1. Technical Field
The present invention relates to a plating apparatus and particularly to a plating apparatus used in the semiconductor fabrication process for forming a metal plating on a substrate, such as a semiconductor wafer or the like.
2. Description of Related Art
The plating process is used frequently in semiconductor fabrication process to form wiring or films on a substrate.
The plating bath 1-2 accommodates a plating solution 1-1, a substrate 1-4 mounted on a wafer holder (not shown) in the plating solution 1-1, and a soluble anode 1-3 disposed in the plating solution 1-1 opposite the substrate 1-4. A power source 1-5 is connected between the substrate 1-4 and anode 1-3. The plating section 1 also includes a pump 1-6 and a temperature regulator 1-7. The pump 1-6 supplies the plating solution 1-1 to the temperature regulator 1-7. The temperature regulator 1-7 adjusts the plating solution 1-1 to a temperature optimal for the plating process and returns the plating solution 1-1 to the plating bath 1-2.
The replenishing tank 2-3 accommodates a plating solution 2-5, such as an aqueous solution primarily comprising predetermined concentrations of CuSO4-5H2O. The plating solution 2-5 is supplied to the plating bath 1-2 by the pump 2-7 through the pipe 3. The replenishing tank 2-2 accommodates an additive solution 2-4, and the solution 2-4 is supplied to the plating bath 1-2 by the pump 2-6 through the tube 4. When the apparatus is first powered on, new plating solution 2-5 is introduced into the plating bath 1-2. During plating operations, an analyzing apparatus (not shown) analyzes the composition and concentration of the plating solution 1-1 from the plating bath 1-2. Based on these analyses, the additive solution 2-4 or the plating solution 2-5 is supplied from the replenishing tank 2-2 or the replenishing tank 2-3 in order to maintain the composition and concentration of the plating solution 1-1 at predetermined values.
When the power source 1-5 supplies a plating current between the substrate 1-4 and anode 1-3, metallic ions, such as Cu2+ are emitted from the soluble anode (for example, a phosphorus copper electrode) 1-3 and deposited on the surface of the substrate 1-4 to form a metallic plating film. It is necessary to replace the anode 1-3 periodically because the anode 1-3 is consumed as it emits metallic ions into the plating solution 1-1.
The plating solution used in this plating apparatus contains metallic ions that are deposited on a member to be plated. Sometimes the deposited metal is transferred or diffused. Further, when the plating solution or mist from the solution is vaporized, crystals are deposited, generating solid particles. This metallic deposited matter and the crystalline particles are causing contamination for clean rooms, semiconductor wafers, and circuit materials.
In the semiconductor fabrication process, metallic plating is embedded in fine wire channels and the like formed in the surface of semiconductor wafers. From a process control standpoint, it is advantageous to conduct these plating processes in a clean room. However, by installing the plating apparatus comprised of the plating section 1 and control section 2 in a clean room, the replenishing tank 2-2, replenishing tank 2-3, and liquid analyzer (not shown) must also be disposed in the clean room by association. This raises the problem of managing the above-described contamination during maintenance operations.
The regulating tank 1-31 is divided into an anode chamber 1-31a and a cathode chamber 1-31b by an ion exchange membrane 1-27. A soluble anode 1-28 is disposed in the anode chamber 1-31a, while a cathode 1-29 is disposed in the cathode chamber 1-31b and opposes the anode 1-28 across the ion exchange membrane 1-27. A power source 1-33 is connected between the anode 1-28 and cathode 1-29. The anode chamber 1-31a accommodates plating solution 1-1, while the cathode chamber 1-31b accommodates electrolytic solution 1-22. When the power source 1-33 applies a predetermined voltage between the anode 1-28 and cathode 1-29, the anode 1-28 dissolves and emits metallic ions.
A pump 1-14 supplies the plating solution 1-1 from the anode chamber 1-31a to the cathode chamber 1-24b via a tube 1-20 and a filter 1-16 provided on the tube 1-20. A pump 1-15 supplies electrolytic solution 1-22 from the cathode chamber 1-31b to the anode chamber 1-24a via a tube 1-21 and a filter 1-17 provided on the tube 1-21. The apparatus is also configured to return the electrolytic solution 1-22 from the anode chamber 1-24a and the plating solution 1-1 from the cathode chamber 1-24b to the cathode chamber 1-31b and anode chamber 1-31a, respectively.
Hence, the power source 1-5 applies a predetermined voltage between the anode 1-23 and substrate 1-4, supplying a current from the anode 1-23 to the substrate 1-4. The current forms a metallic film on the surface of the substrate 1-4. Metallic ions such as Cu2+ ions consumed during the plating process in the plating chamber 1-24 are replenished from the regulating tank 1-31.
When using an insoluble electrode for the anode 1-23 as described above, there is no need to replace the electrode. Therefore, maintenance work can be reduced. However, the anode 1-28 in the regulating tank 1-31 must be replaced. Further, O2 gas is released from the region near the anode 1-23 and H2 gas is released from the region near the cathode 1-29. From a safety standpoint, it is not desirable for both gases to be released in the same clean room.
In the plating apparatus having the construction described above, a lot of the washing solution is discharged when washing the substrate 1-4 after the substrate is plated. Hence, a lot of washing solution and pure wafer are consumed, particularly when the substrate 1-4 to be plated is, for example, a semiconductor wafer for fabricating a semiconductor device. Further, since the washing solution contains plating solution, it is necessary to process the solution to remove metallic ions and the like, which can place a great burden on the wasted water processing equipment. The same problem exists when processing wasted plating solution that has been degraded.
Therefore, an effective method to reduce the overall load on the equipment is to provide the plating apparatus with functions to recover wasted plating solution and to process wash water. Such functions can perform specialized functions by themselves to enable the plating apparatus to process the plating solution and solution containing plating solution. Here, great benefits can be obtained by providing functions to regulate the plating solution, to remove metallic ions from the wash water after processing, and to re-regulate and recover wasted plating solution in a separate room from the room housing the plating section 1, which is required to be extremely clean. From a maintenance standpoint, it is very beneficial to manage the plating solution, process the plating solution, and process the wash water by the plating apparatus itself. However, a conventional plating apparatus has not been developed to perform these functions.
In view of the foregoing, it is an object of the present invention to provide a plating apparatus having a plating section and a control section, which sections are installed in separate rooms, such that maintenance work generating contamination is performed as much as possible in the room housing the control section, thereby minimizing maintenance work on the plating section and preventing contamination being generated therefrom.
It is another object of the present invention to provide a highly safe plating apparatus that does not release O2 gas and H2 gas in the same area.
It is another object of the present invention to provide a plating apparatus having special functions by itself to process wash water, recover wasted plating solution, and process plating solution and solution containing plating solution, wherein these functions are performed separately from the room housing the plating section which requires a high level of cleanliness.
To achieve the above-described subjects, there is provided a plating apparatus having a plating section for plating a plating object and a control section for regulating a plating solution and a solution containing-the plating solution. The plating apparatus is characterized in that: the plating section has a plating bath in which the plating process is performed by accommodating a plating solution therein and disposing an anode and a cathode as the plating object opposite the anode therein. The control section has a regulating tank for regulating a composition and/or concentration of the plating solution and a replenishing mechanism for injecting a replenishing solution into the plating solution therein. A circulating mechanism is provided for circulating the plating solution between the regulating tank in the control section and the plating bath in the plating section. The plating section is housed in a-first room and the control section is housed in a second room that is separate from the first room.
By providing the plating section in the first room and the control section in the second room as described above, operations for injecting additives into the plating solution to regulate its components, mixing other solutions, regulating the temperature of the plating solution, extracting plating solution for analyzing its components, and other dirty maintenance operations can all be performed in the second room in which the control section is provided and separate from the first room in which the plating section is provided. Hence, almost no contamination will be generated in the plating section.
Although O2 gas is generated near the insoluble anode in the plating chamber and H2 gas is generated near the cathode in the regulating tank, the O2 gas and H2 gas are not released in the same area because the plating section is in a separate room from the control section. Hence, the plating apparatus maintains safety by releasing the gases separately into the atmosphere.
The control section is provided with a regulating tank to regulate the composition and/or concentration of the plating solution; a replenishing mechanism for injecting plating solution and replenishing additives; an analyzer for analyzing components and/or measuring the concentration of the plating solution; a recovering apparatus for removing metallic ions contained in the wash solution after processing or for removing the ions and recovering the wash water; and a plating solution recovering apparatus for extracting plating solution from the regulating tank, removing foreign matter from the plating solution, and regulating the metallic ion concentration and hydrogen ion index. Accordingly, the plating apparatus is capable of processing wash water and recovering used plating solution. Hence, most of these processes are effectively performed in the second room housing the control section, thereby preventing contamination in the first room, which is required to have a high degree of cleanliness, and improving the efficiency of maintenance operations.
As described above, the plating section is housed in the first room having a high level of cleanliness, while the control section is housed in the second room having a level of cleanliness lower than that in the first room. As a result, dirty maintenance operations are concentrated in the utility room housing the control section, thereby greatly avoiding contamination in the clean room.
A plating apparatus according to first embodiments of the present invention will be described while referring to the accompanying drawings. First embodiments of the present invention will be described with reference to
The plating section 1 includes a plating bath 1-2 accommodating a plating solution 1-1, a soluble anode 1-3 disposed in the plating solution 1-1, a substrate 1-4 mounted on a wafer holder in opposition to the anode 1-3. A power source 1-5 is connected between the anode 1-3 and substrate 1-4 for supplying a plating current from the anode 1-3 to the substrate 1-4. A temperature regulator 1-7 is provided for maintaining the plating solution 1-1 at a temperature that is suitable for plating, and a pump 1-6 is also provided for supplying plating solution 1-1 from the plating bath 1-2 to the temperature regulator 1-7 and returning the plating solution 1-1 to the plating bath 1-2 after the plating solution 1-1 is adjusted to an appropriate temperature.
The control section 2 includes a regulator tank 2-1, a replenishing tank 2-2, and another replenishing tank 2-3. The regulator tank 2-1 contains the plating solution 1-1 that is regulated at an appropriate temperature. The replenishing tank 2-2 contains an additive solution 2-4. The replenishing tank 2-3 contains a plating solution 2-5 (for example, having a main component of copper sulfate, at a predetermined concentration). A pump 2-6 supplies the additive solution 2-4 to the regulator tank 2-1 via a tube 2-8. A pump 2-7 supplies the plating solution 2-5 to the regulator tank 2-1 via a tube 2-9.
The regulator tank 2-1 is connected to the plating bath 1-2 by tubes 3 and 4. A pump 2-10 supplies the plating solution 1-1 from the regulator tank 2-1 to the plating bath 1-2 via the tube 3 and a filter 2-11 disposed on the tube 3. A pump 1-8 supplies the plating solution 1-1 from the plating bath 1-2 to the regulator tank 2-1 via the tube 4. In other words, a mechanism for circulating the plating solution 1-1 between the regulator tank 2-1 and plating bath 1-2 includes the tube 3, pump 2-10, filter 2-11, tube 4, and pump 1-8.
With this construction, the power source 1-5 applies a predetermined voltage between the substrate 1-4 and anode 1-3, forcing metallic ions, such as Cu2+ to be emitted from the soluble anode 1-3 (for example, a phosphorous copper electrode). The metallic ions emitted from the anode 1-3 are deposited on the surface of the substrate 1-4 to form a metal plating film. After continuously performing the plating process and processing a plurality of substrate 1-4, the composition, concentration, and amount of the plating solution 1-1 varies. In response to these variations, additive solution 2-4 from the replenishing tank 2-2 and plating solution 2-5 from the replenishing tank 2-3 are supplied to the regulator tank 2-1 to maintain the composition and concentration of the plating solution 1-1 at predetermined values. The additive solution 2-4 in the replenishing tank 2-2 is an organic additive solution comprising a mixture of a polymer, leveler, carrier, and HCl.
As described above, the plating section 1 is installed in the first room having a high level of cleanliness, such as a clean room, while the control section 2 is installed in the second room having a low level of cleanliness, such as a utility room. Accordingly, the only operations performed in the first room are replacing the soluble anode 1-3. All other dirty operations, such as regulating the plating solution in the control section 2, are performed in the second room, thereby reducing the possibility of contaminating the first room. Further, by installing the control section 2, which requires a large amount of installation space, in the second room with a low level of cleanliness, it is possible to conserve precious installation space in the first room.
In the control section 2, a temperature regulator 2-15 and a pump 2-14 are provided on the regulator tank 2-1 for maintaining the plating solution 1-1 in the regulator tank 2-1 at a predetermined temperature. An analyzer 2-26 is provided in the control section 2 for analyzing the composition and concentration of the plating solution 1-1 supplied from the regulator tank 2-1 to the plating bath 1-2. A replenishing tank 2-17 accommodating an additive solution 2-20 is also provided. A pump 2-18 supplies the additive solution 2-20 from the replenishing tank 2-17 to the regulator tank 2-1 via a tube 2-19.
The plating section 1 is installed in the first room having a high cleanliness, such as a clean room, while the control section 2 is installed in the second room having a low level of cleanliness, such as a utility room. The pump 2-10 supplies the plating solution 1-1 from the regulator tank 2-1 to the plating bath 1-2 via the tube 3 and the filter 2-11 disposed on the tube 3. The plating solution 1-1 passes through the ejection holes 1-3a in the anode 1-3 and is ejected toward the substrate 1-4. The plating bath 1-2 is filled with the plating solution 1-1. The power source 1-5 applies a predetermined voltage between the anode 1-3 and substrate 1-4, causing a current to flow from the anode 1-3 to the substrate 1-4 and form a metallic plating film on the substrate 1-4.
The analyzer 2-26 analyzes the composition and concentration of the plating solution 1-1 supplied to the plating bath 1-2 from the regulator tank 2-1. Based on the results of this analysis, additive solution 2-4 or plating solution 2-5 is supplied to the regulator tank 2-1 from the replenishing tank 2-2 and replenishing tank 2-3 respectively. Further, the regulator tank 2-1 is replenished with additive solution 2-20 from the replenishing tank 2-17. The additive solution includes a make-up additive necessary for forming a black film on the surface of the anode 1-3 when conducting an electrolytic purification at the beginning of the plating process, and a replenish additive needed for performing continuous plating operations. The additive solution 2-20 in the replenishing tank 2-17 is equivalent to the starter (makeup) additive, while the additive solution 2-4 in the replenishing tank 2-2 is equivalent to the replenish additive.
By installing the plating section 1 in the first room having high cleanliness and the control section 2 in the second room having low cleanliness as described above, the same effects described for the plating apparatus of
The plating section 1 is also provided with a plating solution tank 1-12 accommodating the plating solution 1-1 whose main component is copper sulfate, for example, and an electrolytic solution tank 1-13 accommodating an electrolytic solution 1-22 whose main component is sulfuric acid, for example. A pump 1-14 supplies plating solution 1-1 from the plating solution tank 1-12 to the cathode chamber 1-24b via a tube 1-20 and a filter 1-16 disposed on the tube 1-20. The apparatus is configured to return plating solution 1-1 overflowing from the cathode chamber 1-24b to the plating solution tank 1-12. A pump 1-15 supplies electrolytic solution 1-22 from the electrolytic solution tank 1-13 to the anode chamber 1-24a via a tube 1-21 and a filter 1-17 disposed on the tube 1-21. The apparatus is configured to return electrolytic solution 1-22 over flowing from the anode chamber 1-24a to the electrolytic solution tank 1-13.
The control section 2 is also provided with a regulating tank 2-25. An ion exchange membrane 2-27 is disposed in the regulating tank 2-25 partitioning the regulating tank 2-25 into an anode chamber 2-25a and a cathode chamber 2-25b. A soluble anode 2-28, such as a phosphorous copper electrode, is provided in the anode chamber 2-25a. A cathode 2-29 is disposed in the cathode chamber 2-25b and opposes the anode 2-28 across the ion exchange membrane 2-27. A power supply 2-35 is connected between the anode 2-28 and cathode 2-29 to supply a predetermined current from the anode 2-28 to the cathode 2-29.
The anode chamber 2-25a accommodates the plating solution 1-1, while the cathode chamber 2-25b accommodates the electrolytic solution 1-22. The control section 2 is configured such that the anode chamber 2-25a can be supplied with additive solution 2-4, plating solution 2-5, and additive solution 2-20 from the replenishing tank 2-2, replenishing tank 2-3, and replenishing tank 2-17, respectively. The control section 2 is also provided with a pump 2-24 for supplying an electrolytic solution 2-36 from a replenishing tank 2-23 to the cathode chamber 2-25b.
A pump 2-30 and a temperature regulator 2-32 are connected to the anode chamber 2-25a in order to maintain the plating solution 1-1 in the anode chamber 2-25a at a predetermined temperature. A pump 2-31 and a temperature regulator 2-33 are connected to the cathode chamber 2-25b in order to maintain the electrolytic solution 1-22 in the cathode chamber 2-25b at a predetermined temperature.
The electrolytic solution tank 1-13 of the plating section 1 and the cathode chamber 2-25b of the control section 2 are connected by tubes 5 and 6. A pump 2-34 supplies electrolytic solution 1-22 regulated at a predetermined concentration in the cathode chamber 2-25b to the electrolytic solution tank 1-13.
A pump 1-19 supplies the electrolytic solution 1-22 in the electrolytic solution tank 1-13 to the cathode chamber 2-25b in order to maintain the concentration of the electrolytic solution in the electrolytic solution tank 1-13 at a predetermined value.
The plating solution tank 1-12 of the plating section 1 and the anode chamber 2-25a of the control section 2 are connected by the tubes 3 and 4. A pump 2-21 supplies the plating solution 1-1 regulated at a predetermined composition and concentration in the anode chamber 2-25a to the plating solution tank 1-12 via the tube 3 and the filter 2-11. The pump 1-8 supplies the plating solution 1-1 from the plating solution tank 1-12 to the anode chamber 2-25a via the tube 4 in order to maintain the plating solution 1-1 in the plating solution tank 1-12 at a predetermined composition and concentration.
With this construction, the power source 1-5 supplies a current between the substrate 1-4 and anode 1-23 in the plating chamber 1-24. The current causes metallic ions, such as Cu2+ in the plating solution 1-1 of the cathode chamber 1-24b to deposit on the surface of the substrate 1-4 and form a metallic plating film thereon. During the plating process, O2 gas is emitted near the anode 1-23, lowering the PH value of the electrolytic solution 1-22 in the anode chamber 1-24a.
The power supply 2-35 supplies a current between the anode 2-28 and cathode 2-29 in the regulating tank 2-25, causing metallic ions, such as Cu2+ to dissolve from the anode 2-28. As the metallic ions dissolve from the anode 2-28, the concentration of metallic ions in the plating solution 1-1 rises. At the same time, H2 gas is emitted near the cathode 2-29, raising the PH value of the electrolytic solution 1-22 in the cathode chamber 2-25b. The pump 2-21 feeds this metallic ion-rich plating solution 1-1 to the plating solution tank 1-12, thereby replenishing the plating solution 1-1 in the plating solution tank 1-12 with metallic ions.
The plating section 1 is installed in the first room having a high degree of cleanliness, such as a clean room. The control section 2 is installed in the second room having a low degree of cleanliness, such as a utility room. Since the anode 1-23 in the plating chamber 1-24 is insoluble, it is not necessary to replace the anode 1-23, thereby almost entirely eliminating the need for maintenance operations on the plating section 1 installed in the first room. The anode 2-28 is soluble and must be periodically replaced as it is consumed. However, it is no problem to perform this dirty operation for replacing the anode 2-28 because the operation is performed in the second room.
As described above, O2 gas is generated and emitted near the anode 1-23, while H2 gas is generated and emitted near the cathode 2-29. However, since the plating section 1 and control section 2 are installed in the first room and second room, respectively, the O2 gas and H2 gas are released into the atmosphere in separate locations. Hence, this configuration is desirable from a safety standpoint.
Further, the pump 2-34 supplies electrolytic solution 1-22 from the cathode chamber 2-25b directly to the anode chamber 1-24a via a tube 9 and a filter 2-37 disposed on the tube 9. The electrolytic solution 1-22 overflowing from the anode chamber 1-24a returns to the cathode chamber 2-25b via a tube 10. Since O2 gas is generated from the region near the insoluble anode 1-23 at this time, a gas valve 1-32 is provided on the tube 10 to release the gas.
The plating section 1 is installed in the first room having a high level of cleanliness, such as a clean room, while the control section 2 is installed in the second room having a low level of cleanliness, such as a utility room. With this configuration, the plating section 1 includes almost no mechanisms that require maintenance, thereby further simplifying the construction. Hence, there is even less chance of the plating section 1 contaminating the first room than with the plating apparatus of FIG. 5.
In the plating apparatus described in
In the plating apparatus having the construction described in
In the construction of the plating apparatus described in
In the construction described in
While the description of some apparatus were omitted from the construction described in
Although the object of plating is described as a substrate, such as a semiconductor wafer, the plating object is not limited to a substrate.
The invention described above has the following superior effects.
In the plating apparatus according to the present invention, mechanisms requiring maintenance work are installed as much as possible in the control section to minimize maintenance required for the plating section. Further, the plating section is installed in the first room, while the control section is installed in the second room. Accordingly, contamination caused by the plating section is reduced, and maintenance work performed on the control section does not contaminate the first room in which the plating section is installed.
In the plating apparatus of the present invention, O2 gas is emitted near the insoluble anode in the plating chamber of the plating section, while H2 gas is emitted near the cathode of the regulating tank in the control section. However, since the plating section and control section are installed in separate rooms, the O2 gas and H2 gas are not released in the same atmosphere, but are released into the atmosphere in separate areas, thereby preserving safety of the operation. Since the anode used in the plating chamber is an insoluble anode, there is no need to perform the dirty operation of replacing the anode in the first room, where the plating section is installed.
In the embodiments described above, the first room housing the plating section is a clean room, while the second room housing the control section is a utility room. Hence, maintenance work capable of contaminating the clean room that requires a high level of cleanliness is performed in the utility room, thereby avoiding contaminating the clean room.
Next, a second embodiment of the present invention will be described with reference to
The plating section 1 is provided with a plating bath 11-2 and a washing apparatus 11-6. The plating bath 11-2 accommodates a plating solution 11-1 and is further provided with an anode 11-3 disposed in the plating solution 11-1 and a substrate 11-4, such as a semiconductor wafer, mounted on a wafer holder and disposed opposite the anode 11-3. The substrate 11-4 serves as a cathode. A power supply 11-5 is connected between the anode 11-3 and substrate 11-4. The power supply 11-5 supplies a plating current between the anode 11-3 and substrate 11-4 to form a metallic plating film, such as a copper film, on the surface of the substrate 11-4.
The washing apparatus 11-6 is provided to wash a substrate 11-4′ after the plating process. In addition to the substrate 11-4′, the washing apparatus 11-6 includes a nozzle 11-8 for ejecting a wash water 11-7, such as pure water, at the substrate 11-4′; and a wash water tank 11-9 for receiving and accommodating a wash water 11-7′ that has already been used after being ejected from the nozzle 11-8. A pump 11-10 is provided to supply wash water 11-7′ from the wash water tank 11-9 to the control section 2.
The control section 2 is provided with a regulating tank 12-1, a replenishing tank 12-2, a replenishing tank 12-3, a plating solution recovering apparatus 12-4, a metallic ion extractor 12-5, and an analyzer 12-6. The regulating tank 12-1 accommodates the regulated plating solution 11-1. The replenishing tank 12-2 accommodates an additive solution 12-7. The replenishing tank 12-3 accommodates a plating solution 12-8, whose main component is copper sulfate, for example, having a predetermined concentration. A pump 12-9 supplies the additive solution 12-7 to the regulating tank 12-1 via a tube 12-10. A pump 12-11 supplies the plating solution 12-8 to the regulating tank 12-1 via a tube 12-12.
The regulating tank 12-1 and plating bath 11-2 are connected by the tubes 3 and 4. A pump 12-13 supplies plating solution 11-1 from the regulating tank 12-1 to the plating bath 11-2 via the tube 3 and a filter 12-14 disposed on the tube 3. A pump 11-11 supplies plating solution 11-1 from the plating bath 11-2 to the regulating tank 12-1 via the tube 4. Hence, a mechanism for circulating plating solution 11-1 between the regulating tank 12-1 and the plating bath 11-2 includes the tube 3, pump 12-13, filter 12-14, tube 4, and pump 11-11.
A pump 12-15 supplies plating solution 11-1 from the regulating tank 12-1 to the plating solution recovering apparatus 12-4. The plating solution recovering apparatus 12-4 removes foreign matter from the plating solution 11-1 and adjusts the metallic ion concentration, hydrogen ion index, and the like. After the plating solution 11-1 is processed in the plating solution recovering apparatus 12-4, a pump 12-16 supplies the processed plating solution 11-1 to the regulating tank 12-1 via a filter 12-17. Hence, a mechanism for circulating plating solution 11-1 between the regulating tank 12-1 and plating solution recovering apparatus 12-4 comprises the pump 12-15, pump 12-16, and filter 12-17.
The pump 11-10 supplies wash water 11-7′ from the wash water tank 11-9 that has been used for washing to the metallic ion extractor 12-5 via a tube 11-12. The metallic ion extractor 12-5 extracts (removes) metallic ions such as Cu2+ from the wash water 11-7′ and discharges the wash water 11-7′ as a normal wastewater 12-18. The control section 2 is also provided with a temperature regulator 12-19 and a pump 12-20. The pump 12-20 flows plating solution 11-1 from the regulating tank 12-1 through the temperature regulator 12-19 to adjust the temperature and maintain the plating solution at a predetermined temperature.
Further, a portion of the plating solution 11-1 transmitted from the regulating tank 12-1 by the pump 12-13 is supplied to the analyzer 12-6. The analyzer 12-6 analyzes the components and/or concentration of the plating solution. Based on the results of this analysis, either the pump 12-9 or the pump 12-11 are activated to replenish the regulating tank 12-1 with either additive solution 12-7 from the replenishing tank 12-2 or plating solution 12-8 from the replenishing tank 12-3, thereby regulating the composition and/or concentration of the plating solution 11-1 in the regulating tank 12-1.
With the construction described above, the power supply 11-5 applies a predetermined voltage across the substrate 11-4 and the anode 11-3, causing metallic ions such as Cu2+ to emit from the soluble anode 11-3 (which is a phosphorous copper electrode, for example) and deposit on the surface of the substrate 11-4 to form a metallic film. After continuous plating operations and after performing the process on a plurality of substrate S11-4, the composition and concentration of the plating solution 11-1, as well as the amount of the plating solution 11-1, fluctuates. Based on the state of these fluctuations, the regulating tank 12-1 is replenished with additive solution 12-7 or plating solution 12-8 from the replenishing tank 12-2 or replenishing tank 12-3, respectively, in order to maintain the composition and concentration of the plating solution 11-1 at predetermined values. The additive solution 12-7 contained in the replenishing tank 12-2 is an organic additive solution comprising a mixture of polymers, levelers, carriers, and HCl.
The plating section 1 of the plating apparatus described above is installed in the first room having a high level of cleanliness, such as a clean room, while the control section 2 is installed in the second room having a low level of cleanliness, such as a utility room. As a result, the wash water 11-7′ stored in the wash water tank 11-9 after being used for washing is transferred to the metallic ion extractor 12-5 by the pump 11-10. The metallic ion extractor 12-5 removes the metallic ions and discharges the solution as the normal wastewater 12-18.
If the wash water 11-7′ contains metallic ions such as Cu2+ ions when passing through the chelate resin column 14, a chemical reaction will occur (R=Ca+Cu2+→R=Cu+Ca2+, where R represents a functional group). In this reaction, Cu2+ ions having a higher selectivity than Ca2+ ions are replaced with Ca2+ ions from a Ca-type chelate resin in the chelate resin column 14. Hence, the Cu2+ ions are adsorbed to the end of the functional group, thereby eliminating Cu2+ ions from the wash water. After the ions have been removed from the wash water 11-7′ in the chelate resin column 14 as described above, the wash water 11-7′ is discharged as wastewater 12-18.
A pump 26 feeds the wash water 11-7′ from the wastewater storage tank 21 through a filter 27 to remove any foreign matter. Next, the wash water 11-7′ passes through the surface-active agent column 22 in which organically added decomposed matter and foreign matter are adsorbed and removed. Next, the wash water 11-7′ passes through the ultraviolet disinfecting column 23, which restrains the propagation of various bacteria. As the wash water 11-7′ passes through the anion exchange resin column 24 and cation exchange resin column 25, anions and cations are replaced with hydroxyl ions OH− and hydrogen ions H+ to reproduce pure water. Next, the solution passes through a filter 28 to remove any foreign matter. The recovered pure water is then supplied to the nozzle 11-8 via a three-way valve 29 and the tube 11-13. When necessary, the wastewater storage tank 21 is replenished with a pure water 30 supplied via a shutoff valve 31.
Next, the plating solution 11-1 is stored in the plating liquid recovering tank 43. Into the plating solution recovering tank 43, a first additive 50 is supplied by pump 55 from the additive solution tank 44, a second additive 51 is supplied by pump 56 from the additive solution tank 45, a copper sulfate solution 52 is supplied by pump 57 from the copper sulfate solution tank 46, a sulfuric acid solution 53 is supplied by pump 58 from the sulfuric acid tank 47, and a hydrochloric acid solution 54 is supplied by pump 59 from the hydrochloric acid tank 48.
The above-described solutions are supplied in order to add appropriate amounts of components to the plating solution. The highly concentrated copper sulfate solution 52 is added to achieve an appropriate concentration of copper ions. The sulfuric acid solution 53 and hydrochloric acid solution 54 are added to regulate the hydrogen ion index (PH value) and the concentration of chlorine ions. The organic first additive 50 and second additive 51 are added to regulate the plating solution 11-1. After the plating solution 11-1 has been regulated, the pump 12-16 supplies the plating solution 11-1 to the regulating tank 12-1 via the filter 12-17. In addition, the plating liquid recovering tank 43 is replenished with a pure water 61 supplied via a shutoff valve 60 when needed.
In the plating apparatus having the construction shown in
In the construction of the plating apparatus described in
In the construction described in
While the description of some apparatus were omitted from the construction described in
Although the object of plating is described as the substrate 11-4, such as a semiconductor wafer, the plating object is not limited to a substrate.
In summary, the present invention has the following superior effects. (1) The present invention provides functions for processing wasted wash water and recovering used plating solution, as well as a special self-determining function for processing plating solution and solution including plating solution. Therefore, these processes are carried out efficiently. (2) Most maintenance work on the plating apparatus can be performed in the second room housing the control section. Thereby, it improves the efficiency of maintenance work and prevents contamination of the first room housing the plating section, which must maintain a high level of cleanliness.
The present invention relates to a plating apparatus for forming metal plating on a substrate, such as a semiconductor wafer. Therefore, this plating apparatus applies to industrial fields such as semiconductor fabrication that require a high degree of cleanliness and precision plating.
Number | Date | Country | Kind |
---|---|---|---|
10-340576 | Nov 1998 | JP | national |
10-342611 | Dec 1998 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP99/06600 | 11/26/1999 | WO | 00 | 7/27/2000 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/32850 | 6/8/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3658470 | Zievers et al. | Apr 1972 | A |
6299753 | Chao et al. | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
5-179496 | Jul 1993 | JP |
10-121297 | May 1998 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 09601084 | Jul 2000 | US |
Child | 10187801 | US |