1. Field of the Invention
The invention relates to methods of generating mature dendritic cells with enhanced IL-12 production and compositions and systems for such dendritic cells.
2. Discussion of the Background
Dendritic cells (DCs), the most potent antigen presenting cells, are effective inducers of protective immunity against infectious diseases and cancer (Banchereau & Steinman 1998). The adjuvant function(s) of DCs has prompted intense interest in the use of DCs as a vaccine component, particularly after the advent of in vitro methods to generate large numbers of DCs from monocytes (Peters et at 1993, Sallusto & Lanzavecchia 1994). Over the past years, DC-based vaccines have been increasingly applied in the clinical treatment of cancer patients (Steinman et al., 2001; Parmiani et al., 2002). Following the initial success of the multi-epitope melanoma trial (Nestle et at 1998; 30% objective clinical responses), DCs have been used successfully to treat patients with melanoma, lymphoma and renal cell carcinoma (reviewed: Steinman et al., 2001; Parmiani et al., 2002). However, the overall clinical response rates do not exceed the predictable 15% observed for alternate immunotherapies (idem), which is below expectations, highlighting the need for improved design of DC-based vaccines, including the selection of the most appropriate types of DCs.
Although some of the early studies with DC-based vaccines successfully used FCS-based protocols (Nestle et al., 1998), the need to obtain the vaccine-applied DCs in possibly best-defined conditions (and to overcome potential reproducibility and regulatory issues) prompted the development of serum-free approaches to grow DCs.
Extensive research of recent years convincingly demonstrated that the effective induction of anti-tumor cm responses requires the participation of fully-mature DCs because immature DCs are either ineffective, poorly immunogenic, or induce undesirable IL-10-producing regulatory T cells (Jonuleit et at 2000, Dhodapkar et al 2001). These considerations, in conjunction with the desire to use the most strictly-defined and reproducible conditions of DC generation for human use, established the dominant position of the “complete cytokine cocktail” composed of the combination of inflammatory cytokines IL-1β, TNFα, IL-6, and PGE2 (Jonuleit et al. 1997), as the “gold standard” of DCs used in cancer immunotherapy.
Fully-mature DCs induced by the combination of inflammatory cytokines IL-1β, TNFα, IL-6, and PGE2 (Jonuleit et al. 1997) have been consistently observed as superior to immature DCs in promoting a higher degree of specific T cell priming in vitro and in vivo (Jonuleit et al., 2001, Schuler-Thurner et al., 2000, Schuler-Thurner et al., 2002, Thurner et al., 1999, Dhodapkar et al., 2001).
Unfortunately, the maturation stage of DCs obtained in the currently-available protocols inversely correlates with their ability to produce IL-12p70 (Kalinski et al., 1999, Langenkamp et al., 2000), the cytokine with powerful anticancer Th1- and CTL-inducing properties (Trinchieri, 1998b); (Shurin et al., 1997).
Induction of Ag-specific CD8 T cells and Th 1-type CD4 T cells depends on the ability of DCs to provide CD4 and CD8 T cell precursors with high levels of co-stimulation and with interleukin-12 (IL-12), the major DC-produced anti-tumor cytokine. Previous work with DC transduced with IL-12 genes demonstrated that high IL-12-producing DCs are effective inducers of tumor rejection in experimental animals. However, use of IL-12 transduced DC in humans creates substantial logistic problems. It also carries potential risks associated with the administration of genetically-manipulated material and the risks of direct IL-12 toxicity and of deregulating the immune system due to uncontrolled IL-12 production.
Many have attempted to generate DC's using a variety of methods. For example, U.S. Pat. Nos. 5,851,756, 5,994,126 and 5,475,483 (Steinman, Inaba and Schuler) disclose methods for generating DCs from proliferating precursors and their maturation. Further, U.S. Pat. No. 5,866,115 discloses a method of developing DCs from DC34+ blood progenitors and U.S. Pat. Nos. 6,228,640 and 6,251,665 disclose a means of loading DCs developed from CD34+ progenitors with RNA or its expression products as a mean of achieving the expression of tumor-related or other target-related antigens. Similarly, U.S. Pat. No. 6,121,044 teaches a means of developing DC in bulk monocytes-depleted PBMC cultures. These patents focus on particular methods of generating immature dendritic cells rather than the particular conditions of the maturation of dendritic cells. More importantly, none of these patents disclose or teach the generation of dendritic cells with the unique properties described in the present invention. Specifically, none of the patents disclose or teach the combination of type I and type II interferons (such as IFNα and IFNγ), as a part of the cytokine cocktail used to produce fully mature DCs with high IL-12 producing capacity.
Thus, despite the efforts of many, the desirable combination of high immunostimulatory activity with a high capacity to produce IL-12p70 could not be attained by all previous DC-based vaccines which have employed either mature DCs exhibiting high stimulatory/low IL-12-secreting functions or immature DCs that display low stimulatory/high IL-12 secretion functions.
It is known in the art that the presence of IFN-γ during the either LPS-induced or IL-1β/TNFα-induced DC maturation, results in the induction of stable type-1 polarized DCs (DC1s) that produce up to 100-fold higher levels of IL-12p70 in response to subsequent CD40L stimulation or the interaction with CD40L-expressing CD4+ Th cells (Vieira et al., 2000, Mailliard et al., 2002). Unfortunately, the original DC1-inducing cytokine cocktail, composed of IL-1β, TNFα, and IFN-γ (Vieira et al 2000), does not allow for the induction of DC1s in serum-free media, which is desirable for clinical application.
DCs in the periphery can be exposed to a variety of environmental “triggers” that result in DC “maturation” and upregulation of factors critical to antigen-specific T-cell activation, including IL-12 production. In some cases, these signals are transmitted through Toll-like receptor (“TLRs”) and other cell-surface receptors expressed by DCs.
It is an object of the present invention to provide a means of triggering DC maturation through innate signaling pathways to enable DCs to express potent DC1-type function, regardless of the presence of factors present in serum, enabling in vitro derivation of DC1s for clinical applications.
It is an object of one preferred embodiment of the present invention to add at least one from the group of IFNα or IFNβ (type I interferons) or a type 1 interferon inducing factor such as polyinosinic:polycytidylic acid (poly-I:C) to the “classical” DC1-inducing cocktail (TNFα/IL-1β/IFNγ) and to provide a means for generating fully-mature DC1s in serum-free AIM-V medium.
It is further an object of the present invention to provide an alpha-type-1 DC to induce up to 50-fold higher levels of cancer-specific CTLs, and higher cytolytic activity of Th1 or NK cells compared to the current “gold standard” DCs (matured by IL-1β/TNFα/IL-6/PGE2; Jonuleit et al., 1997).
The present invention discloses novel dendritic cell (“DC”) maturation-inducing cytokine cocktails, and means for inducting type-1 polarized dendritic cells (“DC1s”) in serum-free conditions which enhance the desirable properties of DC1s generated in serum-supplemented cultures. The invention further discloses the use of IFNγ and other ligands of the IFNγ receptor, in combination with IFNα (or other type I interferons, such as IFNβ, known to bind to the same receptor), poly I:C, and other IFNα (and IFNβ) inducers to enhance the IL-12-producing properties of DCs. The invention also discloses the use of DC1s to induce Ag-specific T cells against tumors, intracellular pathogens, and atopic allergens for active and passive immunotherapy, immunomonitoring and research purposes. More specifically, the present invention discloses type-1 polarized DCs (DC1s) that have a unique combination of a fully-mature status and an elevated, instead of “exhausted”, ability to produce IL-12p70, These properties allow these DC1s to selectively induce high-intensity Th1 CTL-, and NK cell-mediated type-1 immune responses, including those desirable in the treatment of cancer. Another preferred embodiment of the present invention shows that the inclusion of IFNα and/or poly-I:C to the “classical” DC1-inducing cocktail (TNFα/IL-1β/IFNγ) allows for the generation of fully-mature DC1s in serum-free AIM-V medium. In other preferred embodiments, the present invention discloses serum-free protocols of DC1 generation that facilitate the clinical application of DC1-based therapies and the identification of novel factors involved in the induction of Th1-, CTL-, and NK cell responses by DC1.
The Sequence Listing is submitted as an ASCII text file (8088-81340-03_Sequence_Listing.txt, Jan. 23, 2013, 4.00 KB), which is incorporated by reference herein.
To boost the immunogenic capacity of DCs and their ability to induce high-intensity Th1 and CTL-mediated type-1 immune responses, the present invention combines within one DC type a fully-mature status and a high ability to produce high levels of IL-12p70. In contrast to current methodologies in which the final maturation of DCs induced by typical stimuli is associated with reduced ability to produce IL-12 (Kalinski et at, 1999, Langenkamp et al., 2000), the present invention provides for concomitant exposure of immature DC to a maturation-inducing stimulus and to IFNγ which results in a strong enhancement of the subsequent ability of mature DC to produce IL-12 and to induce Th1-dominated responses (Vieira et al., 2000, Mailliard et al., 2002), and more specifically the cancer-specific CTL responses.
Further, although current DC1-inducing protocols are ineffective in serum-free conditions, the present invention provides that IFNα, a member of type I interferon family, and poly-I:C, an IFNα-inducing factor, can both synergize with the IFN-γ-based type-1-polarizing cocktails, allowing for the induction of fully-mature type-1 polarized DC in serum-free conditions. The present invention provides for adding at least one of the group of IFNα and poly-I:C to a cocktail of TNFα/IL-1β/IFNγ in either a serum-free culture or a serum-supplemented culture depending on the specifications of the application.
Although the current DC-based vaccines rely on either immature DCs (with high ability to produce IL-12 but low stimulatory capacity), or mature DCs (with high stimulatory function, but reduced IL-12 production), the current invention describes a method that provides a means of producing both of these desirable features within a single DC1-based vaccine preparation.
In addition, the DC1s of the present invention exhibit a stable phenotype that is resistant to tumor-associated immunosuppressive factors, including IL-10 and PGE2 (Kalinski et al., 1998, Vieira et al., 2000). Moreover, DC1s of the present invention can produce IL-12p70 upon the interaction with CD4+ T cells that are unable to produce IFNγ or other IL-12 co-inducing factors (Vieira et al., 2000). These DC1s are able to boost the clinical efficacy of cancer vaccines, despite the presumed immunosuppressive environment of immunocompromised cancer patients and their undesirable bias towards Th2-type immunity (Tatsumi et al., 2002).
Previous work with DC transduced with IL-12 genes demonstrated that high IL-12-producing DC are effective inducers of tumor-specific Th1 cells and CTLs and of tumor rejection in experimental animals (Zitvogel et al., 1996, Shimizu et at, 2001, Tuting et al.,) (Chikamatsu et al., 1999, Tahara et at, 1994). However, use of IL-12 transduced DC in humans suffers from substantial logistic problems. It also carries potential risks associated with the administration of genetically-manipulated material as well as the risks of direct IL-12 toxicity and of deregulating the immune system, due to uncontrolled IL-12 production.
The present invention provides a feasible way to generate fully mature DC with high IL-12 producing capacity without any genetic manipulation which overcomes the above obstacles, paving the way to wide application of DC1-based immunotherapies. The present invention's DC1-inducing cytokine cocktails are based on the factors which are either FDA-approved drugs, or have been approved by FDA for use as investigational drugs. Poly I:C have been used as a biologic response modifier in cancer, as early as in 1976 in NCI, by the group of A. S. Levine (Robinson et al., 1976), and subsequently in many other clinical trials, which demonstrated its safety. Similar, IFNα, IFNγ, IL-1β, and TNFα, are commonly-used biological agents, approved as drugs or investigational drugs.
Because IL-12 production has been shown to be important for the control of numerous intracellular pathogens, including Leishmania, Listeria, Mycobacterial infections, and many viruses, the DC1s of the present invention can be used to treat chronic infections, including the infections with HIV, EBV, CMV, HCV, HBV, mycobacteria (e.g. tuberculosis and lepromatous leprosy), or parasites (e.g. Leishmaniasis). Further, the powerful Th1- and CTL-inducing DC1s of the present invention may be used to revert undesirable Th2 bias, and the B cell production of pathogenic antibodies in atopic allergies (e.g. manifested as atopic dermatitis or asthma) or autoimmune diseases, e.g. SLE, Graves disease, IgA nephropathy, or autoimmune trombocytopenia. In contrast to Th2 cells, Th1 cells and CTLs produced by the present invention have a limited or no ability to support antibody production, and can limit this process by killing the antibody-producing B cells (Wierenga et al, Ju et al, Del Prete et al 1991).
In addition to their therapeutic use as vaccine carriers, the DC1s of the present invention will be a useful tool in the development of additional novel therapies. The superior ability of DC1s of the present invention to activate Ag-specific T cells in vitro enables them to be used as immunomonitoring tools with superior sensitivity in detecting low-intensity (or suppressed) immune responses, facilitating the analysis of immune responses in patients with cancer, HIV, and other diseases.
The serum-free protocols of DC1 induction of the present invention can serve as a tool for defining the exact mechanism(s) of the DC1-mediated induction of Th1 cells and CTLs. Although 1L-12's key role in the ability of DC to induce Th1 responses has been demonstrated, it is likely that other factors may also be important in this respect. The serum-free DC1 generation protocols of the current invention enable the use of the powerful proteomic approach to analyze the unique pattern of DC1 interaction with other immune cells. This may lead to the identification of novel Th1- and CTL-inducing factors, with potential additional therapeutic applications.
The current data indicate the feasibility of generating fully-mature DC in the absence of PGE2, the maturation-enhancing factor with particularly-pronounced IL-12 antagonistic activity (Kalinski et al., 1997, Kalinski et at, 1998, Kalinski et at, 2001). The lack of the absolute requirement for PGE2 in the induction of functional mature DC is in accord with the apparent lack of immunosuppressive activity of COX-1 and COX-2-inhibitors, used as non-steroid anti-inflammatory drugs. On the contrary, PGE2 has been shown to suppress the production of IL-12p70 in several types of APC including DCs (van Der Pouw Kraan T C et at, 1995); Kalinski et al., 1997), can directly suppresses Th1-cells (Betz & Fox, 1991, Snijdewint et al, 1993), and may play a role in tumor-associated immune dysfunction (reviewed in (Harris et al., 2002).
Although other IFNs signaling through type I IFN receptors are known to activate the similar signaling pathways and exert similar biologic effects, the present invention allows testing which of particular pathways induced by type I interferons (including STAT-1, STAT-2, STAT-3, STAT-4 and NFκB) remain critical for DC1 induction. Definition of the molecular mechanisms of DC1 induction will pave the way for a pharmacological modulation of DC, using appropriate small molecules. Further, the present invention allows the identification of a wider panel of type-I IFN-inducing agents able to promote DC1 induction, similar to p-I:C.
DC-based vaccine targets enabled by the present invention include the induction of type-1 immunity against HPV-related antigens in cervical carcinoma patients. Further, the DCs of the present invention provide a tool for understanding of the basic principles of immuno-regulation and the treatment of infections with pathogens resistant to standard forms of treatment, including HIV, CMV, HBV, HCV, or tuberculosis.
Thus, the present invention's disclosure of αDC1s, as powerful in inducers of CTL-, Th1- and NK cell activity, and of CTL-, Th1-, and NK cell-mediated anti-tumor responses, indicate several new therapeutic and preventive possibilities of the current invention in cancer and pre-cancerous states as well as in chronic infectious diseases, atopic allergies, and certain forms of autoimmunity, where type-1 (CTL-, TH1, and NK cell-mediated) immunity can also be beneficial. DC1, especially αDC1 induced in the maturation conditions involving the combination of type I and type II interferons (or their surrogates), can be used as carriers of vaccines, or as the stimulating agents to activate and expand immune cells ex-vivo, for their subsequent use in adoptive immunotherapy. Moreover, the ability of DC1s to act as powerful inducers of T cell responses in vitro, can also be a useful tool for detecting the presence of pathogen-specific T cells in circulation or in human tissues, even when T cells are difficult to detect y standard methods, e.g. due to their suppression, exhaustion or anergization. In addition, high potency of αDC1 in inducing CTL-, Th1- and NK cell activity makes them a useful research tool for the identification of the genes and proteins particularly important in activating the above types of immune cells, facilitating the development of additional, potentially novel targets of immune intervention, and potentially novel factors, that can be used as immunomodulators, either in place of αDC1, as self-standing therapeutic agents, or supplementing other forms of (immuno)therapy.
The following is a description of a preferred embodiment of a method for generating DC1s according to the present invention.
Many commercially available media can be used to generate the DCs. By way of example, but not limitation, such media include: IMDM with 10% FBS (both from Gibco, Grand Island, N.Y.), IMDM with 2% HS (Atlanta Biologicals, Atlanta, Ga.; additional, 1% and 10% concentrations of human sera), and serum-free AIM-V medium (Gibco/Invitrogen, Grand Island, N.Y.) or serum-free X-Vivo Medium (Cambrex, East Rutherford, N.J.). Many cytokines, including, but not limited to the following, can be used to obtain immature DCs, induce their final maturation and polarization, and to generate tumor-specific CTLs: rhu GM-CSF and IL-4 (both 1000 IU; Schering-Plough (Kenilworth, N.J.); IFN-α (Intron A-IFN-α-2b; Schering-Plough); IFN-β; (Avonex; Biogen Inc., Cambridge, Mass.); IL-2 (Chiron Corp.; Emeryville, Calif.); rhuTNF-α (Strathmann Biotech Gmbh, Hannover, Germany); rhuIL-1β (Strathmann); rhuIFN-γ (Strathmann); LPS (from E. coli 011:B4; Sigma, St. Louis, Mo.); PGE2 (Sigma, St. Louis, Mo.); rhuIL-7 (R&D Systems, Minneapolis, Minn.) poly-I:C (Sigma, St. Louis, Mo.).
According to one embodiment of the present invention, mononuclear cells obtained from the peripheral blood of healthy donors or patients afflicted with a disease of interest, e.g., melanoma, are isolated by density gradient separation using a variety of techniques including Lymphocyte Separation Medium (Cellgro Mediatech, Herndon, Va.). To obtain immature (Sallusto & Lanzavecchia, 1994), monocytes are isolated from peripheral blood lymphocytes using a Percoll (Sigma) density separation technique, followed by plastic adherence, as described (Kalinski et al., 1997). Monocytes are cultured in well plates (Falcon, Becton Dickinson Labware, Franklin Lakes, N.J.) in individual media supplemented with rhu GM-CSF and IL-4 (both 1000 IU).
CD8+ T cells (96-98% purity) are isolated from PBMCs using a variety of commonly known techniques including the StemSep™ negative selection systems (StemCell Technologies Inc., Vancouver, BC, Canada). Phenotypic analysis is performed using known methodologies including the WinMDI Version 2.8 Software (Joseph Trotter, Scripps Research Institute, La Jolla, Calif.).
A comparison of the induction of DC maturation and polarization according to the present invention and current methods was performed to demonstrate the superiority of the present invention. To conduct such a comparison, DC cultures (performed in either serum-supplemented or serum-free conditions) were exposed to different maturation regimens according to the following protocols: (1) the current “gold standard” of clinically-used DC which provides for DC matured by the “complete cytokine mix”: IL-1β, TNFα, IL-6, and PGE2 (control DC; Jonuleit et al., 1997); (2) DC1-inducing protocols previously known in the art which include (a) serum-supplemented cultures: maturation by IL-1β, TNFα, and IFNγ ανδ (b) Serum-supplemented cultures: maturation by LPS and IFNγ; and (3) DC1-inducing protocols of the present invention including (a) serum-free culture (AIM-V medium): maturation by IL-1β, TNFα, IFNγ and INFα; (b) serum-free culture (AIM-V medium): maturation by IL-1β, TNFα, IFNγ, IFNα and poly-I:C; (c) serum-free culture (AIM-V medium): maturation by IL-1β, TNFα, IFNγ, and poly-I:C; (d) serum-supplemented culture: maturation by IL-1β, TNFα, IFNγ and IFNα; (e) serum-supplemented culture: maturation by IL-1β, TNFα, IFNγ, IFNα and poly-I:C; and (f) serum-supplemented culture: maturation by IL-1β, TNFα, IFNγ, and poly-I:C.
A range of concentrations of each of the above factors can be used (from 0.1 pg/mL to 10 mg/mL. One preferred embodiment, depicted herein, uses the following concentrations of the above factors: IL-1β (25 ng/ml); TNFα, (50 ng/ml), IFNγ (1000 U/ml); poly-I:C (20 ng/ml); IFNα (3000 U/ml); LPS (250 ng/ml). In an assay employing this preferred embodiment, the DC cells produced by the disclosed protocols were harvested and analyzed for the expression of maturation-associated surface markers, the ability to produce IL-12p70, and to induce melanoma-specific CTLs. To test and demonstrate the IL12p70-producing capacity of DC, they were harvested, washed, and plated in flat bottom well plates. To mimic the interaction with CD40L expressing Th cells, CD40L-transfected J558 cells (University of Birmingham, Birmingham, UK) were added (Cella et al., 1996). Supernatants were collected and tested for the presence of IL-12p70 by ELISA.
Negatively-isolated CD8+ T cells from HLA-A2+ donors were sensitized by the individual populations (non-polarized and polarized) of autologous DC pulsed with the HLA-A2-restricted peptides MART-1 (27-35, AAGIGILTV), gp100 (209-217, ITDQVPFSV and 154-162, KTWGQYWQV), and tyrosinase (368-376, YMNGTMSQV). RhuIL-2 (50 U/ml) was added and the differentially-sensitized CD8+ T cell cultures were expanded by an additional round of stimulation, using peptide-pulsed autologous PBMC. The differentially-induced CD8+ T cell lines were stimulated with peptide-pulsed HLA-A2+ T2 cells to monitor the frequency of the melanoma-specific CD8+ T cells by IFN-γ ELISPOT. Cytolytic activity of the differentially-sensitized CTL cultures was determined by performing standard 51Cr-release assays with results calculated and reported in the percent of target lysis at individual effector-to-target ratios as described (Friberg et al., 1996). Concentrations of IL-12p70 in cell supernatants were determined by specific ELISAs, performed with matched antibody pairs, standards, and reagents.
The presence of IFNγ during DC maturation induced by IL-1β and TNFα, or induced by LPS, results in the development of stable type-1-polarized DC (DC1), characterized by high ability to produce IL-12p70 upon subsequent stimulation (
Although it has been previously demonstrated that DC1s show superior ability to induce Th1 cytokine profiles in naïve CD4+ T cells (Vieira et al., 2000, Mailliard et al., 2002), the present invention discloses a method that uses DC1s as superior inducers of CTL-responses against melanoma-related antigens in healthy donors and melanoma patients. A single round of short-term stimulation of CD8+ T cells, results in the induction of strongly elevated numbers of IFNγ-producing MART-1-specific CTLs in the blood of healthy donors (
According to the methods of the present invention, IFNα and p-I:C synergize with an IFNγ-based polarizing cocktail to generate DC1 in serum-free conditions. The combination of IFNγ with IL-1β and TNFα allows the development of mature DC1 in the fetal calf serum (FCS)-supplemented media, but not in the presence of human serum, nor in serum-free AIM-V medium (
Although neither IFNα nor poly-IC alone (nor in combination with IL-1β and TNFα) promote the induction of DC1 (Vieira et al., 2000, current data not shown), pursuant to methods of the present invention, the addition of each IFNα and to a lesser extent poly I:C to the cocktail of IFNγ, IL-1β, and TNFα, provides for a serum-independent development of DC1 with a strongly enhanced ability to produce IL-12p70 after subsequent stimulation (
Serum-free DC1s obtained in the presence of all five factors (IFNγ, IL-1β, TNFα, IFNα, and poly-I:C) show a similar fully-mature surface phenotype as control DC (matured by the “complete cytokine mix”: IL-1β, TNFα, IL-6, and PGE2), or DC1 induced by LPS and IFNγ in FCS-supplemented medium, showing similar expression levels of such maturation-associated markers as CD83, CD86 and CCR7 (
Alpha type-1 DC (αDC1) of the present invention have a superior ability to induce melanoma-specific CTL responses. To analyze their CTL-inducing activity, individual populations of DC1 (generated under serum-free, or serum-supplemented conditions), or serum-free control IL-1β/TNFα/IL-6/PGE2-matured cDC, were pulsed with melanoma-associated antigenic peptides, and used to sensitize autologous CD8+ T cells from HLA-A2+ melanoma patients. The long-term CD8+ T cell lines obtained by further expansion with autologous PBMCs were harvested and used as responder cells against T2 cells pulsed with individual peptides, or their combination. As shown in
In addition to being superior inducers of the cytolytic activity of tumor-specific CD8+ T cells (CTLs), αDC1 also proved superior in their ability to induce similar, cytolytic functions in CD4+ Th cells, and in isolated NK cells, allowing them to efficiently kill transformed cells (
Of particular importance for their ability to function in vivo, as carriers of anticancer vaccines, αDC1 can effectively migrate in response to CCR7 ligands (
The current description of αDC1, as powerful in inducers of CTL-, Th1- and NK cell activity, and of CTL-, Th1-, and NK cell-mediated antitumor responses, indicate several new therapeutic and preventive possibilities of the current invention in cancer and precancerous states as well as in chronic infectious diseases, atopic allergies, and certain forms of autoimmunity, where type-1 (CTL-, Th1, and NK cell-mediated) immunity can be beneficial. DC1, especially αDC1 induced in the maturation conditions involving the combination of type and type II interferons (or their surrogates), can be used as carriers of vaccines, or as the stimulating agents to activate and expand immune cells ex-vivo, for their subsequent use in adoptive immunotherapy. Moreover, the ability of DC1 to act as powerful inducers of T cell responses in vitro, can also be a useful tool for the detecting the presence of pathogen-specific T cells in circulation or in human tissues, even in cases when T cells are difficult to detect y standard methods, e.g. due to their suppression, exhaustion or anergization. In addition, high potency of αDC1 in inducing CTL-, Th1- and NK cell activity makes them a useful research tool for the identification of the genes and proteins particularly important in activating the above types of immune cells, facilitating the development of additional, potentially novel targets of immune intervention, and potentially novel factors, that can be used as immunomodulators, either in place of αDC1, as a self-standing therapeutic agents, or supplementing other forms of (immuno)therapy.
This is a continuation of U.S. patent application Ser. No. 13/174,093, filed on Jun. 30, 2011, which is a continuation of U.S. patent application Ser. No. 12/138,324, filed Jun. 12, 2008, issued as U.S. Pat. No. 7,972,847, which is a divisional of U.S. patent application Ser. No. 10/842,185, filed May 10, 2004, abandoned, which in turn claims the benefit of U.S. Provisional Patent Application No. 60/468,760, filed May 8, 2003, entitled “MATURE TYPE-1 POLARIZED DENDRITIC CELLS WITH ENHANCED IL-12 PRODUCTION AND METHODS OF SERUM-FREE PRODUCTION AND USE.” U.S. patent application Ser. No. 10/842,185, U.S. patent application Ser. No. 12/138,324 and U.S. patent application Ser. No. 13/174,093 are incorporated by reference herein.
Portions of the present invention were made with support of the United States Government via a grant from the National Cancer Institute under grant number 1R01CA82016. The U.S. Government may therefore have certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60468760 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13750850 | Jan 2013 | US |
Child | 14195834 | US | |
Parent | 10842185 | May 2004 | US |
Child | 12138324 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13174093 | Jun 2011 | US |
Child | 13750850 | US | |
Parent | 12138324 | Jun 2008 | US |
Child | 13174093 | US |