1. Field of the Invention
The present invention is related to methods and an apparatus for detecting the presence of a microbe in a sample.
2. Background Art
For a number of practical applications, such as clinical diagnosis, bioterrorist threat assessment, food safety testing and environmental monitoring, it is desirable to detect the presence and quantity of a specific microorganism(s). A tested specimen frequently contains a large number of microorganisms from which a specific target microorganism or a group of specifically targeted microorganisms must be specifically and rapidly detected. Examples of microorganism-specific tests are found, for example, in U.S. Pat. Nos. 5,498,524 to Rees, et al., 6,436,661 to Adams, et al., and 6,809,180 to de Boer, et al.
U.S. Patent Publication No.: US 2004/0175780A1 by Li et al. describes a method for quantifying respiring microorganisms through their consumption of oxygen. Oxygen concentration is determined amperometrically. The tests described in this patent application are large volume, e.g., 15 ml. per test, time-consuming, e.g., upwards of two hours. The tests described by Li et al. would not be particularly organism-specific if multiple microorganisms are present, as is generally the case.
U.S. Pat. No. 6,461,833 to Wilson describes a method for assessing the presence of a particular bacterium in a sample also containing a second bacterium. This is done using bacteriophage infection of the first bacterium and subsequent manipulation of the reproduced bacteriophage detectable through plaque formation. The tests described by Wilson require overnight incubation and have multiple sample/biomaterials manipulation steps that must be done in a microbiology laboratory environment.
Accordingly, there exists a need for methods and apparatuses that provide accurate, rapid, specific, inexpensive and reproducible detection of microorganisms.
The present invention solves one or more problems of the prior art by providing in at least one embodiment a method and apparatus for detecting the presence of a microorganism in a microbial sample. The microbial sample includes the microorganism and a growth medium while the detected microorganism characteristically produces or consumes a metabolic compound. The apparatus of this embodiment includes a first enclosable chamber for holding a first portion of the microbial sample. The first enclosable chamber holds the first portion of the microbial sample in a manner that allows a first gaseous region to be formed therein thereby defining an interface between the first gaseous region and the first portion. The apparatus of this embodiment further includes a first metabolic compound monitor in communication with the gaseous region. The first metabolic compound monitor provides a signal functionally dependent on metabolic compound concentration in the first gaseous region wherein the signal allows identification of a metabolic compound rich state and metabolic compound depleted state such that at some point during a predetermined period of time a transition between the metabolic compound rich state and the metabolic compound depleted state occurs.
In another embodiment, a method of forming microbe-detecting devices is provided. The method of this embodiment comprises joining an electrode containing section with a growth medium container section via a semipermeable membrane to form a microbe-detecting apparatus.
Reference will now be made in detail to presently preferred compositions, embodiments and methods of the present invention, which constitute the best modes of practicing the invention presently known to the inventors. The Figures are not necessarily to scale. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for any aspect of the invention and/or as a representative basis for teaching one skilled in the art to variously employ the present invention.
Except in the examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention.
It is also to be understood that this invention is not limited to the specific embodiments and methods described below, as specific components and/or conditions may, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments of the present invention and is not intended to be limiting in any way.
It must also be noted that, as used in the specification and the appended claims, the singular form “a,” “an,” and “the” comprise plural referents unless the context clearly indicates otherwise. For example, reference to a component in the singular is intended to comprise a plurality of components.
Throughout this application, where publications are referenced, the disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains.
In an embodiment of the present invention, an apparatus for detecting the presence of a microorganism in a microbial sample is provided. Characteristically, the microorganism produces or consumes a metabolic compound. Advantageously, the present embodiment monitors the concentration(s) of such metabolic compounds. Examples of such metabolic compounds include oxygen, carbon dioxide, alcohols (e.g., ethanol), methane, hydrogen disulfide, and combinations thereof. The microbial sample analyzed by the apparatus of the present embodiment includes the microorganism and a growth medium.
With reference to
Signal 26 allows identification of a metabolic compound rich state (i.e., a state with a relatively high concentration of the metabolic compound) and a metabolic compound depleted state (i.e., a state with a relatively low concentration of the metabolic compound) such that at some point during a predetermined period of time a transition between the metabolic compound rich state and the metabolic compound depleted state occurs. In one variation, the metabolic compound is a metabolic product so that the relevant transition is from a depleted state to a rich state. In a refinement of this variation, the metobolic compound is a primary or secondary metabolite. Examples of primary metabolites include fermentation products, nitrite, sulfide, carbon dioxide, and the like. Examples of secondary metabolites include siderophores, quinolones, bacteriocins, colicins, pigments, exotoxins, and the like. In another variation of the present embodiment, the metabolic compound is consumed by the microbe (e.g., a food source, oxygen) so that the relevant transition is from a rich state to a depleted state. In a refinement of this variation, the metabolic compound is a nutrient. Examples of such nutrients include, but are not limited to, carbon and energy sources, minerals and micronutrients, nitrogen sources, and sulfur sources. Specific examples of carbon and energy sources include glucose and other hexoses, glycerol, pyruvate, succinate, fatty acids, amino acids, peptides and the like. Specific examples of minerals and micronutrients include Mg, Ca, Fe, Cu, Zn, vitamins, oleic acid, and the like. Specific examples of nitrogen compounds ammonium, nitrate, nitrite, amino acids, urea, dinitrogen, and the like. Specific examples of sulfur sources include sulfur-containing amino acids, sulfate, sulfite, sulfide, sulfur, and the like. This latter variation is particularly useful for detecting the presence of aerobic microbes which of course consume oxygen. When the microbe is aerobic, the transition from an oxygen rich to oxygen depleted state is advantageously monitored. In still another variation of the present invention, the metabolic compound is a cell constituents. Such cell constituents include intracellular, periplasmic, and extracellular constituents. Examples of intracellular constituents include ATP, DNA, RNA, glucose-6-phosphate dehydrogenase, DNA polymerase, poly-B-hydroxybutyrate, and the like. Examples of periplasmic constituents include acid phosphatase, cyclic phosphodiesterase, ribonuclease I, phosphoglucose isomerase, and the like. Examples of extracellular constituents include phospholipase A, lipopolysaccharide, capsule, and the like.
With reference to
wherein:
In detecting or quantifying target organisms, it is the time-to-detection that is the most useful quantity and not the absolute oxygen concentration or respiration rate. Therefore, two optimum regimes of testing/cell growth exist:
In the first regime (Qi0 Φi) can be treated as a constant. In the second regime, target organism lysis can occur and differential detection is possible.
With reference to
where m(O2)t, m[O2](t), Qi0, B(t), B0, B1, OURi are the same as set forth above. Φ′k is the altered time dependent growth factor for species k. Such alteration is caused by impacting the growth of a particular organism more than others in a sample (e.g., bacteriophage, antibiotic, other chemicals, etc.) In this figure, the time to detection differences become the relevant factor.
In a variation of the present embodiment, enclosable chamber 12 is configured to hold portion 14 and porous region 18 in a geometrical relationship and also using the transport properties of interface 20 such that the metabolic compound concentration (e.g., oxygen concentration) is within 10 percent of its equilibrium value within 10 minutes of the enclosable chamber being charged with the microbial sample.
Metabolic compound monitor 22 may utilize any number of methods for measuring the presence of the metabolic compounds in porous region 18. Such methods include, but are not limited to, spectroscopic techniques, electrochemical reaction measurements, impedance measurements, potentiometric measurements, amperometric measurements other electrical measurement techniques, and combinations. When the metabolic compound is oxygen, metabolic compound monitor 22 is an oxygen monitor. In one refinement, the oxygen monitor is operable to measure oxygen-quenching of luminescence emitted by an oxygen-sensing compound.
In a variation of the present embodiment, the microbial sample further comprises a microbial growth-altering material that is specific to a target microorganism. The microbial growth-altering material either enhances or retards the growth of the target microorganism. In one refinement, the microbial growth-altering material is a bacteriophage. Examples of useful bacteriophages include, but are not limited to, DS6A, LG, Gamma phage, FaH, R, {phi}A1122, P 3d, KH1, KH4, and KH5, 212/Hv, BPP-1, A118, A1, A6, phiBB-1, CPL-1, VI 1s5, 34add, VI 1s34add, VI, VI 1s16o, and XIV, 209P.
In another embodiment of the present invention, a microbe-detecting apparatus having a plurality of enclosable chambers is provided. With reference to
In a variation of the present embodiment, one or more of portions 14n include an aerobic microorganism. In such variations, the corresponding metabolic compound monitors 22n are oxygen monitors.
In a particularly useful variation of the present invention, portions 14n of microbial sample(s) comprises differing compositions. For example, microbe-detecting apparatus 10′ includes a first enclosable chamber 121 holds first portion 141 of a microbial sample in a manner that allows porous region 181 to be formed therein thereby defining interface 201 between first porous region 181 and the first portion 141. Microbe-detecting apparatus 10′ includes first metabolic compound monitors 221 in communication with porous region 181. Metabolic compound monitor 221 first signal 261 which is functionally dependent on metabolic compound concentration (i.e., the concentration of the metabolic compound(s)) in first porous region 181. Signal 261 allows identification of a metabolic compound rich state (i.e., a state with a relatively high concentration of the metabolic compound) and a metabolic compound depleted state (i.e., a state with a relatively low concentration of the metabolic compound) occurring in first porous region 181 such that at some point during a predetermined period of time a transition between the metabolic compound rich state and the metabolic compound depleted state occurs. Signals 261 are receiving by data processing system 30′ for analysis. In this variation, microbe-detecting apparatus 10′ further includes second enclosable chamber 122 for holding second portion 142 of a microbial sample. Second enclosable chamber 122 holds second portion 142 in a manner that allows second porous region 182 to be formed therein thereby defining interface 202 between second porous region 182 and the second portion 142. Microbe-detecting apparatus 10′ includes second metabolic compound monitor 221 in communication with the second porous region 182. Second metabolic compound monitor 222 providing second signal 262 functionally dependent on the metabolic compound concentration of second porous region 182. Signal 262 allows identification of a metabolic compound rich state (i.e., a state with a relatively high concentration of the metabolic compound) and a metabolic compound depleted state (i.e., a state with a relatively low concentration of the metabolic compound) occurring in second porous region 182 such that at some point during a predetermined period of time a transition between the metabolic compound rich state and the metabolic compound depleted state occurs. In this variation, portions 14n contain samples having different compositions. For instance portion 141 include a microbe, a growth medium, and a microbial growth-altering material while portion 142 includes substantially the same composition minus the microbial growth-altering material. Optionally, microbe-detection apparatus 10′ further includes one or more additional enclosable chambers for holding one or more additional portions of the microbial sample and one or more additional metabolic compound monitors in communication with each of the gaseous region as set forth above.
In another variation of the microbe-detecting apparatus of
With reference to
With reference to
With reference to
With reference to
Still referring to
With reference to
In another embodiment of the present invention, a method of detecting a microbe using the apparatuses set forth above is provided. The method of this embodiment comprises charging an enclosable chamber with a sample matrix. The sample matrix includes the microbe and a growth medium. Typically, the sample include a plethora of microbes one of which is the microbe of interest. The enclosable chamber holds the sample matrix in a manner that allows a gaseous region to be formed therein thereby defining an interface between the gaseous region and the sample matrix. A first signal functionally dependent on a metabolic compound concentration of the gaseous region is measured for a predetermined period of time. The signal allows identification of a metabolic compound rich state and a metabolic compound depleted state such that at some point during the predetermined period of time a transition from the metabolic compound rich state to the metabolic compound depleted state occurs (transition time). In a variation, the method further comprises measuring a second signal functionally dependent on the metabolic compound concentration of the gaseous region for a predetermined period of time. A difference between the first and second signals is then determined (a transition time difference). In a refinement, the metabolic compound is oxygen and the microbe is an aerobic microbe.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
This application claims the benefit of U.S. provisional application Ser. No. 60/948,440 filed Jul. 6, 2007. The entire disclosure of this application is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/69346 | 7/7/2008 | WO | 00 | 1/6/2010 |
Number | Date | Country | |
---|---|---|---|
60948440 | Jul 2007 | US |