1. Field of the Invention
This invention relates generally to the fabrication of transmit/receive (T/R) modules used in connection with the aperture of an active electronically scanned array, and more particularly to the plating of RF connectors brazed onto the front side of high temperature co-fired ceramic (HTCC) substrate of a T/R module package.
2. Description of the Prior Art
The process of brazing RF connectors onto the side of an HTCC package involves re-flowing the high temperature alloy of copper and silver (Cusil) to provide a robust mechanical attachment of the center pin and shroud of the RF connector to a substrate member of a T/R module shown, for example, in U.S. Pat. No. 6,114,986, entitled “Dual channel Transmit/Receive Module For An Active Aperture Of A Radar System”. The materials involved in this operation, Kovar for the center pin and shroud and Cusil brazing material, are prone to corrosion and therefore require gold plating to prevent corrosion in any non-hermetic environment. Plating of this part involves first nickel plating and then gold plating. Any non-plated area on the center pin area can result in corrosion of the center pin and loss of the RF signal, resulting in a catastrophic failure of the entire T/R module package.
The present state of the art for fabrication/assembly of a connector onto a T/R module package typically involves brazing the center pin and shroud of the connector as stated above. The shroud is currently an elongated solid structure including a plurality of generally cylindrical apertures through which the center pins project and which is required to connect the ground signal of the mating structure, i.e., the connector. During the plating process, the module package is placed in plating baths of nickel followed by gold. For proper plating, i.e., complete plating to occur, the solution must flow throughout the interior of the connector shroud. However, this does not often occur due to the inherent physical features of the inner walls of the connector shroud. It has been found that due to the lack of good plating solution flow throughout the interior of the RF connector, a relatively large number of packages have been rejected because of unplated areas around the connector center pins. The pins do not have proper plating, for example, where the pin is brazed to the ceramic package. This plating deficiency occurs as a result of a lack of flow of the plating solution within the connector.
Since plating is performed at the end of the package fabrication process, a rejection of the package results in a loss at the most expensive point in the process of a finished product. Thus an unreasonable number of failures in a production system using this type of RF interconnect can result in a relatively large increase in the overall cost of acceptable or “good” T/R module packages.
Accordingly, it is the primary object of the present invention to provide an improvement in the fabrication of a T/R module.
It is another object of the present invention to improve the plating flow of plating material throughout the interior of an RF connector for a T/R module package during fabrication of a T/R module.
It is a further object of the present invention to provide a plating process wherein the plating fluid is made to more easily contact and flow around all of the interior metallized surfaces of an RF connector shroud.
These and other objects are achieved by initially providing openings such as slots or holes in the shroud of an RF connector of a T/R module package in the region of the connector pins prior to being brazed to a ceramic substrate so as to subsequently allow plating solution to flow freely throughout the interior of the RF connector and particularly around the connector pins. The slots or holes are large enough to allow proper plating of the interior of the connector but small enough to prevent any radiation through the connector to the exterior of the T/R module package.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. It should be understood, however, that the detailed description and specific example, while illustrating the preferred embodiment of the invention, it is given by way of illustration only, since various changes and modifications coming within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description provided hereinafter in the accompanying drawings which are given by way of illustration only, and thus are not meant to be limitative of the present invention, and wherein:
Referring now collectively to the drawings and more particularly to
The present invention is directed to the connector assembly 14 which is shown in
As noted above and referring now to
The assembled elements are next placed in electrolytic plating baths, first of nickel and then of gold. It can be seen by reference to
Accordingly, this invention is directed to the solution of the plating problem noted above by fabricating generally rectangular slots or holes in the shroud 28 above and below the location of each RF connector 241 . . . 246. This is shown in
Since the functions of an RF connector in a T/R module are to provide a low loss connection between two different structures and to provide RF isolation, that is to prevent the RF signal from leaking out, the first of these functions is not affected by the slots as the center conductor is not changed and where the slots are made to be below waveguide cut-off. The second function of the connector is potentially affected due to the holes placed in the shroud but since they are below waveguide cut-off there is relatively no evenescient mode radiation.
The slots or holes 381 . . . 386 and 401 . . . 406 are fabricated by machining operation which is performed prior to brazing the connector shroud 28 onto the ceramic substrate 12. It should be noted that the added cost of the additional machining operation is practically negligible when compared to the loss of the entire package, particularly where T/R modules in acceptable condition numbering in the thousands must be produced and delivered.
Thus what has been shown and described is a connector shroud brazed on the forward surface of a dielectric substrate which permits plating fluid in an electrolytic plating process to move readily to contact and flow by all the interior metallized surfaces including the connector pins, as opposed to prior art connector shrouds which tend to inhibit fluid from reaching all the surfaces due to the closed nature of the shroud itself.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3683331 | Overholser | Aug 1972 | A |
4710138 | Bradley et al. | Dec 1987 | A |
4924236 | Schuss et al. | May 1990 | A |
5015197 | Redmond et al. | May 1991 | A |
5188546 | Ballard et al. | Feb 1993 | A |
5242570 | Roodnat | Sep 1993 | A |
5722861 | Wetter | Mar 1998 | A |
6114986 | Cassen et al. | Sep 2000 | A |
6368167 | Ma et al. | Apr 2002 | B1 |
6454916 | Wang et al. | Sep 2002 | B1 |
6876530 | Parker et al. | Apr 2005 | B2 |