The present invention relates to a plated aluminum product whose wear resistance is enhanced.
The combination of a cast iron cylinder and an aluminum alloy piston has traditionally been used in, e.g., internal combustion engines; however, light alloys are being increasingly used in cylinders as part of an effort to reduce vehicle weight in order to cut fuel consumption. An aluminum alloy is a popular light alloy.
The piston moves at high speed within the cylinder in a reciprocating motion in the axial direction; tilting of a connecting rod (“con rod” hereafter”) results in the piston being subject to a thrust force in a direction orthogonal to the axis. The thrust force causes strong contact between a skirt section of the piston and the cylinder, resulting in friction, and wear of a sliding section. Wear of the sliding section results in seizing or other problems. In particular, due to the severe wear occurring between like aluminum alloy surfaces, plating is applied to an inner peripheral surface of the cylinder or a surface of the piston.
Techniques for applying a hardening treatment to a surface of an aluminum piston are already known, as disclosed in Japanese Patent No. 3274718 and Japanese Patent Application Laid-Open Publication No. 2006-292119 A (JP 2006-292119 A).
In a piston disclosed in Japanese Patent No. 3274718, a plurality of ring grooves and land sections is formed on a crown section of a body of an aluminum alloy piston; an anodic oxide coating layer is formed on at least a top surface, a top land section, and a top ring groove section; and an iron plating layer is formed on the surface except on a piston pin hole section of a skirt section of the piston body. In other words, an aluminum piston whose surface has been iron-plated is disclosed in Japanese Patent No. 3274718.
However, the iron plating layer 102 has inadequate wear resistance (durability) despite being more effective than aluminum in preventing scuffing (a phenomenon in which a part of the piston surface welds, resulting in abrasion damage) and high-temperature adhesion wear. Additionally, there is room for improvement in terms of energy loss due to friction resistance that occurs during sliding, which cannot be ignored in terms of cutting fuel consumption.
There is known a technique in which an anode oxide film (“alumite”) is applied to the uppermost (top) piston ring groove, as disclosed in Japanese Patent No. 3274718. However, the technique requires both an alumite treatment step and an iron plating step, presenting issues in terms of cost and production efficiency.
Durability can be improved by applying a chromium plating layer 103 as disclosed in JP 2006-292119 A; however, this requires both an iron plating step and a chromium plating step, resulting in higher production cost. The high toxicity of hexavalent chromium means that detoxification of the discharge liquid is an important part in the chromium plating process, again resulting in higher production cost.
There is accordingly a need for a technique for coating an aluminum product that results in adequate durability and sliding properties, and through which adequate durability can be obtained with an iron plating process alone.
An objective of the present invention is to provide a technique for coating an aluminum product that results in adequate durability using an iron plating. Another objective of the present invention is to provide a coating technique that can shorten the treatment process and offer advantages in terms of cost and efficiency.
According to the present invention, there is provided a plated aluminum product which is comprised of an aluminum-based base material; and an iron-based composite plating layer containing a carbon nanomaterial, which is applied to the aluminum-based base material using an iron-based composite plating bath formed by admixing a carbon nanomaterial into an iron plating bath.
An iron-based composite plating layer containing a carbon nanomaterial thus has a smaller friction coefficient and greater durability than a mere iron plating layer. A plated aluminum product with high durability and exceptional sliding properties can be obtained in one plating process.
Preferably, the carbon nanomaterial is a particle-deposited carbon nanomaterial on whose surface SiC particles have been deposited in advance. Having the particle-deposited carbon nanomaterial added in a smaller proportion than the carbon nanomaterial yields a plated aluminum product with high durability and exceptional sliding properties.
Desirably, the aluminum-based base material is preferably a cylinder in a cylinder block, or a piston that moves along the cylinder. Therefore, an aluminum piston or an aluminum cylinder can readily be used as an engine component because the issue of durability can be resolved. Aluminum has a smaller specific gravity compared to cast iron, helping the weight of the engine to be reduced.
Preferred embodiments of the present invention are described below with reference to the accompanying drawings. A piston and a cylinder of an internal combustion engine are described as illustrative examples of an aluminum-based base material. However, the scope of the aluminum-based base material is not limited to a piston or a cylinder.
As shown in
As shown on
In the present embodiment, the ring groove 17 is covered with a hard iron-based composite plating layer 11, eliminating a need for forming an anodic oxide coating or a masking process for the same. Therefore, the treatment process can be dramatically shortened, and advantages accrue in terms of production cost and manufacturing efficiency. In addition, because the iron plating contains carbon nanofibers, wear resistance and heat conductivity can be improved (described in detail below), and heat from an upper surface of the piston can be dispersed effectively from the ring groove 17 via the piston ring. The configuration for the compression ring 14 described above also applies to the compression ring 15 and the oil ring 16 shown in
Details of the iron-based composite plating layer described above will now be described.
The plating solution 35 is a composite plating solution based on an iron plating bath (water, iron sulfate, ammonium sulfate, and urea), into which an appropriate amount of carbon nanofibers or particle-deposited carbon nanofibers is mixed. A method for manufacturing the particle-deposited carbon nanofibers will now be described.
(a): Carbon nanofibers 41 are provided in a quantity of, e.g., 10 g.
(b): A Si powder 42 is provided as particles to react with carbon and form a compound. The powder is used in a quantity of, e.g., 10 g.
(c): The carbon nanofiber 41 and the Si powder 42 are placed in a mortar, and mixed with a pestle for 15 to 30 minutes.
(d): A resulting mixture 45 is placed in an alumina container 46 and covered with an alumina lid 47. The lid 47 is not airtight, so that air can pass between the interior and the exterior of the container 46.
(e): There are provided a vacuum furnace 50, comprising of a sealed furnace 51; heating means 52 for heating the interior of the furnace 51; platforms 53, 53 on which the container 46 is placed; and a vacuum pump 54. The container 46 is placed within the vacuum furnace 50.
Heating under a vacuum causes the Si powder in the mixture 45 to evaporate. The evaporated Si contacts a surface of the carbon nanofibers, forms a compound, and adheres as SiC particles.
When the particle-deposited carbon nanofiber was subject to X-ray diffraction, no Si peak was observed, while C and SiC peaks were observed. The Si particles likely changed into SiC as a result of the contact.
An experiment was conducted to study whether there is a difference in properties (in particular, wear resistance (durability) and coefficient of kinetic friction (sliding property)) of resulting iron-based composite plating layers between an instance where particle-deposited carbon nanofibers described above are added to an iron plating bath, an instance where ordinary carbon nanofibers (i.e., having no particles deposited thereon) are added to an iron plating bath, and an instance where a iron plating bath is used without anything being added thereto. In the experiment, an Si-based aluminum plate (AC8A) was used as an aluminum-based base material.
An example of an experiment relating to the present invention will now be described. The present invention is not limited in scope to the example of the experiment.
Creation of samples A to J:
A plurality of samples was created in order to measure the coefficients of kinetic friction and depths of wear marks. The associated details are shown in Table 1 below.
Sample A was created by immersing an aluminum plate in an iron plating bath (containing no additives) and applying an iron plating. The bath temperature was 55° C., the current density was 15 A/dm2, and the time was 5 minutes.
For sample B there was used a composite plating bath made by adding carbon nanofibers (CNF) to an iron plating bath at a proportion of 1.0 g per liter. Sample B was created by immersing an aluminum plate in the composite plating bath and applying an iron plating. The bath temperature was 55° C., the current density was 2 A/dm2, and the time was 10 minutes.
Sample C was created by changing the proportion in which the carbon nanofibers were added in sample B to 1.5 g/L, modifying some of the treatment conditions, and applying an iron-based composite plating. The number of exposed CNFs was 123.
Sample D was created by changing the proportion in which the carbon nanofibers were added in sample B to 2.0 g/L, modifying some of the treatment conditions, and applying an iron-based composite plating. The number of exposed CNFs was 141.
For sample E there was used a composite plating bath made by adding particle-deposited carbon nanofibers (Si—CNF) to an iron plating bath in a proportion of 1.2 g per liter. A Si:CNF ratio of 1:5 was used for sample E. A conversion calculation (1.2×(5/6)=1.0) shows that with sample E, the carbon nanofibers were admixed into the iron plating bath at a ratio of 1.0 g per liter.
The sample E was created by immersing an aluminum plate in the composite plating bath and applying an iron-based composite plating. The bath temperature was 55° C., the current density was 4 A/dm2, and the time was 10 minutes. The number of exposed CNFs (or, more accurately, the number of particle-deposited carbon nanofibers) was 47.
For sample F there was used a composite plating bath made by adding particle-deposited carbon nanofibers (Si—CNF) to an iron plating bath in a proportion of 1.5 g per liter. A Si:CNF ratio of 1:2 was used for sample F. A conversion calculation (1.5×(2/3)=1.0) shows that with sample F, the carbon nanofibers were admixed into the iron plating bath at a ratio of 1.0 g per liter.
The sample F was created by immersing an aluminum plate in the composite plating bath and applying an iron-based composite plating. The bath temperature was 55° C., the current density was 4 A/dm2, and the time was 10 minutes. The number of exposed CNFs (or, more accurately, the number of particle-deposited carbon nanofibers) was 67.
For sample G there was used a composite plating bath made by adding particle-deposited carbon nanofibers (Si—CNF) to an iron plating bath in a proportion of 2.0 g per liter. A Si:CNF ratio of 1:1 was used for sample G. A conversion calculation (2.0×(1/2)=1.0) shows that with sample G, the carbon nanofibers were admixed into the iron plating bath at a ratio of 1.0 g per liter
The sample G was created by immersing an aluminum plate in the composite plating bath and applying an iron-based composite plating. The bath temperature was 55° C., the current density was 4 A/dm2, and the time was 5 minutes. The number of exposed CNFs (or, more accurately, the number of particle-deposited carbon nanofibers) was 89.
Sample H was created by applying an iron-based composite plating, the conditions used for sample B being changed so that the proportion in which the carbon nanofiber was added was 3.0 g/L, the current density was 4 A/dm2, and the time was 10 minutes. The number of exposed CNFs was 53.
Sample I was created by applying an iron-based composite plating, the proportion in which the carbon nanofiber was added in Sample B being changed to 3.0 g/L. The number of exposed CNFs was 119.
Sample J was created by applying an iron-based composite plating, the proportion in which the carbon nanofiber was added in Sample B being changed to 5.0 g/L. The number of exposed CNFs was 222.
The measured value for the coefficient of kinetic friction exhibits large fluctuations during the first 5 cycles of reciprocation, but stabilizes after 20 to 40 cycles; a stable value was obtained with 50 cycles.
The depth of a wear mark that appeared on the surface of the iron plating layer or the iron-based composite plating layer 11 was measured using a laser microscope.
The surface roughness of the sample (before the durability test measurement) was measured using a surface roughness meter.
The coefficients of kinetic friction, depths of wear marks, and surface roughness measured as above are shown in Table 2. In Table 2, entries for “additive” and “exposed CNFs” shown in Table 1 are copied to the right of the column for the sample.
Experiment 1 was conducted on sample A (iron plating layer not containing CNF). The coefficient of kinetic friction was 0.50, the wear mark depth was 0.92 μm, and the surface roughness was 0.084 μm.
Experiments 2, 3, and 4 were conducted on samples B, C, and D, which have an iron-based composite plating layer containing CNFs, and the coefficients of friction, depths of wear marks, and surface roughness shown on Table 2 were obtained.
Experiments 5, 6, and 7 were conducted on samples E, F, and G, which have an iron-based composite plating layer containing particle-deposited CNFs, and the coefficients of friction, depths of wear marks, and surface roughness shown on Table 2 were obtained.
Experiments 8, 9, and 10 were conducted on samples H, I, and J, which have an iron-based composite plating layer containing CNFs, and the coefficients of friction, depths of wear marks, and surface roughness shown on Table 2 were obtained.
Next, correlations between the proportion in which the carbon nanofibers were added and the coefficient of kinetic friction, depth of wear mark, and surface roughness were investigated.
With regards to the coefficient of kinetic friction, a larger value results in a larger mechanical energy loss in the engine, so that a smaller value is preferable.
With sample A, iron plating not containing an additive was applied to an aluminum base material. A coefficient of kinetic friction of 0.50 was obtained as a result of experiment 1 conducted using the sample A. A coefficient of kinetic friction that is considerably smaller than 0.50 is required as an accomplishment of the invention. Therefore, a value half that of the coefficient of kinetic friction obtained in experiment 1 (0.50/2) was set as an upper limit to the value of the coefficient of kinetic friction. A line corresponding to the upper limit of 0.25 is shown on the graph.
A value that is below the line representing the upper limit is preferable. Specifically, coefficients of kinetic friction are sufficiently small in experiments 3, 4, 8, 9, and 10. Because the proportion in which the CNF was added in experiment 3 is 1.5 g/L, and the proportion in which the CNF was added in experiment 10 is 5.0 g/L, the proportion in which the carbon nanofibers were added may be in a range of between 1.5 and 5.0 g/L. Meanwhile, a proportion in which the carbon nanofibers were added of 1.0 g/L is sufficient for experiments 5, 6, and 7, which are represented by a triangular symbol, and which use a iron-based composite plating layer containing particle-deposited CNF.
From a viewpoint of durability, a smaller wear mark depth is preferable. The depth of the wear mark obtained in experiment 1 using sample A was 0.92 μm. A wear mark depth considerably smaller than 0.92 μm is required as an accomplishment of the invention. Therefore, a value that is half that of the wear mark depth obtained in experiment 1 (0.92/2) was set as an upper limit to the wear mark depth. A line corresponding to the upper limit of 0.46 is shown on the graph.
A value that is below the line representing the upper limit is preferable. Specifically, the depths of the wear marks are sufficiently small with experiments 3, 4, 8, 9, and 10. Because the proportion of addition of CNF in experiment 3 is 1.5 g/L, and the proportion of addition of CNF in experiment 10 is 5.0 g/L, the proportion in which the carbon nanofibers were added may be in a range of between 1.5 and 5.0 g/L.
There is a trough between experiments 3, 4, 8, and 9. The proportion in which CNFs were added is 1.5 g/L for experiment 3 and 3.0 g/L for experiment 9; therefore, the proportion in which the carbon nanofibers were added may be within the range of 1.5 to 3.0 g/L.
Meanwhile, a proportion in which the carbon nanofibers were added of 1.0 g/L is sufficient for experiments 5, 6, and 7 (represented by the triangular symbol), which use a iron-based composite plating layer containing particle-deposited CNF. In other words, experiments 5 through 7, which use an iron-based composite plating layer containing particle-deposited carbon nanofibers, resulted in high durability despite the small numbers of exposed carbon nanofibers.
Experiments 5, 6, and 7 (iron-based composite plating layer containing particle-deposited CNF) confirmed that the surface roughness remains sufficiently small.
According to the above-mentioned experiments, a plated aluminum product with high durability can be provided in one plating process by adding a suitable amount of carbon nanofibers or particle-deposited carbon nanofibers to an iron plating bath. Given that there is only one plating process, the production cost relating to the plating process can be reduced.
Next, correlations between the number of exposed carbon nanofibers and the coefficient of kinetic friction, depth of wear mark, and surface roughness were investigated.
The above suggests that exposed carbon nanofibers have a lubricating effect.
Experiments 5, 6, and 7 (iron-based composite plating layer containing particle-deposited CNF) confirmed that the surface roughness remains sufficiently small.
Next, the thermal properties of a plated aluminum product according to the present invention were investigated.
A piston that is heated by combustion gas is kept at a thermal equilibrium by dissipating heat to a cylinder via a piston ring. The cooling effect on the temperature of the piston is higher with a higher thermal conductivity from the piston to the piston ring, or from the piston ring to the cylinder. Therefore, the effect of an iron-based composite plating layer that coats the piston or the cylinder needs to be investigated.
Therefore, a circular aluminum alloy (AC8A) plate with a thickness of 2.0 mm, and a plated circular plate made by coating one surface of a 2.0-mm-thick circular aluminum alloy (AC8A) plate with an approximately 20-μm-thick iron-based composite plating layer containing a carbon nanomaterial (formed using a plating solution with 1.0 g/L of CNF) were provided, and the thermal conductivity of each of the two plates were measured. A conventional measuring apparatus was used to measure the thermal conductivities. Results of the measurements are shown in Table 3 below.
In experiment 11, in which no plating was applied, the thermal conductivity was 114 W/m·K. In experiment 12, in which an iron-based composite plating layer containing a carbon nanomaterial was applied, the thermal conductivity was 144 W/m·K. A 1.3-fold increase in the thermal conductivity was observed when the iron-based composite plating was applied, compared to an instance in which no plating was applied. The carbon nanomaterial is thought to be a significant cause of the increase.
The plating technology according to the present invention is applied to a piston or a cylinder of an internal combustion engine; however, the technology can be applied to another vehicle component or a component of industrial machinery.
An effect similar to that of carbon nanofiber was obtained when an experiment was conducted with the carbon nanofiber replaced with carbon nanotubes or fullerenes, though details of the experiment are not provided here. Therefore, the carbon nanomaterial may be any nano-sized carbon material such as carbon nanofibers, carbon nanotubes, or fullerenes, irrespective of form or type.
The present invention is suitable for use in an aluminum piston.
Number | Date | Country | Kind |
---|---|---|---|
2008-248933 | Sep 2008 | JP | national |
2009-152711 | Jun 2009 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 12734437 | Apr 2010 | US |
Child | 14105912 | US |