This application claims the foreign priority benefit under Title 35, United States Code, §119(V1)-(d), of Japanese Patent Application No. 2007-292777A, filed on Nov. 12, 2007 in the Japan Patent Office, the disclosure of which is herein incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to a plating jig for performing electroless plating applied to a wafer.
2. Description of the Related Art
In recent years, plating technology has extensively been applied to various fields of technologies, such as one which utilizes wiring for semiconductor chips. In the field of semi-conductor-related industries, wiring pitches are required to be reduced to accomplish high integration and performance. For example, in a wiring technology employed in latest years, wiring grooves are generated on an oxide film formed on a silicon wafer in a dry etching process. The wiring grooves are plated, wherein a wiring material is embedded.
According to a method of plating such an object to be plated as the wafer and the like, JP2002-327291A discloses an electroplating method, wherein an anode plate is disposed opposite to a surface to be plated of an object to be plated immersed in a plating solution, fresh plating solution is jetted to the surface to be plated, and the surface to be plated is plated by energizing between the surface to be plated and the anode plate.
However, the process of forming a plated layer generally takes some time. The conventional electroplating method is required to conduct a series of operations for each object to be plated, and is not suitable for shortening and streamlining operations for a processing of plating in which a number of objects to be plated are plated.
As shown in
However, the plating solution 131 in the plating tank 130 generates hydrogen in the process of plating. Accordingly, the higher the density of hydrogen becomes, the nearer to the surface of the plating solution the depth of the plating solution becomes in the plating site. Therefore, according to the electroless plating method, in which the conventional plating jig 110 is used, the thicknesses of electroplated films formed on the wafer 120 disposed at a shallow depth and the wafer 120 disposed at a deep depth become inhomogeneous.
The temperature of an upper part of the plating solution 131 becomes higher than that of a lower part of the plating solution 131. Accordingly, the velocity of forming a plated film on the wafer 120 disposed in the upper part of the plating solution 131 is higher than that of forming the plated film on the wafer 120 disposed in the lower part of the plating solution 131. The thicknesses of the plated films formed on the wafers 120 disposed in the upper part and the lower part of the plating solution 131 become inhomogeneous.
An aspect of the present invention provides a plating jig which prevents a plated film formed on each object to be plated from becoming inhomogeneous and allows the plated film to evenly be formed when a plurality of objects to be plated are plated at a time.
The plating jig of the present invention holds an object to be plated, and is immersed in plating solution and rotated about a rotational axis horizontally disposed. The plating jig includes a plurality of supporting rods disposed in parallel with the rotational axis; and a pair of end plates for fixing both ends of the plurality of supporting rods, wherein one supporting rod and the other supporting rods are well-positioned, whereby supporting the object to be plated, and a plurality of notches are formed on the supporting rods at predetermined intervals along the rotational axis.
A rotational axis of the plating jig of the present invention is horizontally disposed. The objects to be plated are rotated in the process of plating. Accordingly, even if a temperature of plating solution and a density of hydrogen differ in depths of the plating solution, the plating jig can prevent a thickness of a plated film formed on a surface to be plated from becoming inhomogeneous. Supporting rods, on which a plurality of notches are formed, can support a plurality of objects to be plated. Accordingly, the plating jig can perform the processing of plating wherein a plurality of objects to be plated are plated at a time, whereby shortening and streamlining the operations for plating.
If the notches formed on the supporting rods of the plating jig are formed in a V-shaped cross section, an abutting surface between the object to be plated and the supporting rod can be reduced, and the plating solution can be smoothly flown on the notches. Therefore, the V-shaped notches are suitable to perform the processing of plating over a wide area.
If a plurality of supporting rods of the plating jig are disposed at regular intervals, stress acting on the objects to be plated is evenly distributed by supporting the objects to be plated in balance. Accordingly, the supporting rods are suitable to prevent the destruction of the objects to be plated.
Further, four supporting rods with respect to the plating jig may as well be disposed.
The plating jig of the prevent invention can perform the processing of plating wherein a thickness of a plating film formed on each object to be plated becomes even when a plurality of objects to be plated are plated at a time.
The preferred embodiment of the present invention will be described.
The plating apparatus 1 of the embodiment plates a silicon wafer 3 (
As shown in
As shown in
Hereinafter, each part of the plating apparatus 1 will be described in detail.
The plating jig 2 is a member for holding wafers 3, being immersed in the plating solution, and being rotated about the horizontal axis of rotation. The plating jig 2 includes four supporting rods 20 and a pair of end plates 21 which fix both ends of the supporting rod 20. The four supporting rods are in parallel with a rotational axis CL and disposed on the circumferences of the end plates 21 whose center is on the rotational axis CL.
One supporting rod 20 and the other three supporting rods 20 are disposed at a constant interval on the circumference of the end plate 21, whereby supporting the wafers 3. These supporting rods 20 supporting the wafers 3 (
As shown in
Each of the five notches 20a is formed in a V-shaped cross section, whereby reducing the dimension of contact surface between the wafer 3 and the supporting rod 20, and allowing the plating solution 61 to smoothly flow on the notches 20a.
The number of supporting rods 20 disposed on the plating apparatus 2 is not limited. The number of supporting rods 20 can be changed. For example, three or five pieces of supporting rods can be applied.
The supporting rod 20 may as well be extended, whereby holding a greater number of wafers 3. The number of notches 20a is not limited, but can be changed as needed. The cross section of the notch 20a is not limited to the V-shaped cross section, but can be changed as needed.
As shown in
As shown in
As shown in
As shown in
In the embodiment of the present invention, as shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
For example, the fixing member 44 is fixed with the supporting member 4 by screws (not shown) of a PEEK resin (polyether ether ketone) or the like, so that the supporting member 4 can prevent the plating jig 2 from coming off during operation of the plating jig 2 rotatably driven.
In the embodiment of the present invention, the slide bearing 24 holding the shaft rod 23 is slidably supported, and the plating jig 2 is fixed by the fixing member 44. However, if the plating jig 2 is rotatably supported, the shaft rod may as well be slidably supported directly on the guiding groove 43 without using the slide bearing 24. Accordingly, the plating jig 2 may as well be rotatably supported by the supporting member 4. Further, in this case, the shaft rod 23 is rotatably fixed directly by the fixing member 44.
A method of holding the plating jig 2 is not limited, but can be modified. For example, a projected part may as well be formed on the guiding groove 43 as a holding part, whereby holding the slide bearing 24 without using the fixing member 44.
The driving mechanism 5 is constituted by a source of an electric power and a means for transmitting the electric power so as to rotatably drive the plating jig 2. As shown in
The motor 50 is disposed inside a covering member 54 fixed with the supporting member 4, which prevents the plating solution 61 from splashing on the motor 50 when the plating apparatus 1 is disposed in the plating tank 6, and when the plating jig 2 is rotatably driven.
The driving mechanism 5 can drive the motor 50, transmit the rotary movement of the driving shaft 50a of the motor 50 to the gear 52 via the gear 51, and rotate the gear 52. Then, the driving mechanism 5 can transmit the rotary movement of the gear 52 to the gear 53 via the gear 52, rotate the gear 53, and subsequently rotate the gear 25 engaged with the gear 53. Accordingly, the driving mechanism 5 can rotatably drive the plating jig 2 and the wafers 3 held by the plating jig 2 about the rotational axis CL via the shaft rods 23 connected to the gear 25.
Materials constituting the gears 51, 52, and 53 are not limited, only if the materials have a property of chemical resistance (plating solution resistance). For example, a polymethyl pentene (TPX, registered trademark) resin and a polypropylene resin can be applied for the gears. In the embodiment of the present invention, the rotary movement of the motor 50 is transmitted to the plating jig 2 via the gears 51, 52, 53, and 25. However, the rotary movement of the motor 50 may as well be transmitted to the plating jig 2 via a belt made of the materials having the property of chemical resistance. The transmitting mechanism with respect to the rotary movement of the motor 50 is not limited, if the rotary movement of the motor 50 is securely transmitted to the plating jig 2.
In the embodiment of the present invention, the plating jig 2, the supporting member 4, and the fixing member 44 are formed of the acrylic resin. However, other resins may as well be applied to form these components, only if the resins have the properties of chemical resistance and heat resistance (heat resistance to a high temperature of about 95 degrees), and only if the resins are as hard as the acrylic resin.
Subsequently, the operation of the plating apparatus 1 of the present invention will be described.
As shown in
As shown in
The plating apparatus 1 is disposed in the plating tank 6 pooling the plating solution 61 wherein the plating jig 2 is completely immersed (
According to the plating jig 2 of the embodiment of the present invention, the wafers 3 are rotated about the rotational axis horizontally disposed when the wafers 3 are plated. Therefore, if the density of hydrogen generated from the plating solution 61 pooled in the plating tank 6 differs in depth, the rotation of the wafers 3 prevents the plating applied to the wafers 3 from becoming inhomogeneous.
If the temperature of the plating solution 61 depends on depth and varies in the depth direction, the rotation of the wafers 3 prevents the plating applied to the wafers 3 from becoming inhomogeneous due to the difference in velocity of forming a plated film.
Structure of the plating jig 2 allows a plurality of the wafers 3 to be supported. Accordingly, the a number of wafers 3 can be plated at a time.
The notches 20a of the plating jig 2 are formed in a V-shaped cross-section, the notches 20a can easily hold the wafers 3 and minimize the contact area between the wafers 3 and the supporting rods 3, whereby performing the processing of plating over a wide area.
The preferred embodiment of the present invention described above is not limited, but can be modified without departing from the spirit and scope of the present invention.
For example, the embodiment of the present invention exemplifies the plating of the circular silicon wafer which is an object to be plated. However, a shape and a material with respect to the object to be plated are not limited.
The length of the supporting rod, the number of notches formed on the supporting rod, and the interval between the notches can be changed as needed.
The notches of the supporting rod are formed along the circumferential direction of the supporting rod in the embodiment. However, the notches may as well be formed only on the wafers to be supported.
The method of fixing the supporting rods to the end plates is not limited to screwing by the bolts.
Number | Date | Country | Kind |
---|---|---|---|
2007-292777 | Nov 2007 | JP | national |