1. Field of the Invention
The present invention relates to residential or commercial storage, or more particularly, to a platform lift apparatus for raising or lowering objects into an upper storage location such as an attic storage space located above a garage or living quarters.
2. Description of Related Art
Many homes have attic spaces above garages and living quarters, and these attic spaces often provide a storage location for various items. While some attic spaces are finished and have access via a stairwell, most attic spaces remain unfinished and have more rudimentary access systems. The most basic access system is a simple opening or scuttle hole formed in the ceiling dividing the attic space from the room below. The scuttle hole is commonly located in a closet or main hallway, and may be covered by a hatch that comprises a removable portion of ceiling, such as formed from plywood or drywall. A user would position a ladder below the opening and access the storage space by carrying storage objects up and down the ladder. An improvement over this basic access system is a pull-down ladder that is built into a hingedly attached door covering the opening. The pull-down ladder may be folded into a plurality of sections to provide a compact structure when stowed. The user opens the door and unfolds the ladder to bring it into an operational position. This pull-down ladder has improved convenience since the user does not have to transport a ladder to and from the access location, and the ladder is anchored to the opening to thereby provide an increased degree of safety for the user.
Nevertheless, a drawback of each of these access systems is that it is difficult to transport objects up and down the ladder. The user cannot easily carry the object and grasp the ladder at the same time, thereby forcing a dangerous tradeoff between carrying capacity and safety. Moreover, the size and weight of the objects that may be transported is limited to that which could be manually carried and fit through the dimensions of the access opening. Users of such access systems have a substantial risk of injury due to falling and/or dropping objects, and the objects themselves can be damaged as well.
Thus, it would be advantageous to provide an improved way to transport objects to and from an attic storage space without the drawbacks and safety risks of the known access systems. Additionally, there are many other applications in which it would be desirable to transport objects to and from a raised position.
The present invention overcomes the foregoing drawbacks of the prior art by providing a platform lift apparatus usable to safely move objects to and from an attic storage space. The platform lift apparatus includes three main components: a frame, a drive mechanism, and a platform.
More particularly, the frame has internal and external mounting surfaces, and is adapted to be mounted into a scuttle hole separating an attic space from a room below. The drive mechanism is substantially disposed within the frame and is coupled to the internal mounting surfaces. The drive mechanism includes a plurality of rotatable, parallel shafts with each shaft further including at least one lift drum having an associated lift tether at least partially wound thereon and having an end hanging therefrom. The platform is coupled to the ends of the lift tethers and is thereby suspended from the frame. The platform is selectively movable by operation of the drive mechanism within in a vertical dimension between raised and lowered positions. The drive mechanism further comprises an electric motor operatively coupled to the plurality of parallel shafts.
In an embodiment of the invention, the plurality of parallel shafts further comprises two parallel shafts. The drive mechanism drives the parallel shafts to rotation in a like rotational direction. Each one of the shafts further comprises at least one drive pulley. The drive mechanism further comprises a drive belt coupled to respective drive pulleys of each of the parallel shafts, such that the shafts are driven to synchronous rotation by operation of the drive mechanism. The drive mechanism may further include at least one idler pulley in association with the lift drum that outwardly shifts a horizontal position of the lift tether.
In another embodiment of the invention, the platform further comprises a horizontal base and a plurality of vertical walls defining a basket. The platform may further include a foldable fence connected to the vertical walls. The lift tether ends may further include a releasable fastener coupled to a corresponding member on the platform, thereby enabling the platform to be disconnected from the lift apparatus, such as to facilitate loading. The platform may further include a seal providing a barrier between the platform and the frame when the platform is at the raised position.
In another embodiment of the invention, the drive mechanism further comprises at least one tensioner associated with each lift drum. The tensioner is disposed in contact with the lift tether associated with the lift drum to prevent twisting or kinking of the lift tether while winding on or unwinding from the lift drum. The tensioner further comprises a contact member and a spring biasing the contact member into contact with the lift tether. The contact member may further include a roller in contact with the lift tether.
In another embodiment of the invention, the plurality of parallel shafts further comprise two parallel shafts offset vertically with respect to each other. The drive mechanism drives the parallel shafts to rotation in opposite rotational directions. The lift tether associated with the lift drum on one of the shafts may be further coupled to a drive pulley of another one of the shafts. Alternatively, the lift drum of one of the plurality of parallel shafts may be further coupled to a corresponding lift drum of another one of the parallel shafts by the lift tether. This way, the plurality of shafts are driven to synchronous rotation in opposite directions by operation of the drive mechanism.
In another embodiment of the invention, an impact detection system is coupled to an underside of the platform for detecting impact of the platform upon an object. The impact detection system may include a contact plate and a plurality of springs coupling the contact plate to an underside of the platform. The contact plate is thereby moveable vertically against bias applied by the plurality of springs. A plurality of microswitches may be associated respectively with the plurality of springs. Each one of the microswitches is adapted to close and provide a corresponding signal upon compression of an associated one of the plurality of springs.
In another embodiment of the invention, a retractable wheel is coupled to an underside of the platform. The wheel permits the platform to be used as a dolly to facilitate movement of objects to and from the platform lift system.
A more complete understanding of the platform lift system will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by a consideration of the following detailed description of the preferred embodiment. Reference will be made to the appended sheets of drawings, which will first be described briefly.
The present invention satisfies the need for an improved way to transport objects to and from an attic storage space without the drawbacks and safety risks of the known access systems. In the detailed description that follows, like element numerals are used to describe like elements illustrated in one or more figures.
More particularly, the invention provides a platform lift system that enables objects to be moved vertically between an attic space and a room below. The platform lift system includes a frame that is mounted into a scuttle hole formed in a horizontal supporting surface (i.e., attic floor or room ceiling) and a platform that is supported by the frame. The platform may be selectively raised or lowered in order to transport objects to/from the attic space. When in a raised position, the platform engages the frame and seals the attic space to provide a thermal barrier. Objects may be loaded onto or removed from the platform through the frame from within the attic space. The frame lies substantially flush with the ceiling floor, so as to maximize available storage space within the attic ceiling and minimize interference between the lift system and objects moved on and off the platform. The frame further includes a drive system that controls the movement of a plurality of tethers that are coupled to the platform. The platform is raised by withdrawing the tethers, and is lowered by paying out the tethers. It should be understood that the present patent application uses the term “attic” to broadly refer to a room or space disposed above a garage or living quarters of a house. While in most cases the attic comprises an uppermost space of the house located immediately below a roof, it should be appreciated that other raised spaces of a house, such as a loft, crawlspace, deck, balcony or patio, could also fall within a broad meaning of an attic as used in the present patent application.
Referring first to
The frame 12 carries a drive system (described below) that raises and lowers a platform by operation of lift tethers 32, 34, 36, 38. The platform comprises a horizontal base 22 having a generally rectangular shape with ends of the lift tethers 32, 34, 36, 38 joined to the base 22 at adjacent corners thereof. The platform may further comprise a vertically oriented wall 24 extending upward from the base and arranged in a rectangular shape to enclose a carrying space. The wall 24 provides a barrier to prevent objects from falling off the platform as it is raised and lowered. It is anticipated that the barrier function could be adequately achieved with the wall 24 extending upward by only a small distance (e.g., less than two inches), although other shapes and dimensions for the wall 24 could also be advantageously utilized. When the platform is fully raised upward, the wall 24 nests within the space defined by the frame 12 and the base 22 engages the frame 12 generally flush with the lip 14.
An exemplary drive system includes two shafts 52 and 74 that are rotatably mounted to the frame 12. The shafts 52, 74 are disposed in parallel with each other, and oriented horizontally with respect to the frame 12 and platform. Shaft 52 is disposed adjacent to a first end of the frame 12 and shaft 74 is disposed adjacent to a second end of the frame. The frame 12 may further include a collet and/or bearing assembly associated with each end of the shafts 52, 74 to engage the shaft end and thereby reduce rotational friction of the shafts.
Shafts 52, 74 each carry a drive pulley and a lift drum disposed alongside each other at both ends of each shaft. More specifically, shaft 52 carries drive pulley 62 and lift drum 64 disposed alongside each other at a first end thereof and lift drum 66 and drive pulley 68 disposed alongside each other at a second end thereof. Likewise, shaft 74 carries drive pulley 82 and lift drum 84 disposed alongside each other at a first end thereof and lift drum 86 and drive pulley 88 disposed alongside each other at a second end thereof. As shown in the figures, the drive pulleys are disposed peripherally outward along the shafts 52, 74 adjacent to the frame 12. It should be appreciated that alternative arrangement of the drive pulleys and lift drums could also be advantageously utilized. Drive pulleys 62 and 82 are aligned with each other and coupled by drive belt 72, and drive pulleys 68, 88 are similarly aligned and coupled by drive belt 76. Drive belts 72, 76 provide a continuous loop that moves in concert with the drive pulleys 62, 82, 68, 88. This way, the two shafts 52, 74 rotate in unison together.
It should be appreciated that the shaft 74 does not necessarily have to be a contiguous length, but rather could be formed of two shaft segments, with each segment carrying a respective drive pulley and lift drum. The shaft segments would each be supported by suitable brackets and collets that permit them to rotate in unison with the shaft 52.
The lift drums 64, 66, 84, 86 are coupled to respective lift tethers 34, 32, 38, 36. A first end of each lift tether is fixedly attached to a respective lift drum and the tether is thereby wound onto the drum. As described above, a second end of the lift tether hangs vertically from the pulley and is attached to the platform. The lift tethers may be comprised of any relatively flexible material that is capable of winding about a drum or spool and of being fastened at both ends. For example, the lift tethers may be comprised of a braided cord, band or webbing of nylon fibers or like materials providing high strength with minimal stretch and light weight. Other suitable materials may include rubber, plastic, metal cables or linked chains. The lift drums would be selected having a shape adapted to match the specific type of lift tether material selected. By way of example, if a cable material were selected for the lift tether, then a grooved lift drum would be employed to guide the cable upon retraction so that the cable does not overlap upon itself. Such selection of lift tether and lift drum is considered within the ordinary level of skill in the art.
In this embodiment as well as all other embodiments of the present invention, it should be appreciated that the drive belts may further include mating teeth at an inner surface thereof, and the drive pulleys may further comprise sprockets, cogs or gears that engage the teeth to maintain synchronized rotation of the shafts and thereby eliminate slippage between belt and pulley. The term “drive pulley” is therefore intended to broadly encompass any mechanical member coupled to an associated shaft for guiding or translating between axially rotational and linear movement, and the term “drive belt” is intended to encompass any type of elongated flexible material, such as cloth webbing, leather, artificial and natural fiber, metal (e.g., chain or cable), and the like, used to transmit motion under control of one or more “drive pulleys.” By way of example, the drive belts may be formed of the same material as the lift tethers.
Motor 42 is mounted to the frame 12 using suitable brackets and is adapted to drive the shafts 52, 74 through suitable mechanical interconnection. Particularly, motor 42 drives shaft 44, which in turn drives a helical gear 46 that is in mesh with helical gear 48 affixed to a worm shaft oriented 900 to the motor shaft. The worm shaft carries worm 54 that is arranged in mesh with the shaft drive worm gear 56 coupled to shaft 52. The shaft 52 drives the lift drums that raise and lower the lift tethers. It should be appreciated that a wide variety of gear train arrangements can be selected to achieve a desired gear reduction ratio (e.g., 30:1) combined with optimal packaging efficiency. Similar gear ratios and packaging efficiencies can be achieved by use of one or more of the following approaches: conventional gear trains, planetary gearing, and harmonic/cyclic gearing. The required gear ratio could also be reduced by selection of a lower speed, higher torque motor. In another embodiment, the motor output torque could be selected to match the torque requirements by driving the shaft 52 directly (i.e., without a gear train). The motor 42 could then be mounted centrally on the shaft 52, with the motor shaft extending from both ends of the motor. The drive pulleys and lift drums could then be mounted onto opposite ends of the shaft.
Accordingly, motor 42 drives shaft 52 to rotation, and shaft 74 is driven to rotation in unison with shaft 52 by cooperation of the aforementioned drive pulleys and drive belts. When motor 42 is driven to rotation in a first direction, shafts 52, 74 will each be driven to rotation in a corresponding direction to unwind the lift tethers from the respective lift drums and thereby lower the platform. Conversely, when motor 42 is driven to rotation in a second (opposite) direction, shafts 52, 74 will each be driven to rotation in a corresponding direction to rewind the lift tethers onto the lift drums and thereby raise the platform. In a preferred embodiment of the invention, the shafts 52, 74 are keyed to match associated keying of the drive pulleys, lift drums, and shaft drive gear 56 so as to maintain synchronized movement of the shafts.
It will be appreciated that the platform lift system will include suitable control circuitry for activating the motor 42 in forward and reverse directions. The control circuitry may further include certain protective and safety features. For example, the control circuitry may be adapted to detect excess force (i.e., weight) and/or current draw, detection of blockage of the travel path via interruption of a light beam, and/or mechanical or electronic counter to determine if either the full travel distance has been accomplished and/or the rotational speed of the motor falls below a specified limit.
Although the frame 12 is illustrated as having a fixed rectangular shape, it should be appreciated that the frame may be adjustable to achieve different widths and/or lengths. For example, the shafts 52, 74 may be provided with adjustable length, such as using telescoping shaft segments that are fixed in position by tightening a set screw. The platform may also include a locking mechanism or pawl that locks the platform in the fully raised position. The locking mechanism may be disengaged automatically, such as using a solenoid, when it is desired to lower the platform.
The embodiment of
As shown in
In the same manner as described above in the foregoing embodiments, lift tethers 234, 238 would carry a platform 222. Lift tethers 234, 238 would be wound onto lift drums 262, 284, respectively, which would be driven by a motor mechanism as described above. Extension idler 282 would serve to move the lift tether 238 outwardly as also described above. The platform 222 may have vertically extending alignment guides 224 that engage corresponding stops 246, which serve the purpose of defining the uppermost vertical extent of travel of the platform and guiding the platform into an aligned position.
Instead of using a continuous loop to drive the two main shafts 352, 374 to rotation, a non-continuous spooling drive belt 376 has a first end fixedly attached to the first belt drive pulley 368 and a second end fixedly attached to the second belt drive pulley 388. The spooling drive belt 376 is wound onto the belt drive pulleys 368, 388, such that when the platform is fully raised the drive belt is completely wound onto the first belt drive pulley 368 and when the platform is fully lowered the drive belt is completely wound onto the second belt drive pulley 388. By fixedly attaching the ends of the spooling drive belt 376 to the belt drive pulleys 368, 388, the drive belt provides a limit to the amount of vertical travel of the platform. Also, the shaft 374 is offset vertically with respect to shaft 352 (see
In this embodiment, the separate functions of the lift drums and drive pulleys are combined and the drive belt 476 provides both driving and lifting. Particularly, the drive belt 476 has a first end fixedly attached to spooling belt drive pulley 468 and a second end that is carried partly by the idler lift drum 488 and then extends vertically to provide a lift tether. When the platform 422 is fully raised, the drive belt 476 is wound onto the belt drive pulley 468 and when the platform is fully lowered the drive belt is completely paid out. As in the preceding embodiment, the shaft 474 is offset vertically with respect to shaft 452, and the drive belt 476 causes the belt drive pulley 468 and the idler lift drum 488 to rotate in opposite directions. Thus, the idler lift drum 488 rotates counterclockwise while the belt drive pulley 468 rotates clockwise, and vice versa (see
In this embodiment, the functions of the lift drums and belt drive pulleys are combined and the belt 576 provides both driving and lifting. Particularly, the belt 576 has a first end fixedly attached to the belt drive pulley 568 and a second end that is carried partly by the idler lift drum 588 and then extends vertically to provide a lift tether. The belt drive pulley 568 also includes a separate lift tether 532 that is wound onto the drive pulley along with the drive belt 576 (see
As in the preceding embodiments, the separate functions of the lift drums and drive pulleys are combined and the drive belt 676 provides both driving and lifting. Particularly, the drive belt 676 has a first end fixedly attached to spooling belt drive pulley 668 and a second end that is carried partly by the idler lift drum 688 and then extends vertically to provide a lift tether. Unlike the preceding embodiments, the drive belt 676 is paid out from the top of belt drive pulley 668, rather than from the bottom. This way, the shaft 674 is aligned vertically with respect to shaft 652 instead of offset. When the platform 622 is fully raised, the drive belt 676 is wound onto the belt drive pulley 668 and when the platform is fully lowered the drive belt is completely paid out. The drive belt 676 causes the belt drive pulley 668 and the idler lift drum 688 to rotate in the same direction. Counterclockwise rotation of lift drum 666 (as seen in
The electrical signal may be communicated to the motor control circuitry in any number of known ways. In one example, the electrical signal is communicated to the motor control circuitry over a wire conductor embedded within one or more of the lift tethers and terminated on slip rings mounted to one or more of the lift drums. In another example, the electrical signal is communicated using known optical or RF communication techniques between the platform and the motor control circuitry. In either embodiment, the control circuitry would halt the motor when any of the microswitches are closed or proximity sensors triggered.
While it is considered that additional horizontal stabilization is not necessary for the present invention in most applications, it should be appreciated by persons having ordinary skill in the art that a wide variety of such devices could be used to control and/or stabilize the horizontal travel of the platform during lifting operations if needed. Examples of such devices include scissor or accordion-type mechanisms terminated at the platform and/or frame to control motion in one or more axes of horizontal translational or rotational travel.
Having thus described a preferred embodiment of a platform lift system, it should be apparent to those skilled in the art that certain advantages have been achieved. It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention.
This patent application is a continuation of U.S. patent application Ser. No. 10/759,500, filed Jan. 16, 2004, now issued as U.S. Pat. No. 7,416,055 on Aug. 26, 2008. This patent application also claims priority pursuant to 35 U.S.C. 119(c) to U.S. Provisional Application Ser. Nos. 60/501,235 filed Sep. 8, 2003, and 60/526,568 filed Dec. 2, 2003.
Number | Name | Date | Kind |
---|---|---|---|
524344 | Brunkhorst et al. | Aug 1894 | A |
778259 | Milne | Dec 1904 | A |
1164143 | Swift | Dec 1915 | A |
1270716 | Flannery | Jun 1918 | A |
1338127 | Felt | Apr 1920 | A |
1348138 | Hunt | Jul 1920 | A |
1484389 | Folkers | Feb 1924 | A |
1938658 | Harnischfeger | Dec 1933 | A |
2242892 | Light | May 1941 | A |
RE22069 | Medenwald | Apr 1942 | E |
2499791 | Spencer | Mar 1950 | A |
2643662 | Bunce | Jun 1953 | A |
2869908 | Ford | Jan 1959 | A |
3341034 | Blasen | Sep 1967 | A |
3565217 | Louis | Feb 1971 | A |
3957137 | Vermette | May 1976 | A |
3985202 | Harmon | Oct 1976 | A |
4172686 | Shorthouse | Oct 1979 | A |
4252217 | Benjamin | Feb 1981 | A |
4252491 | Hock | Feb 1981 | A |
4412601 | Cooper | Nov 1983 | A |
4541508 | Lundh | Sep 1985 | A |
4650036 | Matsuda | Mar 1987 | A |
4773507 | Kratz | Sep 1988 | A |
4781510 | Smith et al. | Nov 1988 | A |
4867627 | Tseng | Sep 1989 | A |
5050706 | Cole et al. | Sep 1991 | A |
5111906 | Abadia | May 1992 | A |
5205379 | Pfleger | Apr 1993 | A |
5207297 | Beattie et al. | May 1993 | A |
5239795 | Breaux | Aug 1993 | A |
5366203 | Huffman | Nov 1994 | A |
5535852 | Bishop et al. | Jul 1996 | A |
5667035 | Hughes | Sep 1997 | A |
5845745 | Lane | Dec 1998 | A |
5871069 | Carmitchel | Feb 1999 | A |
5893431 | Cranswick et al. | Apr 1999 | A |
6095344 | White | Aug 2000 | A |
6131702 | Berridge | Oct 2000 | A |
6516570 | Liebetrau et al. | Feb 2003 | B2 |
6991064 | Ehrenleitner | Jan 2006 | B2 |
7234685 | Britten | Jun 2007 | B2 |
7523919 | Hanlon | Apr 2009 | B2 |
20070114098 | Hartley | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080296089 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60501235 | Sep 2003 | US | |
60526568 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10759500 | Jan 2004 | US |
Child | 12190972 | US |