This invention relates generally to procurement of services, and more particularly to improving customer satisfaction in booking process.
The increasingly mobile, remote and distributed nature of today's workforce makes it difficult for an organization to provide adequate administrative support for their workers. As a result, the workers themselves must spend part of their working day identifying, procuring, managing, coordinating and accessing the services they need to perform their job. Additionally, even people who are not mobile or remote workers find that they have less time to spend in organizing the services they need for their business or personal life.
This problem is further exacerbated when many workers must attend off-site events requiring travel plans including airfare, sleeping accommodations and local transportation. The distributed nature of the workforce could result in numerous people staying in varying hotels, renting individual cars and/or transportation to and from airports and event locations. This can add up to the redundant cost of travel-related services.
Another problem is the inherent lack of knowledge between workers as to who is attending a given event, further hindering a chance for coordinated travel arrangements. Online systems such as Evite, Yahoo Calendar and Microsoft Outlook have brought together group notices of events and meetings. This has allowed workers to know who has been invited and whether they plan to attend a given event. However such systems do not alleviate the problem of redundancy in the booking of event-related services to attend such off-site events. Organizations have an interest in reducing redundant expenses such as individual rental cars and hotel rooms. However, they often lack the bandwidth to coordinate a sharing of such services.
In generic terms, a service is a unit of work done by a service provider to achieve desired end results for a service consumer. For such a broad, generic application, many different aspects apply. For example, there is no inventory in the classic sense, as, for example, unused seats on a flight just departed may no longer be sold. On the other hand, as some people do not come to their flights (no-shows), airlines typically overbook flights, meaning, they typically sell more seats than are available, following statistical patterns of no-show behavior, occasionally leading to overbooking, etc. Therefore, a system interacting with such types of services requires capabilities to deal with the type of issues that can occur.
The present invention describes an on demand service provisioning system to interface with suppliers and customers. One embodiment of the present invention includes a database to store information on customers, suppliers and transactions; a module to interface customers; a module to interface suppliers; a module to interface the database; a stateful section including the module to interface with the database; and a stateless section including the module to interface with the customers and the suppliers.
In the following detailed description of embodiments of the invention, reference is made to the accompanying drawings in which like references indicate similar elements, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical, functional, and other changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Automatic Service Exchange
A system level overview of the operation of one embodiment of an automatic services exchange system 100 is described by reference to
The services available through the exchange component 101 include travel services, entertainment service, personal services (e.g., haircutting), educational services, business administrative services and the like. Some services may be time critical, e.g., a dinner reservation at a particular time. The service request specifies other required criteria for the service, such as location (e.g., a certain geographic area), type, duration, quantity, price information (e.g., preferred price or price range and maximum price), etc. Additionally, a single service request may actually require services from multiple different service providers which are linked or associated. For example, if a user is planning a business trip, the request will often require services from airlines, hotels and car rental agencies and perhaps other services which are linked to or associated with the business trip.
The automatic services exchange component 101 automatically sends the service request to various service providers. In one embodiment, this transmission may be through several different electronic communication media such as structured e-mail, XML, IVR, etc. In the event that the exchange component 101 is unable to automatically procure the service requested by the user, the request is transferred to the backup call center component 103. For example, assume that request C 115 from user C 113 could not be automatically fulfilled by the exchange component 101. As illustrated in
Assuming there is at least one positive reply, the broker 131 sends a response 127 to the requestor 121 with the results indicating at least one response matched the request. Depending on parameters set by the requestor 121, if multiple positive replies are received by the broker 131, the broker may choose the best match based on the required or predetermined criteria or it may send responses for all the positive replies to the requestor 121 for selection. The requestor 121 may also authorize the broker 131 to contract for the service under certain circumstances without waiting for approval from the requestor 121. A match to request typically means that the response from the service provider is within the range of acceptable requesting parameters such as time of service, location of service, price of service, level (e.g., quality requested) of service, and other parameters specified by the request.
As illustrated in phantom in
Also shown in phantom in
The broker 131 reviews, through an automatic machine implemented process, the service requests to determine if the service request is actually a request for multiple services, such as multiple services which are linked or associated such as those associated with an event (e.g., a business trip which requires airline tickets, rental car reservation and hotel reservation). The resulting operation is illustrated in
The particular methods of the invention are now described in terms of computer software with reference to a series of flowcharts. The methods to be performed by a computer constitute computer programs made up of computer-executable instructions illustrated as blocks (acts). Describing the methods by reference to a flowchart enables one skilled in the art to develop such programs including such instructions to carry out the methods on suitably configured computers (e.g., the processor of the computer executing the instructions from computer-readable media). The computer-executable instructions may be written in a computer programming language or may be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interface to a variety of operating systems. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. Furthermore, it is common in the art to speak of software, in one form or another (e.g., program, procedure, process, application, module, logic . . . ), as taking an action or causing a result. Such expressions are merely a shorthand way of saying that execution of the software by a computer causes the processor of the computer to perform an action or a produce a result.
Referring first to
The service request method 200 processes the replies for each request separately as illustrated by request loop starting at block 209. It will be appreciated that multiple request loops may be running concurrently. The requestor may specify a time which is associated with a deadline for completion of a search for a match to a request. In one embodiment, the requestor specifies a predetermined required period of time (time out period or deadline) within which replies must be received or by which time the requestor should be contacted by the exchange to inform the requestor of the incomplete status of a request. In another embodiment, the time out period is determined by the method 200 based on time criteria specified in the request. The request loop waits at block 209 until an incoming reply is received or until the time out period expires. When the request loop is activated by an incoming reply (block 211), the reply is recorded at block 213. If all replies have not yet been received, the request loop returns to its wait state. If all replies have been received, the particular request loop ends (block 215) and the method 200 proceeds to block 217 to evaluate the replies. Alternatively, if the time out period expires before any or all replies are received, the method 200 also proceeds to block 217. The time out period can provide the exchange system with some time to attempt to “manually” (through the intervention of a human operator) procure the service with enough time before the service is actually required. If the user/requestor fails to specify a time out period, the exchange system may specify a default time out period which is at least several hours before the requested time of the service (e.g., a 4:30 p.m. time out for a dinner reservation at 7:30 p.m.) or at least one day before the requested date of the service. Further, this time out period also allows the requestor to be notified of a failure to procure a service before the time requested for the service so that the requestor can take appropriate actions.
At block 217, the method 200 determines if any positive replies were received. If not, the corresponding request is transferred to the backup call center (which includes human operators) for processing along with all replies (block 219) so the backup call center knows the current status of the request (e.g., who has replied to the request, who has not, etc.). The processing represented by block 219 is described in more detail in conjunction with
If multiple services were requested, the method 200 determines if at least one service provider has replied positively to each service request (block 221). Requests that cannot be procured are sent to the backup call center at block 219, while positive replies are processed at block 223 (e.g., by sending out confirmations to the requestor and the service providers to secure the providing of the service). Similarly, if only one service was requested and at least one reply is positive, the method 200 proceeds to block 223 to process the reply. The processing represented by block 223 is described next.
One embodiment of a process reply method 230 is illustrated in
If more than one match is wanted at block 235 (as specified by a predetermined preference sent by the requestor or as set as a default by a system of the exchange service), a response containing all positive replies is sent to the requestor for selection (block 247) and the method 230 waits to receive approval of one of the providers at block 249. As in the case of a single reply, the method 230 contracts for or otherwise reserves the service from the approved provider at block 241 and returns a confirmation message at block 243, or the request is terminated if no approval is received.
Turning now to
The first positive reply at block 269 causes the method 260 to determine if the requester has authorized the automatic services exchange system to automatically procure the service (block 277). If so, the method 260 contracts or otherwise reserves the service from the corresponding service provider (block 279) and sends a confirmation request confirmation to the requestor that the service has been procured (block 281). If, however, there is no authorization at block 277, the information in the reply is sent to the requestor (block 283) and the method 260 waits to receive approval from the requestor. If approval is received (block 285), the method 260 contracts for or otherwise reserves the approved service and sends a confirmation as previously described. However, if approval of the particular service is not received from the requestor, a failure message is sent to the requester at block 272.
As described previously, the automatic services exchange system optionally can send change notices to the requester to alert him/her of changes in a procured service or receive a modified request from the requestor even after the services have been procured. One embodiment of a service change method 300 that communicates changes is illustrated in
The particular methods performed by computers acting as the automatic services exchange and backup call center components for one embodiment of the invention have been described with reference to flowcharts in
The following description of
The web server 9 is typically at least one computer system which operates as a server computer system and is configured to operate with the protocols of the World Wide Web and is coupled to the Internet. Optionally, the web server 9 can be part of an ISP which provides access to the Internet for client systems. The web server 9 is shown coupled to the server computer system 11 which itself is coupled to web content 10, which can be considered a form of a media database. It will be appreciated that while two computer systems 9 and 11 are shown in
Client computer systems 21, 25, 35, and 37 can each, with the appropriate web browsing software, view HTML pages provided by the web server 9. The ISP 5 provides Internet connectivity to the client computer system 21 through the modem interface 23 which can be considered part of the client computer system 21. The client computer system can be a personal computer system, a network computer, a Web TV system, a handheld wireless device, or other such computer system. Similarly, the ISP 7 provides Internet connectivity for client systems 25, 35, and 37, although as shown in
Alternatively, as well-known, a server computer system 43 can be directly coupled to the LAN 33 through a network interface 45 to provide files 47 and other services to the clients 35, 37, without the need to connect to the Internet through the gateway system 31.
It will be appreciated that the computer system 51 is one example of many possible computer systems which have different architectures. For example, personal computers based on an Intel microprocessor often have multiple buses, one of which can be an input/output (1/0) bus for the peripherals and one that directly connects the processor 55 and the memory 59 (often referred to as a memory bus). The buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
Network computers are another type of computer system that can be used with the present invention. Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 59 for execution by the processor 55. A Web TV system, which is known in the art, is also considered to be a computer system according to the present invention, but it may lack some of the features shown in
It will also be appreciated that the computer system 51 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software. One example of an operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems. The file management system is typically stored in the non-volatile storage 65 and causes the processor 55 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 65.
Coordination for Group Procurement of Services
One embodiment of the present invention permits group members to add additional reservations onto an existing reservation of a group leader, supervisor or any other member of the group in such a manner as to synchronize travel plans and coordinate locations, etc., both in terms of travel time, sharing rides, staying at the same hotel, tee times, and other services one may desire when attending an event. But rather than book all group members at once, individual group members may make plans separately, to accommodate instances in which group members are, for example, traveling from different locations, or are arriving at different times, etc. For example, a sales person may be coming from a different customer site in another city, while the marketing person and the technical person may be coming from the home office.
Thus in the example embodiment shown in
The system illustrated in
Yet in some cases, if a member needs to come in late, for example due to a previous meeting, he may not share in some aspects, such as the share car ride for example etc. In other circumstances, if a member needs special facilities, not available at the hotel/car/flight chosen for the group, the member may break out of the group arrangements. This may be on a case by case basis, with approval and or notification of the group leader, his supervisor etc., or may be pre-defined in the member's profile in some cases.
In yet other cases, a user may be able to forward their service request in an automatic fashion. For example, a user could initiate a group by inviting others to join for a meeting at a specific date, time, and location. Once they have done this, they have formed a group. Once one member of the group has booked their travel for this particular meeting, they would be prompted to see if they are willing to share their itinerary with the other members of the group. If they give permission for the other members to see the itinerary, all other members of the group would be automatically notified by the system. When notified, the other members of the group would be given options to book similar or identical services. When other group members select an option, a service request such as (123) in
In process 710, Group Member B decides (or may be forced) whether to book shared service, or not. In the case of shared service, process 711 checks for availability of shared space, i.e. number of guests in a hotel room, available seats on same flight, available space in Limo etc. In case of availability, in process 712, Group Member B's shared service is reserved. In process 713, both members (or as many as are in the group) are notified of a successful shared trip. In the case of no availability, an identical booking is pursued in process 721, but not a shared one.
In the case of non-shared services of process 710, process 720 determines whether identical services are required. If yes, an identical booking is pursued in process 721. If not identical, similar or as specified services are booked in process 722.
Following both processes 721 and 722, process 723 deals with the booking failure of Group Member B, due to lack of inventory matching the requirements. In process 730, a recovery is attempted by checking for alternative services for all group members. If they are not available, process 731 notifies all group members of separate bookings. If an alternative service is available for all group members, in process 730 all members are booked into those alternative services in process 732. Then the group members are notified of the success in process 733.
Improving Customer Satisfaction in Booking Process
In many software applications, much of the complexity of the business logic and connections between systems is hidden from the end user. This transparency causes problems for the end user because he has no way to interact with the process and help resolve the issues. There may be any number of unknown causes of failures during the transaction process. The system often does not know how to handle many specific error conditions resulting from the interaction with a third-party system, whether that third party system is a global distribution system or a supplier inventory system.
If a fault occurs, for example, that vendor 2 due to a problem 832 cannot respond to the information input via connection 822, then typically the user would be prompted to default through path 826 to process step 805. Process step 805 may ask the user to visit the Web site again, or may, offer to save the information input thus far to the Web site and continue at a later time. This is the typical situation, but it is the user's duty to go back and continue pursuing it.
What is clearly needed is a system and method to intelligently determine the cause of the issue in procuring the service is and, based on a set of rules, offer the user a path to complete the procurement successfully.
What is further needed is a system and method intelligent enough to know when a supplier is not available and queue requests until the supplier system is available again.
Further, such a system 800 may sometimes not have each end user account fully configured with all of the information needed to successfully confirm reservations in process step 804. For instance, the end user account may be missing a username or password required to access a supplier system. What is further clearly needed is a system that actively manages the status of each account so that the user's transactions do not fail because of misconfigured or expired account configuration status.
Typically, when services are being procured, a number of issues may arise, including limited availability, changing prices from initial quotes, and possibly errors caused by the inventory system of the supplier. Also, suppliers are not always available to respond to requests in real time.
Depending on the type of problem, the transaction may also be escalated at process step 904 to a contact center 910, where a live agent 912 using screen 911 may, for example, have access to the internal database of vendor 2, or may even call or email (or otherwise notify) vendor 2 to complete the transaction and then manually enter the missing data into the transaction process steps 801 through 804 through interaction in process step 904, thus allowing the transaction to be completed via path 905 and be completely transparent to the user, except for a small additional delay.
In yet other cases, for example, when the problem lies not so much in a fault as in a process rule regarding booking times, then a time component 909 may keep the case active in process step 904 until the booking time arrives. For example, many airlines restrict flight bookings to a certain time window. Rather than keeping the user waiting, or asking the user to check again, or telling him that the flight cannot be booked, which is the typical standard operation, time component 909 may “keep the request in mind” and try to book it as soon as the booking window at the vendor opens. Other examples of limited-time booking windows are overnight shipping, which typically can only be booked less than 24 hours ahead of the shipping time; or certain event registrations that may have a specific narrow booking window, where, for example, online booking may be only opened one month ahead of the date of an event and closed a week ahead. By proceeding through the process according to the novel art of this disclosure, the user may “prebook” and be in a virtual waiting queue outside the box office window.
When the booking steps are complete, the system, as part of the confirmation process step 904, requires information about payment for the bookings. Using an intelligent user profile, the system could store information about the employee's accounts with each supplier. If the user does not have a supplier account properly set up, the system could, for example, ask the user to create one or enter his credentials before submitting a reservation request with that supplier. The system would then present to a user a list of steps required to successfully configure and validate his account before using the system.
Platform for Multi-Service Procurement
Primary services shown in
Other important modules include administration service 1007; workflow engine 103, which is a very important core element to ensure that the workflow is maintained properly; the asynchronous workflow engine 1006, which manages the asynchronous aspects of the workflow; the travel services import 1008, which allows the importation of available travel services; the timer service 1009, for providing call back alarms at a specified time; and adapter engine 1004, which is used for the adaptation to various types of interfaces. Also important is XSL service 1010, for interfacing with exchangeable service language; tracking service 1011, for the external tracking of events; email listener service 1012, for asynchronous email communication; and notifier 1013, which can send notifications to the various communication channels. Last but not least is the calendar integration service 1014. It contains the invitation sender 1017, which coordinates the invitation process for a particular procurement process; the calendar sync updater 1016, which allows events to be updated into popular personal calendars, such as Outlook, Lotus Notes, Yahoo Mail, etc.; and the reminder sender 1015, which can send out reminders and can also use calendar or email reminders to remind users of pending events.
Presentation layer 1002 manages communication with the end user, allowing users to describe the service they wish to procure, purchase instances of the service when presented with service options, modify or cancel the service, and check on the status of the procurement. The primary web browser-based client 1101 is constructed with Java Server Pages, using Struts and an extensive library of custom tags. The “small device browser-based client” is a JSP-based application that generates an XML “simplification” of the user interface. This XML is then rendered to various small-device browsers, including devices such as Pocket Internet Explorer for the PocketPC 1101f and Blazer for Palm and HandSpring Treo 1101c) taking into account their individual resolutions and HTML tag support.
The Workflow/Orchestration Engine 1003 takes care of three dimensions of complexity in a generic reusable manner.
The first dimension of complexity is across users—two users within a company can have a totally different look and feel of the application, different accounts, different providers and spend limits associated with them. The workflow layer is intelligent and takes this into account. The tasks of coordinating meetings through invitations to different users, notifications, calendar integration, etc are also fairly complex.
The second dimension of complexity is across verticals. Different service verticals have different business logic associated with them. For example, the conference call vertical has different business logic from package shipping.
The third dimension of complexity is across providers in a vertical. Each provider typically has its own definition of a service, may use different protocols and may have different exchange of messages to complete a transaction. The management and association of the appropriate billing and connection account for a procurement with a supplier is also complex.
The workflow system manages these complexities. The core of the system consists of a number of internal services, each of which performs a simple task. The interaction between these services provides a generic infrastructure that is used across all users, services, and providers.
Policies governing user interaction and procurement of services are all governed by means of rules engine 1104. Rules can be easily entered through the Services Director to modulate the workflow processes.
The core of the workflow system consists of a number of generic process flows. An aggregation flow retrieves information in parallel from a number of providers 1107 and displays a consolidated set to a user. A specified provider flow communicates with the selected provider. And the best commodity flow procures a services from a prioritized list, obtaining the best available one.
The process flows follow the template design pattern and are modulated with the help of rules defined in the system. The flows are very general and reusable across different verticals. Complexity associated with service specific details is abstracted out. Provider specific choreography and message exchanges are handled by another internal service, the adapter engine 104. There is a well-defined interface—message exchange between the workflow and the adapter engine that leads to the development of reusable process flows across verticals and providers.
The core of the system is built to handle multi-procurement coordination. An example of this is the recurrence feature—one can define a conference call to be held say every Monday for the next 3 months. Each meeting is a child of the parent procurement process. The procurement processes are built to support this and follow the composite design pattern that enables one to coordinate procurement processes across a n-deep tree of related processes. Coordination of processes can occur across service verticals.
The adapter engine 1004 provides an abstraction to the workflow the exact exchange and translation of messages between the workflow system and the external service provider. This abstraction and break-up of responsibilities enables suppliers to be added rapidly into the platform without having to change the core of the system. The adapter engine controls the number of simultaneous connections being made to a supplier at any given instance of time, the appropriate transport and authentication to be used, and the choreography needed to complete the transaction with a supplier/web service.
Once a service has been procured, the user needs to be notified of that, as well as any changes to the status of the procurement. Based on the defined process flow, the orchestration layer places notification messages onto the JMS bus for handling by the notification engine 1013. The notification engine then contacts users via the methods selected by the user for that particular service vertical, including voice, SMS, and email.
Once a service has been procured, the Calendar Integration Service 114 is responsible for integrating the event information in the user's calendar. The Calendar Integration Service handles the complexity of locating the user's appropriate groupware server 1102x—e.g., Microsoft Exchange (or Outlook) 1102d or IBM Lotus Notes 1102e—and populating the user's calendar with the appropriate information.
The commerce registry 1110 consists of the database store, internally used Java-based object model APIs and externally used XML-based APIs, for all of the abstractions necessary in a web-services oriented application for commerce. These abstractions include a listing of all of the users of our e-procurement application and attributes of those users and the suppliers. Resources are added via IT manager 1102 and explicit modules, such as 1102b for back end services from ERP, 1102c for Lightweight Directory Access Protocol (LDAP) and 1102a for travel and entertainment (T&E) applications.
The system consists of a number of different tiers—the Apache web server tier 1204, the Tomcat UI tier 1201, the JMS tier 1202, the Asynchronous Internal Services tier 1207, and the database tier 1208. Linux is the operating system for all the tiers except the database, which may run on one of many popular operating systems, such as, for example, Solaris or Linux.
First, within the DMZ 1205 is a farm of Apache web servers. Each web server is stateless and is responsible for carrying out SSL and forwarding requests to appropriate Tomcat boxes. This tier can be scaled linearly by adding additional boxes.
Within the application network, a farm of Tomcat servers service HTTP requests. HTTP sessions are used for session management and a pinned-server approach is used. HTTP sessions are not clustered and this tier can also scale linearly by adding more boxes. If a server goes down, sessions on that server will be lost, which means that the user will have to log in once more. The UI internal service is the only internal service that is running on these servers—enabling all available resources to service user requests.
The Asynchronous Internal Services Tier 1207 behind internal firewall 1206 contains all the internal services required by the system other than the UI service. These are stateless servers and this tier can be scaled linearly as well.
Within the platform a common entity across categories—a procurement process—is created. These procurement processes are reusable across categories and have common services, such as notifications 1050 and 1051, calendar integration 1016, reminders 1015, etc., associated with them.
A typical procurement consists of the following data flow: First, an HTTP request is received by the Apache web-server. SSL is initiated. The request is forwarded to the appropriate UI Tomcat machine.
Request is serviced by the UI Tomcat tier. For rendering the JSP it may access the database. If the user is submitting a procurement request, then a transactional JMS message and a database write is done and the user request is serviced.
Asynchronously, the submitted JMS message will be delivered to one of the machines in the Asynchronous Internal Service Tier. This will initiate the workflow associated with servicing the request. This may involve multiple message exchanges within various services, interacting with different providers externally, and communicating back to the user via notifications and calendar update.
By operating the majority of the services and service adaptations at the Talaris site, updates to supplier software, interface functions, etc., do not affect the servers and the software installed at the client site 1301, because all the changes may be done transparently at the Talaris site 1200.
The framework, consisting of the IS system in combination with the WSNA system, uses asynchronous, flow event type systems, Each procurement process can result in one or more generic orchestration flow events, such as aggregation flows that talk to multiple providers in parallel and aggregate information—or, in other cases specified provider flows that talk to a single specified provider, etc. New categories can be added to the platform by reusing the generic orchestration flow templates and adapting them to the specific provider/service as required. The workflow/procurement process for each user is modulated by using business rules that enable the flows to select various elements of the process, including but not limited to providers, billing and connection accounts, spend limits, messaging, etc.
Further, the procurement processes may be arranged in a parent-child (composite) pattern to create trees of procurements. Generic flows exist that enable a parent to coordinate the activities of the child processes. A parent process may itself have a parent process coordinating its efforts. Multi-process orchestration may be implemented by creating this treelike structure. The depth of the tree may be as may layers as required. Work is orchestrated by means of messages passed between the parent and the children at each level. This approach can be used for orchestrating multi-procurement processes in a single category, as is the case with recurrence, or across categories. This tree of procurement processes can be used to handle transactionality across multi-procurements, for example, a change in a child process causing the transaction to roll back would be carried out by the child process communicating to its parent. The parent would then roll back procurements that its other children had processed and then communicate back to its own parent. That would then roll back any transactions of its parents.
An additional element of the novel art of this disclosure is complex platform for integrating services as described above. Such a platform has a large number of configurable parameters. A framework has been developed to enable ease of use and management of these configurable parameters.
Following are the steps in developing the framework. First, a toolkit is developed that consists of XML schemas, XSLT transformers, SQL stored procedures, and java code. The purpose of the toolkit (services) is to enter the values and parameters used in the flow and transform those values and parameters into a format that can be entered in the database. The data is grouped to be retrieved on a group basis for the relevant flows.
Next a generic database schema to represent the data in the database is developed, and then code is auto-generated code from the entered data to automatically generate java code that is a container for data, one per group. There can be nested groups.
Following these steps, a set of generic visitor classes, which can manipulate the generated code to persist and retrieve the data, is developed, based on defaulting logic.
Finally, a set of tools is developed to validate the entered data, the generated data, and the data in the database, and to cross-check data based on predetermined data validation rules.
The service-oriented architecture of the novel art of this disclosure is based on these principles:
Reusability: Modular components can be reused across verticals. Therefore, adding a new service to the platform is fairly simple as most of the work is already done by these horizontal services and infrastructure.
Maintainability and extensibility: Each component can be tested in a stand-alone manner. The logic to be implemented for a service to do its work is generally simple as compared to an implementation where the application is not broken into modular sub-components. The code is a lot more maintainable and extensible. Each internal service extends a base class that takes care of all the complexities associated with interacting with JMS and multi-threading. This makes the task of writing an internal service is simple, as a developer just needs to implement the business logic.
Scalability: There can be as many instances of each of the internal services as required. They have been implemented in a fault-tolerant manner, whereby each can be shut down and restarted without affecting any other.
Low cost of scaling: All the internal services are simple java programs that do not need an application server. The platform runs on commodity Linux boxes, and there are minimal licensing costs, to add another instance.
Asynchronous mode of operation: The infrastructure enables a lot of the processing to happen asynchronously, due to which the end user does not have to wait till all the processing has been done.
The diversity of services available and its process-flow based infrastructure allows a different type of user experience than typical detailed interactive procurements where all service options, preference and user information are selected and entered manually. The knowledge of the user provided by the registry, plus the ability to asynchronously submit and fulfill service requests via XML documents and Web services, enables a new class of application. Users can quickly describe a simplified set of parameters of the service they are interested in, such as, for example, something as simple as describing that they want to make a trip to New York on a specific day, or plan a meeting for a specific time. Each of these events usually requires the purchase and coordination of several services.
The platform can then determine potential services that can fulfill the request, based on its knowledge of the user's many attributes and their preference, and can then asynchronously find candidate services and present options to users for selection or confirmation. Only the rich information in the registry about the user and available services, combined with the rules-based process flow, and an asynchronous Web services-based method of supplier integration, allows this simple yet sophisticated method of service procurement.
This is a platform where suppliers can easily register the service offerings and the web service interfaces that they support to facilitate purchase of those services. In addition to allowing suppliers to describe their own web service interfaces, the platform also provides the Services Business Language (SBL), a standard set of XML document interfaces, derived from UBL, for the procurement of services. There are “vertical libraries” for SBL for specific verticals, in areas such as web conferencing, package shipping, audio conferencing, etc. If the supplier offers services not yet covered by SBL, the platform provides a set of generic documents for all verticals that they can modify for the needs of their specific service type.
With the inclusion of asynchronous document-oriented web service integration, suppliers have a high-performance and scalable method of electronically integrating their business with the outside world. In addition, the asynchronous document delivery capability enables more sophisticated business models of responding to service requests that map closer to how these processes are traditionally performed. This includes the capability of alternate provisioning, as well as more flexible pricing and management of perishable inventory.
The processes described above can be stored in a memory of a computer system as a set of instructions to be executed. In addition, the instructions to perform the processes described above could alternatively be stored on other forms of machine-readable media, including magnetic and optical disks. For example, the processes described could be stored on machine-readable media, such as magnetic disks or optical disks, which are accessible via a disk drive (or computer-readable medium drive). Further, the instructions can be downloaded into a computing device over a data network in a form of compiled and linked version.
Alternatively, the logic to perform the processes as discussed above could be implemented in additional computer and/or machine readable media, such as discrete hardware components as large-scale integrated circuits (LSI's), application-specific integrated circuits (ASIC's), firmware such as electrically erasable programmable read-only memory (EEPROM's); and electrical, optical, acoustical and other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
It is clear that many modifications and variations of this embodiment may be made by one skilled in the art without departing from the spirit of the novel art of this disclosure.
Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that any particular embodiment shown and described by way of illustration is in no way intended to be considered limiting. Therefore, references to details of various embodiments are not intended to limit the scope of the claims which in themselves recite only those features regarded as essential to the invention.
The present application is a continuation application of U.S. patent application Ser. No. 15/332,975, filed Oct. 24, 2016 and entitled “Platform for Multi-Service Procurement”, which is a continuation application of U.S. patent application Ser. No. 11/067,537, filed on Feb. 24, 2005 and entitled “Platform for multi-service procurement”, which claims the benefit of U.S. Provisional Patent Application No. 60/608,725, filed on Sep. 10, 2004 and entitled “Platform for Multi-Procurement and Management of a Large Number of Configurable Parameters”, the entire disclosures of which applications are hereby incorporated herein by references. The present application is related to U.S. Provisional Patent Application No. 60/347,769, filed on Jan. 9, 2002 and entitled “Automatic Services Exchange”, and U.S. patent application Ser. No. 10/338,363 filed Jan. 7, 2003 and entitled “Automatic Services Exchange”, the entire disclosures of which applications are hereby incorporated herein by references.
Number | Name | Date | Kind |
---|---|---|---|
4445181 | Yatman | Apr 1984 | A |
4626836 | Curtis et al. | Dec 1986 | A |
4812843 | Champion, III et al. | Mar 1989 | A |
4862357 | Ahlstrom et al. | Aug 1989 | A |
4977520 | McGaughey, III et al. | Dec 1990 | A |
5111391 | Fields et al. | May 1992 | A |
5237499 | Garback | Aug 1993 | A |
5323314 | Baber et al. | Jun 1994 | A |
5404291 | Kerr et al. | Apr 1995 | A |
5422816 | Sprague et al. | Jun 1995 | A |
5475740 | Biggs, Jr. et al. | Dec 1995 | A |
5548515 | Pilley et al. | Aug 1996 | A |
5559707 | DeLorme et al. | Sep 1996 | A |
5570283 | Shoolery et al. | Oct 1996 | A |
5615121 | Babayev et al. | Mar 1997 | A |
5655008 | Futch et al. | Aug 1997 | A |
5692125 | Schloss et al. | Nov 1997 | A |
5732277 | Kodosky et al. | Mar 1998 | A |
5732401 | Conway | Mar 1998 | A |
5754857 | Gadol | May 1998 | A |
5754953 | Briancon et al. | May 1998 | A |
5774661 | Chatterjee et al. | Jun 1998 | A |
5809250 | Kisor | Sep 1998 | A |
5832451 | Flake et al. | Nov 1998 | A |
5832453 | O'Brien | Nov 1998 | A |
5839114 | Lynch et al. | Nov 1998 | A |
5850433 | Rondeau | Dec 1998 | A |
5852812 | Reeder | Dec 1998 | A |
5854835 | Montgomery et al. | Dec 1998 | A |
5860067 | Onda et al. | Jan 1999 | A |
5862490 | Sasuta et al. | Jan 1999 | A |
5892909 | Grasso et al. | Apr 1999 | A |
5893077 | Griffin | Apr 1999 | A |
5897620 | Walker et al. | Apr 1999 | A |
5901352 | St-Pierre et al. | May 1999 | A |
5933485 | Chang et al. | Aug 1999 | A |
5933810 | Okawa | Aug 1999 | A |
5936625 | Kahl et al. | Aug 1999 | A |
5943652 | Sisley et al. | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5953706 | Patel | Sep 1999 | A |
5960069 | Felger | Sep 1999 | A |
5960406 | Rasansky et al. | Sep 1999 | A |
5961601 | Iyengar | Oct 1999 | A |
5963861 | Hanson | Oct 1999 | A |
5963913 | Henneuse et al. | Oct 1999 | A |
5966386 | Maegawa | Oct 1999 | A |
5974391 | Hongawa | Oct 1999 | A |
5987377 | Westerlage et al. | Nov 1999 | A |
5999208 | McNerney et al. | Dec 1999 | A |
6011976 | Michaels et al. | Jan 2000 | A |
6016478 | Zhang et al. | Jan 2000 | A |
6018715 | Lynch et al. | Jan 2000 | A |
6023679 | Acebo et al. | Feb 2000 | A |
6023722 | Colyer | Feb 2000 | A |
6035332 | Ingrassia, Jr. et al. | Mar 2000 | A |
6038542 | Ruckdashel | Mar 2000 | A |
6041305 | Sakurai | Mar 2000 | A |
6044257 | Boling et al. | Mar 2000 | A |
6047327 | Tso et al. | Apr 2000 | A |
6052563 | Macko | Apr 2000 | A |
6058179 | Shaffer et al. | May 2000 | A |
6076108 | Courts et al. | Jun 2000 | A |
6078907 | Lamm | Jun 2000 | A |
6085166 | Beckhardt | Jul 2000 | A |
6101480 | Conmy et al. | Aug 2000 | A |
6115646 | Fiszman | Sep 2000 | A |
6119094 | Lynch et al. | Sep 2000 | A |
6134534 | Walker et al. | Oct 2000 | A |
6144942 | Ruckdashel | Nov 2000 | A |
6148261 | Obradovich et al. | Nov 2000 | A |
6166728 | Haman et al. | Dec 2000 | A |
6167379 | Dean et al. | Dec 2000 | A |
6169955 | Fultz | Jan 2001 | B1 |
6173279 | Levin et al. | Jan 2001 | B1 |
6177905 | Welch | Jan 2001 | B1 |
6189003 | Leal | Feb 2001 | B1 |
6195420 | Tognazzini | Feb 2001 | B1 |
6202062 | Cameron et al. | Mar 2001 | B1 |
6216227 | Goldstein et al. | Apr 2001 | B1 |
6220512 | Cooper | Apr 2001 | B1 |
6230204 | Fleming, III | May 2001 | B1 |
6240396 | Walker et al. | May 2001 | B1 |
6253369 | Cloud et al. | Jun 2001 | B1 |
6286046 | Bryant | Sep 2001 | B1 |
6292783 | Rohler et al. | Sep 2001 | B1 |
6295521 | DeMarcken et al. | Sep 2001 | B1 |
6298352 | Kannan et al. | Oct 2001 | B1 |
6301533 | Markow | Oct 2001 | B1 |
6304850 | Keller et al. | Oct 2001 | B1 |
6307572 | DeMarcken et al. | Oct 2001 | B1 |
6313852 | Ishizaki et al. | Nov 2001 | B1 |
6321158 | DeLorme et al. | Nov 2001 | B1 |
6324517 | Bingham et al. | Nov 2001 | B1 |
6327359 | Kang et al. | Dec 2001 | B1 |
6334109 | Kanevsky et al. | Dec 2001 | B1 |
6349238 | Gabbita et al. | Feb 2002 | B1 |
6360205 | Iyengar et al. | Mar 2002 | B1 |
6378771 | Cooper | Apr 2002 | B1 |
6380956 | Yee et al. | Apr 2002 | B1 |
6385620 | Kurzius | May 2002 | B1 |
6396920 | Cox et al. | May 2002 | B1 |
6397191 | Notani et al. | May 2002 | B1 |
6414635 | Stewart et al. | Jul 2002 | B1 |
6418471 | Shelton et al. | Jul 2002 | B1 |
6421705 | Northrup | Jul 2002 | B1 |
6441836 | Takasu et al. | Aug 2002 | B1 |
6442526 | Vance | Aug 2002 | B1 |
6456207 | Yen | Sep 2002 | B1 |
6456709 | Cox et al. | Sep 2002 | B1 |
6457045 | Hanson et al. | Sep 2002 | B1 |
6457132 | Borgendale et al. | Sep 2002 | B1 |
6466161 | Turetzky et al. | Oct 2002 | B2 |
6477503 | Mankes | Nov 2002 | B1 |
6477520 | Malaviya et al. | Nov 2002 | B1 |
6501421 | Dutta et al. | Dec 2002 | B1 |
6505176 | DeFrancesco, Jr. | Jan 2003 | B2 |
6506056 | DeMedio | Jan 2003 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6529597 | Barrett | Mar 2003 | B1 |
6553346 | Walker et al. | Apr 2003 | B1 |
6570580 | Suzuki et al. | May 2003 | B1 |
6571213 | Altendahl et al. | May 2003 | B1 |
6574329 | Takeuchi et al. | Jun 2003 | B2 |
6587827 | Hennig et al. | Jul 2003 | B1 |
6603489 | Edlund et al. | Aug 2003 | B1 |
6618668 | Laird | Sep 2003 | B1 |
6631363 | Brown et al. | Oct 2003 | B1 |
6640230 | Alexander et al. | Oct 2003 | B1 |
6643622 | Stuart et al. | Nov 2003 | B2 |
6643639 | Biebesheimer et al. | Nov 2003 | B2 |
6650902 | Richton | Nov 2003 | B1 |
6658093 | Langseth et al. | Dec 2003 | B1 |
6662016 | Buckham et al. | Dec 2003 | B1 |
6674449 | Banks et al. | Jan 2004 | B1 |
6675151 | Thompson et al. | Jan 2004 | B1 |
6687678 | Yorimatsu et al. | Feb 2004 | B1 |
6691029 | Hughes et al. | Feb 2004 | B2 |
6691153 | Hanson et al. | Feb 2004 | B1 |
6700535 | Gilkes et al. | Mar 2004 | B2 |
6701311 | Biebesheimer et al. | Mar 2004 | B2 |
6732080 | Blants | May 2004 | B1 |
6732103 | Stick et al. | May 2004 | B1 |
6741969 | Chen et al. | May 2004 | B1 |
6757689 | Battas et al. | Jun 2004 | B2 |
6766363 | Rothschild | Jul 2004 | B1 |
6769009 | Reisman | Jul 2004 | B1 |
6775371 | Elsey et al. | Aug 2004 | B2 |
6781920 | Bates et al. | Aug 2004 | B2 |
6788946 | Winchell et al. | Sep 2004 | B2 |
6801226 | Daughtrey | Oct 2004 | B1 |
6802005 | Berson | Oct 2004 | B1 |
6816882 | Conner et al. | Nov 2004 | B1 |
6817008 | Ledford | Nov 2004 | B2 |
6826473 | Burch et al. | Nov 2004 | B1 |
6842737 | Stiles et al. | Jan 2005 | B1 |
6845370 | Burkey et al. | Jan 2005 | B2 |
6847988 | Toyouchi et al. | Jan 2005 | B2 |
6857017 | Faour et al. | Feb 2005 | B1 |
6889205 | Lamm | May 2005 | B1 |
6901438 | Davis et al. | May 2005 | B1 |
6907119 | Case et al. | Jun 2005 | B2 |
6909903 | Wang | Jun 2005 | B2 |
6934684 | Alpdemir et al. | Aug 2005 | B2 |
6937991 | Zompa et al. | Aug 2005 | B1 |
6944273 | Huna | Sep 2005 | B2 |
6944479 | Andaker et al. | Sep 2005 | B2 |
6958692 | Ratschunas | Oct 2005 | B1 |
6961773 | Hartman et al. | Nov 2005 | B2 |
6970871 | Rayburn | Nov 2005 | B1 |
6985939 | Fletcher et al. | Jan 2006 | B2 |
6993430 | Bellesfield et al. | Jan 2006 | B1 |
6993503 | Heissenbuttel et al. | Jan 2006 | B1 |
6993554 | O'Donnell | Jan 2006 | B2 |
7007080 | Wilson | Feb 2006 | B2 |
7013127 | Wills et al. | Mar 2006 | B2 |
7024205 | Hose | Apr 2006 | B1 |
7027995 | Kaufman et al. | Apr 2006 | B2 |
7031945 | Donner | Apr 2006 | B1 |
7050986 | Vance et al. | May 2006 | B1 |
7054825 | Hirahara et al. | May 2006 | B1 |
7054939 | Koch et al. | May 2006 | B2 |
7062771 | Wall | Jun 2006 | B2 |
7072666 | Kullman et al. | Jul 2006 | B1 |
7076431 | Kurganov et al. | Jul 2006 | B2 |
7076451 | Coupland et al. | Jul 2006 | B1 |
7080019 | Hurzeler | Jul 2006 | B1 |
7080092 | Upton | Jul 2006 | B2 |
7092892 | Sobalvarro et al. | Aug 2006 | B1 |
7099236 | Yamagishi | Aug 2006 | B2 |
7099855 | Nelken et al. | Aug 2006 | B1 |
7103572 | Kawaguchi et al. | Sep 2006 | B1 |
7123141 | Contestabile | Oct 2006 | B2 |
7124089 | Cornwell | Oct 2006 | B2 |
7130885 | Chandra et al. | Oct 2006 | B2 |
7136821 | Kohavi et al. | Nov 2006 | B1 |
7139718 | Jeyachandran et al. | Nov 2006 | B2 |
7139728 | Rigole | Nov 2006 | B2 |
7139978 | Rojewski et al. | Nov 2006 | B2 |
7149700 | Munoz et al. | Dec 2006 | B1 |
7152038 | Murashita et al. | Dec 2006 | B2 |
7154621 | Rodriguez et al. | Dec 2006 | B2 |
7161497 | Gueziec | Jan 2007 | B2 |
7171369 | Bertram et al. | Jan 2007 | B1 |
7188073 | Tam et al. | Mar 2007 | B1 |
7207009 | Aamodt et al. | Apr 2007 | B1 |
7212983 | Redmann et al. | May 2007 | B2 |
7213048 | Parupudi et al. | May 2007 | B1 |
7222084 | Archibald et al. | May 2007 | B2 |
7222334 | Casati et al. | May 2007 | B2 |
7233955 | Machida et al. | Jun 2007 | B2 |
7233971 | Levy | Jun 2007 | B1 |
7236942 | Walker et al. | Jun 2007 | B1 |
7236976 | Breitenbach et al. | Jun 2007 | B2 |
RE39717 | Yates et al. | Jul 2007 | E |
7263494 | Harris | Aug 2007 | B1 |
7263664 | Daughtrey | Aug 2007 | B1 |
7277888 | Gelormine et al. | Oct 2007 | B2 |
7283970 | Cragun et al. | Oct 2007 | B2 |
7287093 | Lynch et al. | Oct 2007 | B2 |
7299286 | Ramsayer et al. | Nov 2007 | B2 |
7300346 | Lydon et al. | Nov 2007 | B2 |
7305356 | Rodon | Dec 2007 | B2 |
7305454 | Reese et al. | Dec 2007 | B2 |
7328406 | Kalinoski et al. | Feb 2008 | B2 |
7337125 | Kraft et al. | Feb 2008 | B2 |
7340048 | Stern et al. | Mar 2008 | B2 |
7340402 | DeMarcken | Mar 2008 | B1 |
7340679 | Botscheck et al. | Mar 2008 | B2 |
7343165 | Obradovich | Mar 2008 | B2 |
7343312 | Capek et al. | Mar 2008 | B2 |
7343338 | Etkin | Mar 2008 | B2 |
7360164 | Bjoernsen et al. | Apr 2008 | B2 |
7367491 | Cheng et al. | May 2008 | B2 |
7382773 | Schoeneberger | Jun 2008 | B2 |
7383225 | Hallihan | Jun 2008 | B2 |
7383291 | Guiheneuf et al. | Jun 2008 | B2 |
7389351 | Horvitz | Jun 2008 | B2 |
7409643 | Daughtrey | Aug 2008 | B2 |
7418409 | Goel | Aug 2008 | B1 |
7426537 | Lee et al. | Sep 2008 | B2 |
7430724 | Othmer | Sep 2008 | B2 |
7451392 | Chalecki et al. | Nov 2008 | B1 |
7471209 | Hart | Dec 2008 | B2 |
7487211 | Beavers et al. | Feb 2009 | B2 |
7499864 | Campbell | Mar 2009 | B2 |
7506805 | Chakravarthy | Mar 2009 | B1 |
7512451 | Detzler | Mar 2009 | B2 |
7580862 | Montelo | Aug 2009 | B1 |
7599858 | Grady et al. | Oct 2009 | B1 |
7603285 | Jacobs et al. | Oct 2009 | B2 |
7640548 | Yu et al. | Dec 2009 | B1 |
7668536 | Hull et al. | Feb 2010 | B2 |
7681786 | Chakravarthy | Mar 2010 | B1 |
7698316 | Song et al. | Apr 2010 | B2 |
7698398 | Lai | Apr 2010 | B1 |
7706808 | Aggarwal et al. | Apr 2010 | B1 |
7729922 | Chen | Jun 2010 | B2 |
7742954 | Handel et al. | Jun 2010 | B1 |
7806328 | Chakravarthy | Oct 2010 | B2 |
7809592 | Fitzgerald | Oct 2010 | B2 |
7925540 | Orttung et al. | Apr 2011 | B1 |
7970666 | Handel | Jun 2011 | B1 |
8090707 | Orttung et al. | Jan 2012 | B1 |
8117073 | Orttung et al. | Feb 2012 | B1 |
8121953 | Orttung et al. | Feb 2012 | B1 |
8180796 | Mah et al. | May 2012 | B1 |
8561069 | Masuoka | Oct 2013 | B2 |
9552599 | Alag et al. | Jan 2017 | B1 |
10049330 | Alag et al. | Aug 2018 | B2 |
20010005848 | Haverstock | Jun 2001 | A1 |
20010014866 | Conmy et al. | Aug 2001 | A1 |
20010014867 | Conmy | Aug 2001 | A1 |
20010018661 | Sato et al. | Aug 2001 | A1 |
20010021913 | Leymann | Sep 2001 | A1 |
20010042032 | Crawshaw et al. | Nov 2001 | A1 |
20010044748 | Maier | Nov 2001 | A1 |
20010047316 | Hallihan | Nov 2001 | A1 |
20010047326 | Broadbent | Nov 2001 | A1 |
20010049619 | Powell et al. | Dec 2001 | A1 |
20010049637 | Tso | Dec 2001 | A1 |
20010051876 | Seigel et al. | Dec 2001 | A1 |
20010054101 | Wilson | Dec 2001 | A1 |
20010056354 | Feit et al. | Dec 2001 | A1 |
20020000930 | Crowson et al. | Jan 2002 | A1 |
20020007300 | Slatter | Jan 2002 | A1 |
20020007327 | Steury et al. | Jan 2002 | A1 |
20020010664 | Rabideau et al. | Jan 2002 | A1 |
20020013729 | Kida | Jan 2002 | A1 |
20020016723 | Matsui et al. | Feb 2002 | A1 |
20020016729 | Breitenbach | Feb 2002 | A1 |
20020022923 | Hirabayashi et al. | Feb 2002 | A1 |
20020022981 | Goldstein | Feb 2002 | A1 |
20020023132 | Tornabene et al. | Feb 2002 | A1 |
20020023230 | Bolnick et al. | Feb 2002 | A1 |
20020026336 | Eizenburg et al. | Feb 2002 | A1 |
20020029178 | Wiederin et al. | Mar 2002 | A1 |
20020032589 | Shah | Mar 2002 | A1 |
20020032592 | Krasnick et al. | Mar 2002 | A1 |
20020032597 | Chanos | Mar 2002 | A1 |
20020035474 | Alpdemir | Mar 2002 | A1 |
20020038180 | Bellesfield et al. | Mar 2002 | A1 |
20020046076 | Baillargeon et al. | Apr 2002 | A1 |
20020046301 | Shannon et al. | Apr 2002 | A1 |
20020049644 | Kargman | Apr 2002 | A1 |
20020055906 | Katz et al. | May 2002 | A1 |
20020057212 | Hamilton et al. | May 2002 | A1 |
20020065689 | Bingham et al. | May 2002 | A1 |
20020067308 | Robertson | Jun 2002 | A1 |
20020069093 | Stanfield | Jun 2002 | A1 |
20020069094 | Bingham et al. | Jun 2002 | A1 |
20020073088 | Beckmann et al. | Jun 2002 | A1 |
20020077871 | Udelhoven et al. | Jun 2002 | A1 |
20020082978 | Ghouri et al. | Jun 2002 | A1 |
20020087367 | Azani | Jul 2002 | A1 |
20020087384 | Neifeld | Jul 2002 | A1 |
20020087706 | Ogawa | Jul 2002 | A1 |
20020091556 | Fiala et al. | Jul 2002 | A1 |
20020099613 | Swart et al. | Jul 2002 | A1 |
20020103746 | Moffett, Jr. | Aug 2002 | A1 |
20020107027 | O'Neil | Aug 2002 | A1 |
20020111845 | Chong | Aug 2002 | A1 |
20020111848 | White | Aug 2002 | A1 |
20020116235 | Grimm et al. | Aug 2002 | A1 |
20020118118 | Myllymaki et al. | Aug 2002 | A1 |
20020120519 | Martin et al. | Aug 2002 | A1 |
20020120548 | Etkin | Aug 2002 | A1 |
20020128903 | Kernahan | Sep 2002 | A1 |
20020131565 | Scheuring et al. | Sep 2002 | A1 |
20020143819 | Han et al. | Oct 2002 | A1 |
20020147611 | Greene | Oct 2002 | A1 |
20020151321 | Winchell et al. | Oct 2002 | A1 |
20020152100 | Chen | Oct 2002 | A1 |
20020152101 | Lawson et al. | Oct 2002 | A1 |
20020152190 | Biebesheimer et al. | Oct 2002 | A1 |
20020154178 | Barnett et al. | Oct 2002 | A1 |
20020156659 | Walker et al. | Oct 2002 | A1 |
20020156661 | Jones et al. | Oct 2002 | A1 |
20020156731 | Seki et al. | Oct 2002 | A1 |
20020156839 | Peterson et al. | Oct 2002 | A1 |
20020160745 | Wang | Oct 2002 | A1 |
20020161611 | Price et al. | Oct 2002 | A1 |
20020161862 | Horvitz | Oct 2002 | A1 |
20020165732 | Ezzeddine et al. | Nov 2002 | A1 |
20020165903 | Zargham et al. | Nov 2002 | A1 |
20020184063 | Kaufman et al. | Dec 2002 | A1 |
20020184302 | Prueitt et al. | Dec 2002 | A1 |
20020188513 | Gil | Dec 2002 | A1 |
20020188607 | Kogut-O'Connell | Dec 2002 | A1 |
20020188610 | Spencer, Jr. | Dec 2002 | A1 |
20020194037 | Creed et al. | Dec 2002 | A1 |
20020194262 | Jorgenson | Dec 2002 | A1 |
20030004746 | Kheirolomoom et al. | Jan 2003 | A1 |
20030004762 | Banerjee et al. | Jan 2003 | A1 |
20030005181 | Bau, III | Jan 2003 | A1 |
20030009545 | Sahai | Jan 2003 | A1 |
20030013438 | Darby | Jan 2003 | A1 |
20030018499 | Miller et al. | Jan 2003 | A1 |
20030018551 | Hanson et al. | Jan 2003 | A1 |
20030018702 | Broughton | Jan 2003 | A1 |
20030018808 | Brouk et al. | Jan 2003 | A1 |
20030023463 | Dombroski et al. | Jan 2003 | A1 |
20030033164 | Faltings et al. | Feb 2003 | A1 |
20030033179 | Katz | Feb 2003 | A1 |
20030036917 | Hite et al. | Feb 2003 | A1 |
20030036929 | Vaughan et al. | Feb 2003 | A1 |
20030036941 | Leska et al. | Feb 2003 | A1 |
20030037263 | Kamat | Feb 2003 | A1 |
20030040945 | Fujita et al. | Feb 2003 | A1 |
20030040946 | Sprenger et al. | Feb 2003 | A1 |
20030041178 | Brouk et al. | Feb 2003 | A1 |
20030046639 | Fai | Mar 2003 | A1 |
20030050806 | Friesen et al. | Mar 2003 | A1 |
20030053459 | Brouk et al. | Mar 2003 | A1 |
20030053611 | Lee | Mar 2003 | A1 |
20030055668 | Saran | Mar 2003 | A1 |
20030055689 | Block et al. | Mar 2003 | A1 |
20030061145 | Norrid | Mar 2003 | A1 |
20030065556 | Takanashi et al. | Apr 2003 | A1 |
20030065805 | Barnes, Jr. | Apr 2003 | A1 |
20030069899 | Brown et al. | Apr 2003 | A1 |
20030087648 | Mezhvinsky et al. | May 2003 | A1 |
20030093403 | Upton | May 2003 | A1 |
20030093500 | Khodabakchian | May 2003 | A1 |
20030093575 | Upton | May 2003 | A1 |
20030100315 | Rankin | May 2003 | A1 |
20030110062 | Mogler et al. | Jun 2003 | A1 |
20030110063 | Among et al. | Jun 2003 | A1 |
20030110070 | De Goeij | Jun 2003 | A1 |
20030110091 | Inaba et al. | Jun 2003 | A1 |
20030120593 | Bansal | Jun 2003 | A1 |
20030126136 | Omoigui | Jul 2003 | A1 |
20030126250 | Jhanji | Jul 2003 | A1 |
20030142122 | Straut et al. | Jul 2003 | A1 |
20030149606 | Cragun et al. | Aug 2003 | A1 |
20030149641 | Kouketsu et al. | Aug 2003 | A1 |
20030154116 | Lofton | Aug 2003 | A1 |
20030158493 | Goor et al. | Aug 2003 | A1 |
20030158776 | Landesmann | Aug 2003 | A1 |
20030158784 | Shaver et al. | Aug 2003 | A1 |
20030158847 | Wissner et al. | Aug 2003 | A1 |
20030163251 | Obradovich et al. | Aug 2003 | A1 |
20030164850 | Rojewski et al. | Sep 2003 | A1 |
20030165223 | Timmins et al. | Sep 2003 | A1 |
20030171944 | Fine et al. | Sep 2003 | A1 |
20030172020 | Davies et al. | Sep 2003 | A1 |
20030177045 | Fitzgerald | Sep 2003 | A1 |
20030182413 | Allen et al. | Sep 2003 | A1 |
20030187743 | Kumaran | Oct 2003 | A1 |
20030195811 | Hayes, Jr. et al. | Oct 2003 | A1 |
20030204474 | Capek et al. | Oct 2003 | A1 |
20030204622 | Blizniak et al. | Oct 2003 | A1 |
20030208583 | Schroeder | Nov 2003 | A1 |
20030212486 | Hughes et al. | Nov 2003 | A1 |
20030217044 | Zhang et al. | Nov 2003 | A1 |
20030217073 | Walther et al. | Nov 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030233278 | Marshall | Dec 2003 | A1 |
20040003040 | Beavers et al. | Jan 2004 | A1 |
20040003042 | Horvitz et al. | Jan 2004 | A1 |
20040003402 | McKenna, Jr. | Jan 2004 | A1 |
20040014457 | Stevens | Jan 2004 | A1 |
20040015366 | Wiseman | Jan 2004 | A1 |
20040015380 | Timmins | Jan 2004 | A1 |
20040015821 | Lu | Jan 2004 | A1 |
20040027379 | Hong Huey et al. | Feb 2004 | A1 |
20040030568 | Kocznar et al. | Feb 2004 | A1 |
20040039613 | Maycotte et al. | Feb 2004 | A1 |
20040039617 | Maycotte et al. | Feb 2004 | A1 |
20040044556 | Brady et al. | Mar 2004 | A1 |
20040045004 | Cheenath | Mar 2004 | A1 |
20040054569 | Pombo et al. | Mar 2004 | A1 |
20040054574 | Kaufman et al. | Mar 2004 | A1 |
20040064503 | Karakashian et al. | Apr 2004 | A1 |
20040068247 | Connor | Apr 2004 | A1 |
20040068568 | Griffin | Apr 2004 | A1 |
20040073615 | Darling | Apr 2004 | A1 |
20040076280 | Ando et al. | Apr 2004 | A1 |
20040078247 | Rowe, III et al. | Apr 2004 | A1 |
20040078256 | Glitho et al. | Apr 2004 | A1 |
20040078257 | Schweitzer et al. | Apr 2004 | A1 |
20040078373 | Ghoneimy et al. | Apr 2004 | A1 |
20040083448 | Schulz | Apr 2004 | A1 |
20040093263 | Doraisamy et al. | May 2004 | A1 |
20040093290 | Doss et al. | May 2004 | A1 |
20040098269 | Wise et al. | May 2004 | A1 |
20040107256 | Odenwald et al. | Jun 2004 | A1 |
20040116115 | Ertel | Jun 2004 | A1 |
20040122721 | Lasorsa | Jun 2004 | A1 |
20040128173 | Salonen | Jul 2004 | A1 |
20040139151 | Flurry et al. | Jul 2004 | A1 |
20040148185 | Sadiq | Jul 2004 | A1 |
20040148207 | Smith et al. | Jul 2004 | A1 |
20040148566 | Jaffar et al. | Jul 2004 | A1 |
20040153348 | Garback | Aug 2004 | A1 |
20040153350 | Kim et al. | Aug 2004 | A1 |
20040158493 | Nicholson | Aug 2004 | A1 |
20040161097 | Henry | Aug 2004 | A1 |
20040181572 | Lee et al. | Sep 2004 | A1 |
20040184593 | Elsey et al. | Sep 2004 | A1 |
20040186891 | Panec et al. | Sep 2004 | A1 |
20040187089 | Schulz | Sep 2004 | A1 |
20040193432 | Khalidi | Sep 2004 | A1 |
20040193457 | Shogren | Sep 2004 | A1 |
20040199423 | LaBrosse et al. | Oct 2004 | A1 |
20040203909 | Koster | Oct 2004 | A1 |
20040215472 | Gleckman | Oct 2004 | A1 |
20040220854 | Postrel | Nov 2004 | A1 |
20040224703 | Takaki et al. | Nov 2004 | A1 |
20040248551 | Rowitch et al. | Dec 2004 | A1 |
20040249758 | Sukeda et al. | Dec 2004 | A1 |
20040267611 | Hoerenz | Dec 2004 | A1 |
20050004819 | Etzioni et al. | Jan 2005 | A1 |
20050010464 | Okuno et al. | Jan 2005 | A1 |
20050010472 | Quatse et al. | Jan 2005 | A1 |
20050015293 | Henn | Jan 2005 | A1 |
20050021424 | Lewis | Jan 2005 | A1 |
20050027570 | Maier et al. | Feb 2005 | A1 |
20050028897 | Kurz et al. | Feb 2005 | A1 |
20050033614 | Lettovsky et al. | Feb 2005 | A1 |
20050033615 | Nguyen et al. | Feb 2005 | A1 |
20050033616 | Vavul et al. | Feb 2005 | A1 |
20050033670 | Cheng et al. | Feb 2005 | A1 |
20050040944 | Contestabile | Feb 2005 | A1 |
20050053220 | Helbling et al. | Mar 2005 | A1 |
20050066304 | Tattrie et al. | Mar 2005 | A1 |
20050086098 | Fulton et al. | Apr 2005 | A1 |
20050096929 | Gelormine et al. | May 2005 | A1 |
20050101335 | Kelly et al. | May 2005 | A1 |
20050111642 | Terada et al. | May 2005 | A1 |
20050119927 | Patel | Jun 2005 | A1 |
20050125265 | Bramnick et al. | Jun 2005 | A1 |
20050125268 | Danninger et al. | Jun 2005 | A1 |
20050125408 | Somaroo et al. | Jun 2005 | A1 |
20050125804 | Dievendorff et al. | Jun 2005 | A1 |
20050131761 | Trika et al. | Jun 2005 | A1 |
20050138631 | Bellotti et al. | Jun 2005 | A1 |
20050143064 | Pines et al. | Jun 2005 | A1 |
20050149385 | Trively | Jul 2005 | A1 |
20050197953 | Broadbent | Sep 2005 | A1 |
20050203757 | Lei | Sep 2005 | A1 |
20050209902 | Iwasaki et al. | Sep 2005 | A1 |
20050209914 | Nguyen et al. | Sep 2005 | A1 |
20050215247 | Kobylarz | Sep 2005 | A1 |
20050222890 | Cheng et al. | Oct 2005 | A1 |
20050228677 | McCabe et al. | Oct 2005 | A1 |
20050233743 | Karaoguz et al. | Oct 2005 | A1 |
20050234928 | Shkvarchuk et al. | Oct 2005 | A1 |
20050255861 | Wilson et al. | Nov 2005 | A1 |
20050288948 | Devulapalli et al. | Dec 2005 | A1 |
20050288974 | Baranowski | Dec 2005 | A1 |
20060004590 | Khoo | Jan 2006 | A1 |
20060004613 | Roller et al. | Jan 2006 | A1 |
20060009987 | Wang | Jan 2006 | A1 |
20060010023 | Tromczynski et al. | Jan 2006 | A1 |
20060059023 | Mashinsky | Mar 2006 | A1 |
20060059024 | Bailey et al. | Mar 2006 | A1 |
20060059107 | Elmore et al. | Mar 2006 | A1 |
20060068787 | Deshpande et al. | Mar 2006 | A1 |
20060080257 | Vaughan et al. | Apr 2006 | A1 |
20060080321 | Horn et al. | Apr 2006 | A1 |
20060085512 | Handel et al. | Apr 2006 | A1 |
20060095329 | Kim | May 2006 | A1 |
20060095377 | Young et al. | May 2006 | A1 |
20060106655 | Lettovsky et al. | May 2006 | A1 |
20060107265 | Schulz et al. | May 2006 | A1 |
20060111955 | Winter et al. | May 2006 | A1 |
20060136279 | Maybee | Jun 2006 | A1 |
20060171337 | Shaffer et al. | Aug 2006 | A1 |
20060178932 | Lang | Aug 2006 | A1 |
20060224969 | Marston | Oct 2006 | A1 |
20060277079 | Gilligan et al. | Dec 2006 | A1 |
20060287897 | Sobalvarro et al. | Dec 2006 | A1 |
20060293931 | Fitzgerald et al. | Dec 2006 | A1 |
20070005406 | Assadian et al. | Jan 2007 | A1 |
20070016439 | Stiles et al. | Jan 2007 | A1 |
20070016514 | Al-Abdulqader et al. | Jan 2007 | A1 |
20070038498 | Powell et al. | Feb 2007 | A1 |
20070060099 | Ramer et al. | Mar 2007 | A1 |
20070150075 | Dumas et al. | Jun 2007 | A1 |
20070150349 | Handel et al. | Jun 2007 | A1 |
20070174438 | Johnson et al. | Jul 2007 | A9 |
20070185744 | Robertson | Aug 2007 | A1 |
20070198432 | Pitroda et al. | Aug 2007 | A1 |
20070266045 | Bansal | Nov 2007 | A1 |
20080004917 | Mortimore | Jan 2008 | A1 |
20080004918 | Orttung et al. | Jan 2008 | A1 |
20080004919 | Stubbs | Jan 2008 | A1 |
20080004921 | Orttung et al. | Jan 2008 | A1 |
20080004980 | Hernandez | Jan 2008 | A1 |
20080010100 | Orttung et al. | Jan 2008 | A1 |
20080013130 | Sasaki | Jan 2008 | A1 |
20080046298 | Ben-Yehuda et al. | Feb 2008 | A1 |
20080052217 | Etkin | Feb 2008 | A1 |
20080065509 | Williams | Mar 2008 | A1 |
20080086564 | Putman et al. | Apr 2008 | A1 |
20080091477 | Mortimore | Apr 2008 | A1 |
20080091478 | Messa | Apr 2008 | A1 |
20080091479 | Mortimore | Apr 2008 | A1 |
20080126143 | Altman et al. | May 2008 | A1 |
20080141158 | Daughtrey | Jun 2008 | A1 |
20080147450 | Mortimore | Jun 2008 | A1 |
20080155470 | Khedouri et al. | Jun 2008 | A1 |
20080201197 | Orttung et al. | Aug 2008 | A1 |
20080201432 | Orttung et al. | Aug 2008 | A1 |
20080228547 | Doss et al. | Sep 2008 | A1 |
20080319808 | Wofford | Dec 2008 | A1 |
20090006143 | Orttung et al. | Jan 2009 | A1 |
20090030609 | Orttung et al. | Jan 2009 | A1 |
20090030742 | Orttung et al. | Jan 2009 | A1 |
20090030769 | Orttung et al. | Jan 2009 | A1 |
20090089101 | Hashim | Apr 2009 | A1 |
20090210261 | Mortimore, Jr. | Aug 2009 | A1 |
20090248457 | Munter et al. | Oct 2009 | A1 |
20100017371 | Whalin et al. | Jan 2010 | A1 |
20170103347 | Alag et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2002334115 | Nov 2002 | JP |
2004334409 | Nov 2004 | JP |
2003050674 | Jun 2003 | WO |
Entry |
---|
Alag, Satnam et al., U.S. Appl. No. 11/067,537, entitled “Platform for Multi-service Procurement,” filed Feb. 24, 2005. |
Albright, Peggy, “Companies Send Strong Message About Saving Money,” Wireless Week, vol. 7, Issue 29, p. 24, Jul. 16, 2001. |
Amendment and Response to Non-Final Office Action filed at the US Patent & Trademark Office on Oct. 27, 2008, for U.S. Appl. No. 11/388,360. |
Business Editors/High-Tech Writers, “GetThere to Integrate and Resell Talaris' Web Services Offering to Complement Leading Corporate Online Travel Reservation System,” Business Wire, San Francisco, p. 1, Oct. 15, 2001. |
Business Editors/High-Tech Writers, “Talaris and GetThere Provide Enterprises with New Set of Online Business Services,” Business Wire, New York, p. 1, Oct. 15, 2001. |
Chakravarthy, Sriam et al., U.S. Appl. No. 11/178,107, entitled “Asynchronous, Location-Independent Web Service Invocation”, filed Jul. 7, 2005. |
Grady, Patrick et al., U.S. Appl. No. 10/338,363, entitled “Automatic Services Exchange”, filed Jan. 7, 2003. |
Grady, Patrick et al., U.S. Appl. No. 10/855,269, entitled “Coordination for Group Procurement of Services”, filed May 26, 2004. |
General Services Administration, “Integrated, Automated Information System (IAIS),” Request for Information, provided by Federal Information & News Dispatch, Inc., FedBizOpps, Jan. 30, 2003. |
Handel, Sean et al., U.S. Appl. No. 11/321,769, entitled “Method and System for Prediction and Delivery of Time and Context Sensitive Services”, filed Dec. 28, 2005. |
Handel, Sean et al., U.S. Appl. No. 11/388,360, entitled “Method and System for Traffic Tracking and Conversion Tracking”, filed Mar. 23, 2006. |
Handel, Sean et al., U.S. Appl. No. 11/388,540, entitled “Method and System for Resource Planning for Service Provider”, filed Mar. 23, 2006. |
Handel, Sean et al., U.S. Appl. No. 11/395,413, entitled “Method and System for Viral Distribution of Short-term Location Orientated Offers”, filed Mar. 30, 2006. |
Hernandez, Rick et al., U.S. Appl. No. 11/323,766, entitled “Method and System for Transferring of Stateful Screen in a Stateless Session”, filed Dec. 30, 2005. |
Hopkinson, Natalie, “Online Invitations Transform Party Life (Final Edition),” Journal—Gazette, Fort Wayne, Indiana, p. 2.D, Dec. 31, 2002. |
Hwang, Yong Ho et al., “An efficient revocation scheme for stateless receievers,” Editors: Katsikas-S-K, Gritzalis-S, Lopez-J, Jun. 2004, pp. 1-2. |
Paranadi, Shiva et al., U.S. Appl. No. 11/315,421, entitled “Method and System for Interacting via Messages with a Travel Services System”, filed Dec. 21, 2005. |
Patwardhan, Shantau et al., U.S. Appl. No. 11/121,861, entitled “Method and System for Reporting Work Hours by Phone or Other E-Media”, filed May 3, 2005. |
Patwardhan, Shantau et al., U.S. Appl. No. 11/178,032, entitled “Method and System for Booking an Open Return Ticket Online”, filed Jul. 7, 2005. |
Patwardhan, Shantanu et al., U.S. Appl. No. 11/121,863, entitled “Method and System for Automatic Scheduling of Multiple Subgroup Meetings,” filed May 3, 2005. |
Shah, Purvi et al., U.S. Appl. No. 11/177,997, entitled “Method and System for Enhanced Visual Meeting and Schedule Planner,” filed Jul. 7, 2005. |
Number | Date | Country | |
---|---|---|---|
20190042985 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
60608725 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15332975 | Oct 2016 | US |
Child | 16102362 | US | |
Parent | 11067537 | Feb 2005 | US |
Child | 15332975 | US |