other stamped-out portions, for example in the form of ellipses, are also possible around the rim holes 4.
In
As can be seen from
a illustrates a detail of a plan view of a plate-shaped heat exchanger 2 which has openings 7 arranged in rows, wherein each opening 7 is surrounded by a rim hole 4. Whereas the centrally arranged rim holes 4 are completely surrounded by ray-like projections 11, the rim holes 4 in the edge region 17 are only approximately half-surrounded by the ray-like projections 11. Spacers 8 are situated in the edge region 17 between the rim holes 4 on the side opposite to the ray-like projections 11. These spacers 8 have the task of stabilizing the edge region 17 against mechanical stresses.
In the case of the variants explained in connection with
a to 11d illustrate different measures for increasing the strength of the edge region 17 of the plate-shaped heat exchangers 2. Owing to the heat supplied with the charge air 6, vibrations result in the edge region of the plate-shaped heat exchangers 2, these vibrations possibly leading to cracks and consequently to instabilities of the edge region 17. Such instabilities can be prevented if, as illustrated in
A second measure for improving the stability of the edge region 17 comprises incorporating a bead 20 close to the edge region 17 between two adjacent rim holes 4 (
Another improvement in the stability of the edge region 17 is achieved if the entire edge region 17 has a corrugation, thereby ensuring a stability against cracks, this being illustrated in
A turbulator or a spacer 8 which is arranged between two adjacent rim holes 4 (as illustrated in
For all the variants explained, it holds that the material used for the plate-shaped heat exchangers 2 is aluminum, stainless steel, copper or the like. The density of the plate-shaped heat exchangers 2 described in a package can here be made variable, and equally the longitudinally and transversely dividing arrangement of the rim holes 4 of the plate-shaped heat exchangers 2 is variable. A use of the plate-shaped heat exchangers 2 described is in this case not only possible in a charge-air cooler, but is also conceivable in exhaust-gas coolers, in evaporators or radiators.
By means of the device described, a high performance increase in the heat exchange of the cooling device is possible. Here, a reduced pressure drop increase of the charge air is ensured and a mechanical stability of the edge region against vibrations is provided.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 038 945.5 | Aug 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP11/63469 | 8/4/2011 | WO | 00 | 6/11/2013 |