1. Technical Field
The disclosure relates to heat dissipation devices and, more particularly, to a plate-type heat pipe that has good heat dissipation efficiency.
2. Description of Related Art
Nowadays, numerous heat dissipation devices are used to dissipate heat generated by electronic devices. A heat sink with a plate-type heat pipe is a common type of heat dissipation device. A vacuum chamber is defined in the heat pipe. A wick structure is formed on an inner face of the heat pipe, and a working fluid is contained in the chamber. In use of the heat pipe, it is maintained in thermal contact with an electronic device. When the electronic device operates at high temperature, the working fluid contained in the chamber corresponding to a hotter section of the heat pipe vaporizes into vapor. The vapor then spreads to fill the chamber, and when the vapor contacts a cooler section of the chamber, it releases its latent heat and condenses. The condensate returns to the hotter section via capillary force generated by the wick structure. Thereafter, the working fluid repeatedly vaporizes and condenses to form a circulation system to thereby remove the heat generated by the electronic device.
Generally, as shown in
What is needed, therefore, is a plate-type heat pipe which can overcome the limitations described above.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The base plate 10 is generally bowl-shaped, and has a heat absorbing portion 12 protruding downwardly from a central part thereof. The heat absorbing portion 12 has an outer surface for contacting a heat-generating component (not shown). The heat absorbing portion 12 defines an inner recess, for receiving working liquid therein.
Particularly referring to
In use of the plate-type heat pipe, the working liquid filled in the pits 120 is in contact with the inclined sidewalls of the pits 120. Such working liquid can be heated more quickly than other working liquid outside of the pits 120. The temperature of the working liquid filled in the pits 120 rises to vaporizing point faster than other working liquid, and is thereby vaporized firstly and quickly. The working liquid contained in the plate-type heat pipe can be vaporized in the pits 120 as soon as it has arrived back after being condensed at other areas in the chamber such as at the top plate. Thereby, the working liquid can continue to immediately transfer the heat from the heat-generating component to the top plate. Therefore, heat generated by the heat-generating component can be efficiently removed by the plate-type heat pipe. In particular, heat is not liable to accumulate at the heat absorbing portion 12, and so damage to the plate-type heat pipe or the heat-generating component can be avoided.
It is believed that the disclosure and its advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200910303754.3 | Jun 2009 | CN | national |