The present disclosure is directed to a platform based drill and, more particularly, is directed to a platform based drill capable of negative angle drilling.
Excavating is employed to create mines, quarries, etc., in order to obtain desirable material such as ore or stone. In addition to using various types of heavy excavating equipment, drill-and-blast operations are commonly used to fragment material so it can be loaded and hauled. For example, overburden may need to be removed in order to reach the desirable material. Also, once the desirable material is reached, production ore may be removed to be crushed or milled to an acceptable grade. In an open pit mine, drill-and-blast operations may include drilling different types of blast holes. For example, such operations may include drilling production holes, buffer holes, and pre-split holes. These blast holes may be drilled on a work surface designated a “bench” below a sloped surface referred to as a “highwall.”
Production holes are typically vertical, although they also may be at an angle, while pre-split holes are typically at an angle that aligns with the slope of the highwall, for example 5 to 15 degrees from vertical and near to the base of the highwall. In addition, production holes typically are larger in diameter than pre-split holes. Production holes are usually bored by a platform based rotary blast hole drill with a mast at one end of the platform. While a typical platform based drill may be able to drill holes at a positive angle by tilting the mast from a machine vertical position to an angular position with the upper portion of the mast leaning back toward the end of the platform opposite the drill end, it is not capable of achieving a desired negative angle (i.e., tilting the mast away from the end of the platform opposite the drill) for drilling pre-split near the highwall base which would require the drilling end of the machine to be positioned against the highwall.
Current drill-and-blast operations employ platform based drills to bore the typically larger production holes, but not for boring the typically smaller pre-split holes. Pre-split holes are formed close to the highwall and substantially at the angle of the highwall in order to maintain the desired slope of the highwall as the depth of the bench is increased and the height of the highwall is increased. Since platform based drills are not capable of drilling at the required angle of the highwall near the base of the highwall, the usual drill-and-blast operation will employ various dedicated pre-split drills that are usually boom mounted drills. Accordingly, a drill-and-blast operation in an open pit mine ordinarily may require a diverse fleet of drilling machines in order to form the different types of required holes.
There exists a need for a more universal platform based drill. It would be both beneficial and desirable to provide a platform based drill that is capable of boring both vertical and positive angle production hole, and also is capable of boring angle pre-split holes in close proximity to the highwall. In this way, among other advantages, the requirement for securing diverse types of drilling equipment at a mine site may be substantially reduced resulting in a substantial cost advantage. In other words the various types of blast holes, such as production holes, buffer holes, and negative angle pre-split holes, advantageously may be drilled by a single type of drilling machine.
One type of drilling machine used for drill-and-blast operations is disclosed in U.S. Pat. No. 3,181,630 issued to Coburn on May 4, 1965 (“the '630 patent”). The '630 patent discloses a self-propelled rotary blast hole drilling machine wherein a mobile base is rotatably supported at its central portion on a crawler support frame. In a drilling operation, the base is supported by three spaced hydraulic leveling jacks for leveling and supporting the base. The '630 patent includes an elongated one-piece derrick unit pivotally mounted at its lower end to a forward portion of the base. The derrick is supported on the base such that the derrick may be located in either a vertical position for drilling vertical holes, or in an inclined position for drilling angle holes.
While the drilling machine of the '630 patent may be useful for vertical drilling and, to some extent, angle drilling, it lacks the capability to drill blast holes, such as pre-split holes, at a negative angle in close proximity to a sloping highwall. In fact, the drilling machine of the '630 patent is not capable of drilling at a negative angle at all. The '630 patent does disclose, in FIG. 1 and the accompanying description thereof, that the derrick may be inclined via a hydraulic cylinder for drilling blast holes at an angle to the vertical. However, the inclination is such that the top portion of the derrick is moved toward the non-drilling side of the drilling machine, with the drill itself and the borehole angling away from the drilling machine. In other words, the machine of the '630 patent may drill holes at a positive angle, but is not capable of drilling holes at a negative angle, either in close proximity to a highwall or otherwise.
The disclosed platform based drill capable of negative angle drilling of the present disclosure solves one or more of the problems set forth above and/or other problems of the prior art.
In one aspect, the present disclosure is directed to a platform based drill. The platform based drill may include a drilling platform including a frame structure having a first end, a second end opposite the first end, and first and second opposite sides. The platform based drill also may include a mast supported on a pivotal connection to the drilling platform adjacent the first end of the frame structure and including an upper portion extending above the pivotal connection, and a lower portion extending below the pivotal connection. The platform based drill also may include an adjusting mechanism configured to permit the mast to be pivotally adjusted to a negative drilling angle whereby the upper portion of the mast leans in a direction extending away from the second end of the frame structure and toward the first end of the frame structure.
In another aspect, the present disclosure also is directed to a platform based drill. The platform based drill may include a drilling platform including a frame structure having a first end, a second end, a first side, and a second side. The platform based drill also may include an opening within the frame structure at the first end centrally between the first side and the second side and extending into the drilling platform. The platform based drill also may include a mast extending within the opening and including an upper portion and a lower portion. The platform based drill also may include an adjusting mechanism configured to permit adjustment of the mast to a negative drilling angle whereby the upper portion of the mast leans in a direction extending away from the second end of the frame structure and toward the first end of the frame structure, the adjusting mechanism including first and second adjustment plates within the opening and fixed to the frame structure. The platform based drill also may include a pivotal connection between the mast and the first and second adjustment plates.
In yet another aspect, the present disclosure is directed to a method of drilling with a platform based drill, the platform based drill including a frame structure with a pivotable mast mounted at one end of the frame structure. The method may include positioning the platform based drill on a bench surface of an excavation with the one end of the frame structure at a first distance from a highwall of the excavation and with the pivotable mast adjacent the highwall, the highwall including a face sloping at an angle to vertical. The method also may include pivoting the mast to achieve a negative angle from machine vertical with the mast extending substantially parallel to the face of the highwall. The method also may include drilling a series of pre-split holes in the bench surface adjacent the highwall at substantially the same angle to vertical as the angle of the face of the highwall. The method also may include positioning the platform based drill on the bench surface of the excavation at a second distance from the highwall different from the first distance. The method also may include drilling a series of production holes in the bench.
In referring to the several views illustrated in
Also in this disclosure and in referring to the several views, the term “bench” is employed to designate the portion of an excavation which may currently be the working surface to be excavated via drilling and blasting, and the “bench surface” is employed to designate the actual surface of the bench upon which a platform based drill or other equipment may be supported. The term “highwall” is employed to designate a surface extending above the bench and typically at an acute angle to vertical such that the highwall forms an obtuse angle with the bench surface. The term “negative angle” is employed to designate an angle of a mast of a drilling machine relative to machine vertical wherein the upper end of the mast leans away from, or outbound of, the drilling machine in a direction away from the non-drilling end of the platform and the lower end of the mast below the mast pivot connection is inclined toward, or inbound of, the drilling machine. A “platform based drill” is employed to designate that category of drilling machine that includes a generally planar structure or platform supporting a mast as opposed to boom mounted drilling equipment.
Diagrammatically illustrated in
During the course of forming excavation 10, bench 12 may be drilled and blasted in order to aid further removal of overburden and/or desirable ore material, for example. A common practice is to attempt to maintain face 15 of highwall 14 at an angle α relative to vertical 17 that is commensurate with maintaining stability of highwall 14. For example, an exemplary angle α of slope for face 15 of highwall 14 may be on the order of 15 degrees from vertical 17. It is contemplated that angle α may be at least 15 degrees, and angles greater than or less than 15 degrees also are contemplated. As illustrated in
Still referring to
Locking pin mechanism 74 may cooperate with selected ones of adjustment apertures 50, 51 of arcuate arrays 48, 49 of first and second adjustment plates 42, 44 to lock mast 30 in an angular or vertical position to which it has been pivoted. For example,
Disclosed embodiments of platform based drill 16 capable of negative angle drilling may be applicable to drill-and-blast operations such as those employed in mines, quarries and other excavations. The disclosed platform based drill 16 capable of negative angle drilling offers distinct advantages over existing equipment used in drill-and-blast operations where drilling both pre-split and production holes ordinarily requires separate, high-cost machines. Because disclosed platform based drill 16 is capable of drilling vertical holes, positive angle holes, and negative angle holes, it is advantageously able to form both pre-split holes at the required proximity to the highwall and angle that is substantially parallel to the slope angle of the highwall of a mine, quarry, or other excavation, as well as able to form the typically larger diameter production holes conventionally formed by platform based drilling equipment. A major beneficial advantage of disclosed platform based drill 16 capable of negative angle drilling is the elimination of the required separate types of machines for drilling the pre-split holes (e.g., boom mounted drilling equipment of down-the-hole (DTH) or top hammer configurations), and for drilling other holes such as production holes.
An exemplary method of drilling with a platform based drill according to the disclosure wherein the platform based drill includes a frame structure with a pivotable mast mounted at one end of the frame structure is diagrammatically illustrated via flowchart 100 in
At box 104, the mast may be pivoted to achieve a negative angle from machine vertical with the mast extending substantially parallel to the face of the highwall. The pivoting of the mast to achieve a negative angle from machine vertical may include pivoting the mast between first and second adjustment plates, with each adjustment plate including pivot apertures for the mast and each adjustment plate including an arcuate array of adjustment apertures. The mast may be locked at a selected negative angle by inserting a locking pin into a selected adjustment aperture of each arcuate array.
At box 106, a series of pre-split holes may be drilled in the bench surface adjacent the highwall at substantially the same negative angle to vertical as the angle of the face of the highwall. At box 108, the platform based drill may be positioned on the bench surface of the excavation at a second distance from the highwall different from the first distance. At box 110, a series of production holes may be drilled in the bench. Before drilling the series of production holes, the mast may be pivoted to a vertical position and the production holes may be drilled with diameters larger than a diameter of the pre-split holes.
It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed platform based drill capable of negative angle drilling without departing from the scope of the disclosure. Other embodiments of the disclosed platform based drill capable of negative angle drilling will be apparent to those skilled in the art from consideration of the specification. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3181630 | Coburn | May 1965 | A |
3529679 | Leven | Sep 1970 | A |
3721304 | Hanson | Mar 1973 | A |
3919816 | Ranft | Nov 1975 | A |
4371046 | Read | Feb 1983 | A |
4606155 | Bukovitz | Aug 1986 | A |
4627499 | Magee et al. | Dec 1986 | A |
8122974 | Kosoric | Feb 2012 | B2 |
8671626 | Marty et al. | Mar 2014 | B1 |
9719271 | Trevithick et al. | Aug 2017 | B2 |
20080210469 | Volkel et al. | Sep 2008 | A1 |
20110162296 | Benson | Jul 2011 | A1 |
20130062126 | Thorne | Mar 2013 | A1 |
20170191319 | Gonzalez et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2982829 | Feb 2016 | EP |
2010033935 | Mar 2010 | WO |
Entry |
---|
Gonzalez Gonzalez, Pipe Management System for Negative Angle Drilling; U.S. Patent Application filed Dec. 19, 2017; 27 pages. |
Number | Date | Country | |
---|---|---|---|
20190186207 A1 | Jun 2019 | US |