The present invention is generally directed to a cooling arrangement and a method of creating a cooling arrangement. More specifically, the present invention is directed to a cooling arrangement in a turbine component and a method of creating a cooling arrangement for a turbine component.
Certain components, such as gas turbine components operate at high temperatures and under harsh conditions. Cooling passages may be formed in gas turbine components to help circulate coolant for extending the service life of these components. However, incorporating cooling passages, such as by casting, is expensive.
In an exemplary embodiment, a method of creating a cooling arrangement for a turbine component having a surface is provided. The turbine component includes an interior cooling passage formed therein. The method comprises a step of forming a slot through a sidewall of the turbine component. The method further comprises a step of forming an insert having one or more cooling features, and a cavity. The method further comprises a step of positioning the insert within the slot. The method further comprises a step of securing the insert within the slot. The method further comprises a step of forming at least one passage in fluid communication with the internal cooling passage, the insert, and an exterior surface of the turbine component.
In another exemplary embodiment, a cooling arrangement in a turbine component having a surface is provided. The turbine component includes an interior cooling passage formed therein. The cooling arrangement comprises a slot formed through a sidewall of the turbine component. The cooling arrangement further comprises an insert secured within the slot. The insert has one or more cooling features, and a cavity. The cooling arrangement further comprises at least one passage in fluid communication with the internal cooling passage, the insert, and an exterior surface of the turbine component.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
The detailed description set forth below in connection with the appended drawings where like numerals reference like elements is intended as a description of various embodiments of the disclosed subject matter and is not intended to represent the only embodiments. Each embodiment described in this disclosure is provided merely as an example or illustration and should not be construed as preferred or advantageous over other embodiments. The illustrative examples provided herein are not intended to be exhaustive or to limit the claimed subject matter to the precise forms disclosed.
Provided are exemplary methods and platform cooling arrangements. Embodiments of the present disclosure, in comparison to methods and platform cooling arrangements not utilizing one or more features disclosed herein, enable lower cost, increased heat transfer coefficients, higher engine performance and less cooling flow by allowing more complicated interior geometries.
All numbers expressing quantities of ingredients and/or reaction conditions are to be understood as being modified in all instances by the term “about”, unless otherwise indicated.
All percentages and ratios are calculated by weight unless otherwise indicated. All percentages are calculated based on the total weight of a composition unless otherwise indicated. All component or composition levels are in reference to the active level of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources.
The articles “a” and “an,” as used herein, mean one or more when applied to any feature in embodiments of the present invention described in the specification and claims. The use of “a” and “an” does not limit the meaning to a single feature unless such a limit is specifically stated. The article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used. The adjective “any” means one, some, or all indiscriminately of whatever quantity.
The term “at least one,” as used herein, means one or more and thus includes individual components as well as mixtures/combinations.
The term “comprising” (and its grammatical variations), as used herein, is used in the inclusive sense of “having” or “including” and not in the exclusive sense of “consisting only of”
With reference to
With reference to
In one embodiment, sidewall 103 is a sidewall other than a slashface. In another embodiment, sidewall 103 is a slashface. In another embodiment, sidewall 103 is both a sidewall and a slashface.
In one embodiment, turbine component 101 includes more than one slot 102 to which more than one insert 104 is inserted or secured.
In one embodiment, pressure connector 202 is also directly connected to cavity 205 when assembled. In another embodiment, pressure connector 202 is connected to either cavity 205 or cavity 206 when assembled.
In one embodiment, insert 104 comprises a material including, but not limited to, a nickel based superalloy, a cobalt based superalloy, a titanium based super alloy, and combinations thereof. A person skilled in the art will appreciate other materials for insert 104.
In one embodiment, insert 104 is the same material as turbine component 101. In another embodiment, insert 104 is not the same material as turbine component 101.
In one embodiment, insert 104 is arranged and disposed to provide impingement cooling on inner surface 112 of slot 102.
In one embodiment, turbine component 101 includes, but not limited to, nozzle, blade, shroud, combustor liner, and combinations thereof. A person skilled in the art will appreciate other turbine components.
With reference to
In one embodiment, insert 104 is formed via an additive manufacturing process including direct metal laser melting (DMLM), direct metal laser sintering (DMLS), casting, 3D printing, fabrication, and combinations thereof. A person skilled in the art will appreciate other additive manufacturing process.
In one embodiment, insert 104 is secured to sidewall 103 via a process selected from the group consisting of mechanical joining, welding, and combinations thereof
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.