Claims
- 1. In an elongated heat exchanger single tube pass formed by a pair of plates with edge portions joined together and midportions spaced apart to form a fluid enclosure for single pass flow therebetween and wherein opposite ends of the plates have outward offsets from the plane of the midportions to define inlet and outlet manifold enclosures and to form offset surfaces on adjacent tube passes for engagement together when in stacked relation to form air-flow passages between adjacent midportions of the tube passes, the improvement comprising: a plurality of transverse rows of separated ribs formed in the midportion of each plate and extending transversely substantially the width thereof and with the ribs in each transverse row angled obliquely to the length and width thereof, the ribs in each transverse row being unconnected with each other and overlapping and staggered with respect to the ribs in the same row and to ribs in the adjacent row and spaced from the edge portions of the plate so as to prevent a direct linear flow path across all the transverse rows while forming uninterrupted by-pass flow paths past the ends thereof between the inlet and outlet enclosures, at least some of the ribs in at least some adjacent rows including aligned ribs providing a linear flow path across these rows which is interrupted by ribs in other rows so as to form an interrupted linear flow path across the transverse rows between the inlet and outlet enclosures, and the angled ribs of one plate extending across the corresponding and adjacent angled ribs of the other plate of the tube pass to form multiple contacts and thus provide a tortuous flow path over and around the ribbed surfaces and contact points therebetween wherein the interrupted linear flow path between the inlet and outlet enclosures forces fluid distribution across the transverse rows while providing interrupted linear flow thereacross to improve the heat transfer efficiency of the tube pass while cooperating with the by-pass flow paths to minimize the pressure drop therein.
- 2. In an elongated heat exchanger single tube pass formed by a pair of plates with edge portions joined together and midportions spaced apart to form a fluid enclosure for single pass flow therebetween and wherein opposite ends of the plates have outward offsets from the plane of the midportions to define inlet and outlet manifold enclosures and to form offset surfaces on adjacent tube passes for engagement together when in stacked relation to form airflow passages between adjacent midportions of the tube passes, the improvement comprising: a plurality of transverse rows of separated ribs formed in the midportion of each plate and extending transversely substantially the width thereof and with the ribs in each transverse row angled obliquely to the length and width thereof, the ribs in each transverse row being unconnected with each other and overlapping and staggered with respect to the ribs in the same row and to ribs in the adjacent row and spaced from the edge portions of the plate so as to prevent a direct linear flow path across all the transverse rows while forming uninterrupted by-pass flow paths past the ends thereof between the inlet and outlet enclosures, alternate ones of the transverse rows having two centrally located partial length ribs which form a linear flow path therebetween through these rows that is interrupted by the ribs in the other rows to thereby form an interrupted linear flow path centrally across the transverse rows between the inlet and outlet enclosures, and the angled ribs of one plate extending across the corresponding and adjacent angled ribs of the other plate of the tube pass to form multiple contacts and thus provide a tortuous flow path over and around the ribbed surfaces and contact points therebetween wherein the centrally located interrupted linear flow path between the inlet and outlet enclosures forces fluid distribution across the transverse rows while providing interrupted linear flow thereacross to improve the heat transfer efficiency of the tube pass while cooperating with the by-pass flow paths to minimize the pressure drop therein.
Parent Case Info
This application is a continuation-in-part of my copending Application Ser. No. 053,684 filed July 2, 1979 which is a continuation-in-part of my parent application Ser. No. 916,826 filed June 19, 1978, both abandoned.
US Referenced Citations (8)
Foreign Referenced Citations (2)
Number |
Date |
Country |
457000 |
Nov 1936 |
GBX |
660469 |
Nov 1951 |
GBX |
Continuation in Parts (2)
|
Number |
Date |
Country |
Parent |
53684 |
Jul 1979 |
|
Parent |
916826 |
Jun 1978 |
|