PLATINUM COMPLEXES AND DEVICES

Information

  • Patent Application
  • 20250188343
  • Publication Number
    20250188343
  • Date Filed
    October 09, 2024
    8 months ago
  • Date Published
    June 12, 2025
    a day ago
Abstract
The present invention is directed toward platinum complexes of Formula I and Formula II. Platinum compounds of Formula I and Formula II may be useful in a variety of devices, such as, for example organic light emitting diodes (OLEDs), luminescent devices and displays, and other light emitting devices. The compounds can provide improved efficiency, improved operational lifetimes, or both in lighting devices as compared to conventional materials.
Description
TECHNICAL FIELD

This invention is related to platinum complexes and devices including the platinum complexes.


BACKGROUND

Compounds capable of absorbing and/or emitting light can be ideally suited for use in a wide variety of optical and electroluminescent devices, including, for example, photo-absorbing devices such as solar- and photo-sensitive devices, organic light emitting diodes (OLEDs), photo-emitting devices, or devices capable of both photo-absorption and emission and as markers for bio-applications. Much research has been devoted to the discovery and optimization of organic and organometallic materials for using in optical and electroluminescent devices. Generally, research in this area aims to accomplish a number of goals, including improvements in absorption and emission efficiency, as well as improvements in processing ability.


Despite significant advances in research devoted to optical and electro-optical materials, many currently available materials exhibit a number of disadvantages, including poor processing ability, inefficient emission or absorption, and less than ideal stability, among others.


Thus, a need exists for new materials which exhibit improved performance in optical emitting and absorbing applications. Accordingly, such compounds, compositions, and devices comprising the same are disclosed herein SUMMARY


The present disclosure relates to platinum compounds that can be useful as emitters in display and lighting applications.


Disclosed herein are compounds of Formulas I and II:




embedded image




    • wherein L1 is a five-membered heterocyclyl, heteroaryl, carbene, or N-heterocyclic carbene,

    • wherein each of L2, L3, and L4 is independently a substituted or an unsubstituted aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, carbene, or N-heterocyclic carbene,

    • wherein L5 is a substituted or unsubstituted aryl cycloalkyl, cycloalkenyl, heterocyclyl, or heteroaryl,

    • wherein each of A1 and A2 is independently present or absent and if present is each independently O, S, S═O, SO2, Se, NR3, PR3, RP═O, CR1R2, C═O, SiR1R2, GeR1R2, or BR3,

    • wherein each of V1, V2, V3, and V4 is coordinated with the Pt and is independently N, C, P, B, or Si,

    • wherein each of Y1, Y2, Y3, and Y4 is independently C, N, O, or S,

    • wherein Ra is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Ra is independently a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof wherein two or more of Ra are optionally linked together,

    • wherein Rb is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Rb is independently a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Rb are optionally linked together,

    • wherein Rc is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Rc is independently substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Rc are optionally linked together,

    • wherein Rd is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Rd is independently substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Rd are optionally linked together, and

    • wherein each of R1, R2, and R3 is independently hydrogen, aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof.





In one aspect, Formula I includes Formula IA:




embedded image


wherein A is A1 in Formula I.


In other aspects, Formula II includes Formula IIA and Formula IIB:




embedded image




    • wherein A is A1 in Formula II,

    • wherein each of







embedded image


is independently:




embedded image




    • wherein







embedded image


is




embedded image




    • wherein each of R, R1, R2, and R3 is independently hydrogen, aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R, R1, R2, and R3 are optionally linked together.





Also disclosed herein are compositions including one or more compounds disclosed herein.


Also disclosed herein are devices, such as OLEDs, including one or more compounds or compositions disclosed herein.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures, which are incorporated in and constitute a part of this specification, illustrate several non-limiting aspects and together with the description serve to explain the principles of the invention.



FIG. 1 depicts a device including a platinum complex.



FIG. 2 illustrates emission spectra of PtON12 in CH2Cl2 at room temperature and in 2-methyltetrahydrofuran at 77K.



FIG. 3 illustrates emission spectra of PtON12-tBu in CH2Cl2 at room temperature and in 2-methyltetrahydrofuran at 77K.



FIG. 4 illustrates emission spectra of PtON13 at room temperature in CH2Cl2 and at 77K in 2-methyltetrahydrofuran.





Additional aspects will be set forth in part in the description which follows, and in part will be obvious from the description, or can be learned by practice of the disclosure. Advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive.


DETAILED DESCRIPTION

The present disclosure can be understood more readily by reference to the following detailed description of the invention and the Examples included therein.


Before the present compounds, devices, and/or methods are disclosed and described, it is to be understood that they are not limited to specific synthetic methods unless otherwise specified, or to particular reagents unless otherwise specified, as such can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, example methods and materials are now described.


As used in the specification and the appended claims, the singular forms “a” “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component” includes mixtures of two or more components.


As used herein, the terms “optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


Disclosed are the components to be used to prepare the compositions of the disclosure as well as the compositions themselves to be used within the methods disclosed herein. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutation of these compounds cannot be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular compound is disclosed and discussed and a number of modifications that can be made to a number of molecules including the compounds are discussed, specifically contemplated is each and every combination and permutation of the compound and the modifications that are possible unless specifically indicated to the contrary. Thus, if a class of molecules A, B, and C are disclosed as well as a class of molecules D, E, and F and an example of a combination molecule, A-D is disclosed, then even if each is not individually recited each is individually and collectively contemplated meaning combinations, A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are considered disclosed. Likewise, any subset or combination of these is also disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E would be considered disclosed. This concept applies to all aspects of this application including, but not limited to, steps in methods of making and using the compositions of the invention. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the methods of the invention.


As referred to herein, a linking atom can connect two groups such as, for example, an N and C group. A linking group is in one aspect disclosed as A, A1, and/or A3 herein. The linking atom can optionally, if valency permits, have other chemical moieties attached. For example, in one aspect, an oxygen would not have any other chemical groups attached as the valency is satisfied once it is bonded to two groups (e.g., N and/or C groups). In another aspect, when carbon is the linking atom, two additional chemical moieties can be attached to the carbon. Suitable chemical moieties includes, but are not limited to, hydrogen, hydroxyl, alkyl, alkoxy, ═O, halogen, nitro, amine, amide, thiol, aryl, heteroaryl, cycloalkyl, and heterocyclyl.


The term “cyclic structure” or the like terms used herein refer to any cyclic chemical structure which includes, but is not limited to, aryl, heteroaryl, cycloalkyl, cycloalkenyl, and heterocyclyl.


As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described below. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this disclosure, the heteroatoms, such as nitrogen, can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. This disclosure is not intended to be limited in any manner by the permissible substituents of organic compounds. Also, the terms “substitution” or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. It is also contemplated that, in certain aspects, unless expressly indicated to the contrary, individual substituents can be further optionally substituted (i.e., further substituted or unsubstituted).


In defining various terms, “A1,” “A2,” “A3,” and “A4” are used herein as generic symbols to represent various specific substituents. These symbols can be any substituent, not limited to those disclosed herein, and when they are defined to be certain substituents in one instance, they can, in another instance, be defined as some other substituents.


The term “alkyl” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. The alkyl group can be cyclic or acyclic. The alkyl group can be branched or unbranched. The alkyl group can also be substituted or unsubstituted. For example, the alkyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol, as described herein. A “lower alkyl” group is an alkyl group containing from one to six (e.g., from one to four) carbon atoms.


Throughout the specification “alkyl” is generally used to refer to both unsubstituted alkyl groups and substituted alkyl groups; however, substituted alkyl groups are also specifically referred to herein by identifying the specific substituent(s) on the alkyl group. For example, the term “halogenated alkyl” or “haloalkyl” specifically refers to an alkyl group that is substituted with one or more halide, e.g., fluorine, chlorine, bromine, or iodine. The term “alkoxyalkyl” specifically refers to an alkyl group that is substituted with one or more alkoxy groups, as described below. The term “alkylamino” specifically refers to an alkyl group that is substituted with one or more amino groups, as described below, and the like. When “alkyl” is used in one instance and a specific term such as “alkylalcohol” is used in another, it is not meant to imply that the term “alkyl” does not also refer to specific terms such as “alkylalcohol” and the like.


This practice is also used for other groups described herein. That is, while a term such as “cycloalkyl” refers to both unsubstituted and substituted cycloalkyl moieties, the substituted moieties can, in addition, be specifically identified herein; for example, a particular substituted cycloalkyl can be referred to as, e.g., an “alkylcycloalkyl.” Similarly, a substituted alkoxy can be specifically referred to as, e.g., a “halogenated alkoxy,” a particular substituted alkenyl can be, e.g., an “alkenylalcohol,” and the like. Again, the practice of using a general term, such as “cycloalkyl,” and a specific term, such as “alkylcycloalkyl,” is not meant to imply that the general term does not also include the specific term.


The term “cycloalkyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, and the like. The term “heterocycloalkyl” is a type of cycloalkyl group as defined above, and is included within the meaning of the term “cycloalkyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkyl group and heterocycloalkyl group can be substituted or unsubstituted. The cycloalkyl group and heterocycloalkyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol as described herein.


The term “polyalkylene group” as used herein is a group having two or more CH2 groups linked to one another. The polyalkylene group can be represented by the formula —(CH2)a—, where “a” is an integer of from 2 to 500.


The terms “alkoxy” and “alkoxyl” as used herein to refer to an alkyl or cycloalkyl group bonded through an ether linkage; that is, an “alkoxy” group can be defined as -OA1 where A1 is alkyl or cycloalkyl as defined above. “Alkoxy” also includes polymers of alkoxy groups as just described; that is, an alkoxy can be a polyether such as -OA1-OA2 or -OA1-(OA2)a-OA3, where “a” is an integer of from 1 to 200 and A1, A2, and A3 are alkyl and/or cycloalkyl groups.


The term “alkenyl” as used herein is a hydrocarbon group of from 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon double bond. Asymmetric structures such as (A1A2)C═C(A3A4) are intended to include both the E and Z isomers. This can be presumed in structural formulae herein wherein an asymmetric alkene is present, or it can be explicitly indicated by the bond symbol C═C. The alkenyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.


The term “cycloalkenyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms and containing at least one carbon-carbon double bond, i.e., C═C. Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, norbornenyl, and the like. The term “heterocycloalkenyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkenyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkenyl group and heterocycloalkenyl group can be substituted or unsubstituted. The cycloalkenyl group and heterocycloalkenyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.


The term “alkynyl” as used herein is a hydrocarbon group of 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon triple bond. The alkynyl group can be unsubstituted or substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol, as described herein.


The term “cycloalkynyl” as used herein is a non-aromatic carbon-based ring composed of at least seven carbon atoms and containing at least one carbon-carbon triple bound. Examples of cycloalkynyl groups include, but are not limited to, cycloheptynyl, cyclooctynyl, cyclononynyl, and the like. The term “heterocycloalkynyl” is a type of cycloalkenyl group as defined above, and is included within the meaning of the term “cycloalkynyl,” where at least one of the carbon atoms of the ring is replaced with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkynyl group and heterocycloalkynyl group can be substituted or unsubstituted. The cycloalkynyl group and heterocycloalkynyl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein.


The term “aryl” as used herein is a group that contains any carbon-based aromatic group including, but not limited to, benzene, naphthalene, phenyl, biphenyl, phenoxybenzene, and the like. The term “aryl” also includes “heteroaryl,” which is defined as a group that contains an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. Likewise, the term “non-heteroaryl,” which is also included in the term “aryl,” defines a group that contains an aromatic group that does not contain a heteroatom. The aryl group can be substituted or unsubstituted. The aryl group can be substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol as described herein. The term “biaryl” is a specific type of aryl group and is included in the definition of “aryl.” Biaryl refers to two aryl groups that are bound together via a fused ring structure, as in naphthalene, or are attached via one or more carbon-carbon bonds, as in biphenyl.


The term “aldehyde” as used herein is represented by the formula —C(O)H. Throughout this specification “C(O)” is a short hand notation for a carbonyl group, i.e., C═O.


The terms “amine” or “amino” as used herein are represented by the formula —NA1A2, where A1 and A2 can be, independently, hydrogen or alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “alkylamino” as used herein is represented by the formula —NH(-alkyl) where alkyl is a described herein. Representative examples include, but are not limited to, methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, (sec-butyl)amino group, (tert-butyl)amino group, pentylamino group, isopentylamino group, (tert-pentyl)amino group, hexylamino group, and the like.


The term “dialkylamino” as used herein is represented by the formula —N(-alkyl)2 where alkyl is a described herein. Representative examples include, but are not limited to, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, dibutylamino group, diisobutylamino group, di(sec-butyl)amino group, di(tert-butyl)amino group, dipentylamino group, diisopentylamino group, di(tert-pentyl)amino group, dihexylamino group, N-ethyl-N-methylamino group, N-methyl-N-propylamino group, N-ethyl-N-propylamino group and the like.


The term “carboxylic acid” as used herein is represented by the formula —C(O)OH.


The term “ester” as used herein is represented by the formula —OC(O)A1 or —C(O)OA1, where A1 can be alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “polyester” as used herein is represented by the formula (A1O(O)C-A2-C(O)O)a— or -(A1O(O)C-A2-OC(O))a—, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer from 1 to 500. “Polyester” is as the term used to describe a group that is produced by the reaction between a compound having at least two carboxylic acid groups with a compound having at least two hydroxyl groups.


The term “ether” as used herein is represented by the formula A1OA2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein. The term “polyether” as used herein is represented by the formula -(A1O-A2O)a—, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group described herein and “a” is an integer of from 1 to 500. Examples of polyether groups include polyethylene oxide, polypropylene oxide, and polybutylene oxide.


The term “halide” as used herein refers to the halogens fluorine, chlorine, bromine, and iodine.


The term “heterocyclyl,” as used herein refers to single and multi-cyclic non-aromatic ring systems and “heteroaryl as used herein refers to single and multi-cyclic aromatic ring systems: in which at least one of the ring members is other than carbon. The term “heterocyclyl” includes azetidine, dioxane, furan, imidazole, isothiazole, isoxazole, morpholine, oxazole, oxazole, including, 1,2,3-oxadiazole, 1,2,5-oxadiazole and 1,3,4-oxadiazole, piperazine, piperidine, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, tetrahydrofuran, tetrahydropyran, tetrazine, including 1,2,4,5-tetrazine, tetrazole, including 1,2,3,4-tetrazole and 1,2,4,5-tetrazole, thiadiazole, including, 1,2,3-thiadiazole, 1,2,5-thiadiazole, and 1,3,4-thiadiazole, thiazole, thiophene, triazine, including 1,3,5-triazine and 1,2,4-triazine, triazole, including, 1,2,3-triazole, 1,3,4-triazole, and the like.


The term “hydroxyl” as used herein is represented by the formula —OH.


The term “ketone” as used herein is represented by the formula A1C(O)A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “azide” as used herein is represented by the formula —N3.


The term “nitro” as used herein is represented by the formula —NO2.


The term “nitrile” as used herein is represented by the formula —CN.


The term “silyl” as used herein is represented by the formula -SiA1A2A3, where A1, A2, and A3 can be, independently, hydrogen or an alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “sulfo-oxo” as used herein is represented by the formulas —S(O)A1, —S(O)2A1, —OS(O)2A1, or —OS(O)2OA1, where A1 is hydrogen or an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. Throughout this specification “S(O)” is a short hand notation for S═O. The term “sulfonyl” is used herein to refer to the sulfo-oxo group represented by the formula —S(O)2A1, where A1 is hydrogen or an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfone” as used herein is represented by the formula A1S(O)2A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein. The term “sulfoxide” as used herein is represented by the formula A1S(O)A2, where A1 and A2 can be, independently, an alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, or heteroaryl group as described herein.


The term “thiol” as used herein is represented by the formula —SH.


“R,” “R1,” “R2,” “R3,” “Rn,” where n is an integer, as used herein can, independently, include hydrogen or one or more of the groups listed above. For example, if R1 is a straight chain alkyl group, one of the hydrogen atoms of the alkyl group can optionally be substituted with a hydroxyl group, an alkoxy group, an alkyl group, a halide, and the like. Depending upon the groups that are selected, a first group can be incorporated within a second group or, alternatively, the first group can be pendant (i.e., attached) to the second group. For example, with the phrase “an alkyl group comprising an amino group,” the amino group can be incorporated within the backbone of the alkyl group. Alternatively, the amino group can be attached to the backbone of the alkyl group. The nature of the group(s) that is (are) selected will determine if the first group is embedded or attached to the second group.


As described herein, compounds of the disclosure may contain “optionally substituted” moieties. In general, the term “substituted,” whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this disclosure are preferably those that result in the formation of stable or chemically feasible compounds. It is also contemplated that, in certain aspects, unless expressly indicated to the contrary, individual substituents can be further optionally substituted (i.e., further substituted or unsubstituted).


In some aspects, a structure of a compound can be represented by a formula:




embedded image


which is understood to be equivalent to a formula:




embedded image


wherein n is typically an integer. That is, Rn is understood to represent five independent substituents, Rn(a), Rn(b), Rn(c), Rn(d), Rn(e). By “independent substituents,” it is meant that each R substituent can be independently defined. For example, if in one instance Rn(a) is halogen, then Rn(b) is not necessarily halogen in that instance.


Several references to R, R1, R2, R3, R4, R5, R6, etc. are made in chemical structures and moieties disclosed and described herein. Any description of R, R1, R2, R3, R4, R5, R6, etc. in the specification is applicable to any structure or moiety reciting R, R1, R2, R3, R4, R5, R6, etc. respectively.


1. Compounds

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate.


Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


Generally, a chemical structural change will affect the electronic structure of the compounds, which thereby affects the optical properties of the compounds, for example, emission and absorption spectra. Thus, the compounds of this disclosure can be tailored or tuned to a specific application that desires a particular emission or absorption characteristic. The optical properties of the metal compounds in this disclosure can be tuned by varying the structure of the ligand surrounding the metal center. For example, the metal compounds having a ligand with electron donating substituents or electron withdrawing substituents can be generally exhibit different optical properties, including emission and absorption spectra.


Owing to the potential of phosphorescent tetradentate platinum complexes for harvesting both electro-generated singlet and triplet excitions to achieve 100% internal quantum efficiency, these complexes are good candidate for the emitting materials of OLEDs. In some cases, there is an “emitting portion” and an “ancillary portion” in a ligand of platinum complex (e.g., a tetradentate platinum complex). If stabilizing substitution(s), such as conjugated group(s), aryl or heteroaromatic substitution(s) and so on, were introduced into the emitting portion, the “Highest Occupied Molecular Orbital” (HOMO) energy level, the “Lowest Unoccupied Molecular Orbital” (LUMO) energy level, or both may be changed. So the energy gap between the HOMO and LUMO can be tuned. Thus, the emission spectra of phosphorescent tetradentate platinum complexes can be modified to lesser or greater extents, such that the emission spectra can become narrower or broader, such that the emission spectra can exhibit a blue shift or a red shift, or a combination thereof.


The emission of such disclosed complexes can be tuned, for example, from the ultraviolet to near-infrared, by, for example, modifying the ligand structure. In another aspect, the disclosed complexes can provide emission over a majority of the visible spectrum. In a specific example, the disclosed complexes can emit light over a range of from about 400 nm to about 700 nm. In another aspect, the disclosed complexes have improved stability and efficiency over traditional emission complexes. In yet another aspect, the disclosed complexes can be useful as luminescent labels in, for example, bio-applications, anti-cancer agents, emitters in organic light emitting diodes (OLED), or a combination thereof. In another aspect, the disclosed complexes can be useful in light emitting devices, such as, for example, compact fluorescent lamps (CFL), light emitting diodes (LED), incandescent lamps, and combinations thereof.


The compounds can also have other known emission mechanisms which are useful in devices.


Disclosed herein are compounds or compound complexes comprising platinum. The terms compound or compound complex are used interchangeably herein. In one aspect, the compounds disclosed herein have a neutral charge.


The compounds disclosed herein can exhibit desirable properties and have emission spectra, absorption spectra, or both that can be tuned via the selection of appropriate ligands. In another aspect, the present disclosure can exclude any one or more of the compounds, structures, or portions thereof, specifically recited herein.


The compounds disclosed herein are suited for use in a wide variety of optical and electro-optical devices, including, but not limited to, photo-absorbing devices such as solar- and photo-sensitive devices, organic light emitting diodes (OLEDs), photo-emitting devices, or devices capable of both photo-absorption and emission and as markers for bio-applications.


As briefly described above, the disclosed compounds are platinum complexes. In one aspect, the compounds disclosed herein can be used as host materials for OLED applications, such as full color displays.


The compounds disclosed herein are useful in a variety of applications. As light emitting materials, the compounds can be useful in organic light emitting diodes (OLEDs), luminescent devices and displays, and other light emitting devices.


In another aspect, the compounds can provide improved efficiency, improved operational lifetimes, or both in lighting devices, such as, for example, organic light emitting devices, as compared to conventional materials.


The compounds of the disclosure can be made using a variety of methods, including, but not limited to those recited in the examples provided herein.


Disclosed herein are compounds of Formulas I and II:




embedded image




    • wherein L1 is a five-membered heterocyclyl, heteroaryl, carbene, or N-heterocyclic carbene,

    • wherein each of L2, L3, and L4 is independently a substituted or an unsubstituted aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, carbene, or N-heterocyclic carbene,

    • wherein each of A1 and A2 is independently present or absent, and if present is independently O, S, S═O, SO2, Se, NR3, PR3, RP═O, CR1R2, C═O, SiR1R2, GeR1R2, or BR3, wherein each of V1, V2, V3, and V4 is coordinated with the Pt and is independently N, C, P, B, or Si,

    • wherein each of Y1, Y2, Y3, and Y4 is independently C, N, O, or S,

    • wherein Ra is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Ra is independently a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Ra are optionally linked together,

    • wherein Rb is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Rb is independently a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Rb are optionally linked together,

    • wherein Rc is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Rc is independently substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Rc are optionally linked together,

    • wherein Rd is present or absent and if present represents mono-, di-, or tri-substitutions, wherein each Rd independently is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Rd are optionally linked together, and

    • wherein each of R1, R2, and R3 is independently hydrogen, aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof.





In one aspect, Formula I includes Formula IA:




embedded image


wherein A is A1 in Formula I.


In one aspect, Formula II has the structure of Formula IIA or Formula JIB:




embedded image




    • wherein A is A1 in Formula II,

    • wherein each of







embedded image


and independently includes:




embedded image




    • wherein







embedded image


includes:




embedded image




    • wherein each of R, R1, R2, and R3 is independently hydrogen, aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R, R1, R2, and R3 are optionally linked together.





In one aspect, Formula I includes Formulas I1-I15:




embedded image


embedded image


embedded image


embedded image


In one aspect, Formula II includes Formulas II1-II15:




embedded image


embedded image


embedded image


embedded image


In Formulas I1-I15 and II1-II15,

    • X and Y is each independently N, P, P═O, CR1, CH, SiR1, SiH, GeR1, GeH, Z, Z1, or Z2, wherein each of Z, Z1, and Z2 is independently a linking group,
    • each R1, R2, R3, and R4 is independently mono-, di-, tri, or tetra-substitutions, wherein each R1, R2, R3, and R4 is independently substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R1, two or more of R2, two or more of R3, two or more of R4, or any combination thereof are optionally linked together.


In one aspect, Formula I disclosed herein includes symmetrical Formula I16 and asymmetrical Formulas I17-I28:




embedded image


embedded image


embedded image


In one aspect, Formula II disclosed herein includes symmetrical Formula II16 and asymmetrical Formulas II17-II28:




embedded image


embedded image


embedded image


In Formulas I16-I28 and Formulas II16-II28:

    • each of Y5, Y6, Y7, and Y8 is independently C, N, O, or S,
    • each of X and Y is independently N, P, P═O, CR1, CH, SiR1, SiH, GeR1, or GeH,
    • each of Z, Z1, and Z2 is independently a linking group,
    • each of




embedded image


and is independently:




embedded image


embedded image




    • each R, R1, R2, and R3 is independently a mono-, di-, tri, or tetra-substitution, wherein each R, R1, R2, and R3 independently are substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R, two or more of R1, two or more of R2, two or more of R3, or any combination thereof, are optionally linked together.





In one aspect, for any of the formulas illustrated in this disclosure,




embedded image


(also denoted as Z, Z1, and Z2 herein) may independently include one or more of the following structures:




embedded image


embedded image




    • wherein n is from 0 to 3.





In one aspect, n is 0. In another aspect, n is 1. In yet another aspect, n is 2. In yet another aspect, n is 3.


In one aspect, L5 is a mono-, bi-, or tri-cyclic structure of substituted or unsubstituted aryl cycloalkyl, cycloalkenyl, heterocyclyl, or heteroaryl. In one aspect, L5 is a mono-, bi-, or tri-cyclic structure of substituted aryl cycloalkyl, cycloalkenyl, heterocyclyl, or heteroaryl. In another aspect, L5 is a mono-, bi-, or tri-cyclic structure of unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, or heteroaryl.


In one aspect, any of the formulas disclosed herein including five-membered heterocylyl




embedded image


(i.e., a portion of the disclosed compound) can include one or more of the following structures:




embedded image


It is understood that one or more of Ra and Rd as described herein can be bonded to




embedded image


In one aspect, R can, where appropriate, represent mono-, di-, tri, or tetra-substitution, wherein each R is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R, where appropriate, are optionally linked together. For example, R is substituted or unsubstituted aryl, cycloalkyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R, where appropriate, are optionally linked together. In another example, R is substituted or unsubstituted aryl, alkyl, alkenyl, alkynyl, or any conjugate or combination thereof, wherein two or more of R, where appropriate, are optionally linked together. In another example, R is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, or heteroaryl. In another aspect, R is hydrogen.


In one aspect, R1 can, where appropriate, represent mono-, di-, tri, or tetra-substitution, wherein each R1 is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R1, where appropriate, are optionally linked together. For example, R1 is substituted or unsubstituted aryl, cycloalkyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R1, where appropriate, are optionally linked together. In another example, R1 is substituted or unsubstituted aryl, alkyl, alkenyl, alkynyl, or any conjugate or combination thereof, wherein two or more of R1, where appropriate, are optionally linked together. In another example, R1 is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, or heteroaryl. In another aspect, R1 is hydrogen.


In one aspect, R2 can, where appropriate, represent mono-, di-, tri, or tetra-substitution, wherein R2 is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R2, where appropriate, are optionally linked together. For example, R2 is substituted or unsubstituted aryl, cycloalkyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R2, where appropriate, are optionally linked together. In another example, R2 is substituted or unsubstituted aryl, alkyl, alkenyl, alkynyl, or any conjugate or combination thereof, wherein two or more of R2, where appropriate, are optionally linked together. In another aspect, R2 is hydrogen.


In one aspect, R3 can, where appropriate, represent mono-, di-, tri, or tetra-substitution, wherein R3 is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R3, where appropriate, are optionally linked together. For example, R3 is substituted or unsubstituted aryl, cycloalkyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R3, where appropriate, are optionally linked together. In another example, R3 is substituted or unsubstituted aryl, alkyl, alkenyl, alkynyl, or any conjugate or combination thereof, wherein two or more of R3, where appropriate, are optionally linked together. In another aspect, R3 is hydrogen.


In one aspect, R4 can, where appropriate, represent mono-, di-, tri, or tetra-substitution, wherein R4 is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R4, where appropriate, are optionally linked together. For example, R4 is substituted or unsubstituted aryl, cycloalkyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R4, where appropriate, are optionally linked together. In another example, R4 is substituted or unsubstituted aryl, alkyl, alkenyl, alkynyl, or any conjugate or combination thereof, wherein two or more of R4, where appropriate, are optionally linked together. In another aspect, R4 is hydrogen.


In one aspect, R5 can, where appropriate, represent mono-, di-, tri, or tetra-substitution, wherein R5 is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R5, where appropriate, are optionally linked together. For example, R5 is substituted or unsubstituted aryl, cycloalkyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R5, where appropriate, are optionally linked together. In another example, R5 is substituted or unsubstituted aryl, alkyl, alkenyl, alkynyl, or any conjugate or combination thereof, wherein two or more of R5, where appropriate, are optionally linked together. In another aspect, R5 is hydrogen.


In one aspect, at least two of R, R1, R2, R3, R4, R5 are linked together. In one aspect, at least two of R, R1, R2, R3, and R4 or at least two of R, R1, R2, and R3 are linked together. In another aspect, two R are linked together. In yet another aspect, two R1 are linked together. In yet another aspect, two R2 are linked together. In yet another aspect, two R3 are linked together. In yet another aspect, two R4 are linked together. In yet another aspect, two R5 are linked together. In yet another aspect, R and R1 are linked together. In yet another aspect, R1 and R2 are linked together. In yet another aspect, R and R2 are linked together. In yet another aspect, R and R3 are linked together. In yet another aspect, R1 and R3 are linked together. In yet another aspect, R2 and R3 are linked together. All other permutations of linkages between R, R1, R2, R3, R4, and R5 are also possible.


In one aspect, at least one Ra is present. In another aspect, Ra is absent.


In one aspect, Ra is a mono-substitution. In another aspect, Ra is a di-substitution. In yet another aspect, Ra is a tri-substitution.


In one aspect, Ra is connected to at least Y1. In another aspect, Ra is connected to at least Y2. In yet another aspect, Ra is connected to at least Y3. In one aspect, Ra is connected to at least Y1 and Y2. In one aspect, Ra is connected to at least Y1 and Y3. In one aspect, Ra is connected to at least Y2 and Y3. In one aspect, Ra is connected to Y1, Y2, and Y3.


In one aspect, Ra is a di-substitution and the Ra's are linked together. When the Ra's are linked together the resulting structure can be a cyclic structure which includes a portion of the five-membered cyclic structure as described herein. For example, a cyclic structure can be formed when the di-substitution is of Y1 and Y2 and the Ra's are linked together. A cyclic structure can also be formed when the di-substitution is of Y2 and Y3 and the Ra's are linked together. A cyclic structure can also be formed when the di-substitution is of Y3 and Y4 and the Ra's are linked together.


In one aspect, each Ra is independently a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof wherein two or more of Ra are optionally linked together. In one aspect, at least one Ra is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugate or combination thereof wherein two or more of Ra are optionally linked together.


In one aspect, at least one Rb is present. In another aspect, Rb is absent.


In one aspect, Rb is a mono-substitution. In another aspect, Rb is a di-substitution. In yet another aspect, Rb is a tri-substitution.


In one aspect, each Rb is independently a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof wherein two or more of Rb are optionally linked together. In one aspect, at least one Rb is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugate or combination thereof wherein two or more of Rb are optionally linked together.


In one aspect, at least one Rc is present. In another aspect, Rc is absent.


In one aspect, Rc is a mono-substitution. In another aspect, Rc is a di-substitution. In yet another aspect, Rc is a tri-substitution.


In one aspect, each Rc independently is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of Rc are optionally linked together. In one aspect, at least one Rc is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugate or combination thereof wherein two or more of Rc are optionally linked together.


In one aspect, at least one Rd is present. In another aspect, Rd is absent.


In one aspect, Rd is a mono-substitution. In another aspect, Rd is a di-substitution. In yet another aspect, Rd is a tri-substitution.


In one aspect, each Rd is independently a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof wherein two or more of Rc are optionally linked together. In one aspect, at least one Rc is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugate or combination thereof wherein two or more of Rc are optionally linked together.


In one aspect, Rd is connected to at least Y5. In another aspect, Rd is connected to at least Y6. In yet another aspect, Rd is connected to at least Y7. In one aspect, Rd is connected to at least Y5 and Y6. In one aspect, Rd is connected to at least Y5 and Y7. In one aspect, Rd is connected to at least Y6 and Y7. In one aspect, Rd is connected to Y5, Y6, and Y7.


In one aspect, Rd is a di-substitution and the Rd's are linked together. When the Rd's are linked together the resulting structure can be a cyclic structure which includes a portion of the five-membered cyclic structure as described herein. For example, a cyclic structure can be formed when the di-substitution is of Y5 and Y6 and the Rd's are linked together. A cyclic structure can also be formed when the di-substitution is of Y6 and Y7 and the Rd's are linked together. Cyclic structure can also be formed when the di-substitution is of Y7 and Y8 and the Ra's are linked together.


In one aspect, each of




embedded image


independently has the structure:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein each of







embedded image


is independently




embedded image




    • wherein each of R, R1, R2, R3 and R4 is independently a mono-, di-, tri, or tetra-substitution, wherein each of R, R1, R2, R3, and R4 is independently a substituted or unsubstituted hydrogen, aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R, R1, R2, R3, and R4 are optionally linked together.





In one aspect, each of




embedded image


independently has the structure:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




    • wherein each of Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8 is independently C, N, O, or S,

    • wherein U is O, S, S═O, SO2, Se, NR3, PR3, R3P═O, CR1R2, C═O, SiR1R2, GeR1R2, BR3, NH, PH, HP═O, CH2, CHR1, SiH2, Ge H2, SiHR1, Ge HR1 or BH,

    • wherein each of R1, R2, R3, R4, and R5 is independently a mono-, di-, tri, or tetra-substitution, wherein each of R1, R2, R3, R4, and R5 is independently substituted or unsubstituted hydrogen, aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, or any conjugate or combination thereof, wherein two or more of R1, two or more of R2, two or more of R3, two or more of R4, two or more of R5, or any combination thereof, are optionally linked together, and wherein R4 and R5 are optionally linked to form ═O or a cyclic structure.





In one aspect, R1 and R2 are linked to form the cyclic structure:




embedded image


In another aspect, each Ra is independently one or more of the following structures. In another aspect, each Ra can also comprise other structures or portions thereof not specifically recited herein, and the present invention is not intended to be limited to those structures or portions thereof specifically recited:




embedded image


embedded image




    • wherein Q1 is S, N, or CR6R7, wherein R6 and R7 are independently substituted or unsubstituted hydrogen, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, hydroxy, thiol, amino, halogen, or alkoxy,

    • wherein R8 is O, S, P(O)R1, PR1, NR1, CR1R2, SiR1R2, BH, P(O)H, PH, NH, CR1H, CH2, SiH2, SiHR1, BH, C(O), C2 alkyl, or C2 alkenyl, and

    • wherein R9 is substituted or unsubstituted hydrogen, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, heteroaryl, or heterocyclyl. It is understood that each Ra can independently be substituted with R1, R2, R3, R4, and R5 as described elsewhere herein.





In another aspect, Ra can also include one or more of the following structures. In another aspect, Ra can also include other structures or portions thereof not specifically recited herein, and the present disclosure is not intended to be limited to those structures or portions thereof specifically recited.


In one aspect, Ra is




embedded image


In one aspect, Rd can have the structure of Ra as described herein. Thus, the structures described above relating to Ra can also be used for the description of Rd.


In another aspect, Rd and Ra are identical.


In one aspect, A is A1. In one aspect, A1 is present. For example, when A1 is present, A1 can be O, S, S═O, SO2, Se, NR3, PR3, RP═O, CR1R2, C═O, SiR1R2, GeR1R2 BH, P(O)H, PH, NH, CR1H, CH2, SiH2, SiHR1, BH, or BR3. For example, A1 can be O or S, such as O. In another aspect, A1 is absent.


In one aspect, A2 is present. For example, when A2 is present, A2 can be O, S, S═O, SO2, Se, NR3, PR3, RP═O, CR1R2, C═O, SiR1R2, GeR1R2 BH, P(O)H, PH, NH, CR1H, CH2, SiH2, SiHR1, BH, or BR3. For example, A2 can be O or S. In another aspect, A2 is absent.


In one aspect, X is N, P, P═O, CR1, CH, SiR1, SiH, GeR1, or GeH. For example, X can be N or P. In another example, X can be CR1, CH, SiR1, SiH, GeR1 or GeH. In another aspect, X can be Z, Z1, or Z2.


In one aspect, Y is N, P, P═O, CR1, CH, SiR1, SiH, GeR1, or GeH. For example, Y can be N or P. In another example, Y can be CR1, CH, SiR1, SiH, GeR1, or GeH. In another aspect, Y can be Z, Z1, or Z2.


In one aspect, L2 can be aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, carbene, or N-heterocyclic carbene. For example, L2 can be aryl, cycloalkyl, cycloalkenyl, heteroaryl, or heterocyclyl. In another example, L2 can be aryl or heteroaryl. In yet another example, L2 can be aryl. In one aspect, L2 can have the structure




embedded image


for example,




embedded image


In another aspect, L2 can have the structure




embedded image


for example,




embedded image


In another aspect, L2 can have the structure




embedded image


wherein Q2 is O or S, for example,




embedded image


In another aspect, L2 can have the structure




embedded image


wherein R9 is hydrogen, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, halogen, hydroxyl, amino, or thiol. In one aspect, V2 can be N, C, P, B, or Si. For example, V2 can be N or C, such as C.


In one aspect, L3 can be aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, carbene, or N-heterocyclic carbene. For example, L3 can be aryl, cycloalkyl, cycloalkenyl, heteroaryl, or heterocyclyl. In another example, L3 can be aryl or heteroaryl. In yet another example, L3 can be aryl. In one aspect, L3 can have the structure




embedded image


for example,




embedded image


In another aspect, L3 can have the structure




embedded image


for example,




embedded image


In another aspect, L3 can have the structure




embedded image


for example,




embedded image


In another aspect, L3 can have the structure




embedded image


wherein Q3 is O or S, for example,




embedded image


In another aspect, L3 can have the structure




embedded image


wherein R9 is hydrogen, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, halogen, hydroxyl, amino, or thiol. In one aspect, V3 can be N, C, P, B, or Si. For example, V3 can be N or C, such as C.


In one aspect, L4 can be aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocyclyl, carbene, or N-heterocyclic carbene. For example, L4 can be aryl, cycloalkyl, cycloalkenyl, heteroaryl, or heterocyclyl. In another example, L4 can be aryl or heteroaryl. In yet another example, L4 can be heteroaryl. In yet another example, L4 can be heterocyclyl. It is understood that, V4 can be a part of L4 and is intended to be included the description of L4 above. In one aspect, L4 can have the structure




embedded image


for example,




embedded image


In yet another aspect, L4 can have the structure




embedded image


for example,




embedded image


In yet another aspect, L4 can have the structure




embedded image


for example,




embedded image


for example




embedded image


In yet another aspect, L4 can have the structure




embedded image


or In yet another aspect, L4 can have the structure




embedded image


In yet another aspect, L4 can have the structure




embedded image




    • wherein Q4 is O, S, S═O, SO2, Se, NR3, PR3, RP═O, CR1R2, C═O, SiR1R2, GeR1R2, BH, P(O)H, PH, NH, CR1H, CH2, SiH2, SiHR1, BH, or BR3. In one aspect, V4 can be N, C, P, B, or Si. For example, V4 can be N or C, such as N.





In one aspect, for any of the platinum complexes illustrated in this disclosure, Formula I can include one or more of the following structures depicted collectively below as Structures 1-32. In another aspect, structures of Formula I can also include other structures or portions thereof not specifically recited herein, and the present disclosure is not intended to be limited to those structures or portions thereof specifically recited.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In one aspect, for any of the platinum complexes illustrated in this disclosure, Formula II can include one or more of the following structures depicted collectively below as Structures 1-60. In another aspect, structures of Formula II can also include other structures or portions thereof not specifically recited herein, and the present disclosure is not intended to be limited to those structures or portions thereof specifically recited.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image

Claims
  • 1.-22. (canceled)
  • 23. A compound of Formula I:
  • 24. The compound of claim 23, wherein both Y2 and Y3 are C, and two Ra attached to Y2 and Y3 are linked together to form a ring.
  • 25. The compound of claim 23, wherein each of L1, L2, and L3 is independently a 6-membered ring.
  • 26. The compound of claim 23, wherein each of A1 and A2 is independently selected from the group consisting of O, S, NR3′, CR1′R2′, and SiR1′R2′.
  • 27. The compound of claim 23, wherein A1 is O, and A2 is NR4′; wherein R4′ is independently mono-, di-, tri, or tetra-substitution, wherein R4′ is independently selected from the group consisting of a substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, deuterium, halogen, hydroxyl, thiol, nitro, cyano, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, ester, nitrile, isonitrile, heteroaryl, alkoxycarbonyl, acylamino, alkoxycarbonylamino, aryloxycarbonylamino, sulfonylamino, sulfamoyl, carbamoyl, alkylthio, sulfinyl, ureido, phosphoramide, amercapto, sulfo, carboxyl, hydrazino, substituted silyl, or polymerizable group, and any conjugate or combination thereof.
  • 28. The compound of claim 23, wherein the compound has the structure of Formula IIA:
  • 29. The compound of claim 23, wherein at least one Ra is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugated or combination thereof wherein two or more of Ra are optionally linked together.
  • 30. The compound of claim 23, wherein at least one Rb is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugated or combination thereof wherein two or more of Rb are optionally linked together.
  • 31. The compound of claim 23, wherein at least one Rc is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugated or combination thereof wherein two or more of Rc are optionally linked together.
  • 32. The compound of claim 23, wherein Rd is a mono-substitution.
  • 33. The compound of claim 23, wherein Rd is a di-substitution.
  • 34. The compound of claim 23, wherein at least one Rd is substituted or unsubstituted aryl, cycloalkyl, cycloalkenyl, heterocyclyl, heteroaryl, alkyl, alkenyl, alkynyl, halogen, hydroxyl, amino, a mono- or di-alkylamino, a mono- or diaryl amino, alkoxy, aryloxy, haloalkyl, aralkyl, or any conjugated or combination thereof wherein two or more of Rd are optionally linked together.
  • 35. The compound of claim 23, wherein Pt-L1 moiety is selected from the group consisting of:
  • 36. The compound of claim 23, wherein L2 has the structure
  • 37. The compound of claim 23, wherein L3 has the structure
  • 38. The compound of claim 23, wherein L4 has the structure
  • 39. The compound of claim 23, wherein the compound is represented by one of Formulas I1-I15 or one of Formulas II1-II15:
  • 40. The compound of claim 23, wherein the compound has a structure of Formula I2 or Formula II2:
  • 41. A composition comprising a compound of Formula I:
  • 42. An organic light emitting device (OLED) comprising: an anode;a cathode; andan organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound of Formula I:
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Ser. No. 15/202,111, filed Jul. 5, 2016, now U.S. Pat. No. 9,947,881, entitled “PLATINUM COMPLEXES AND DEVICES”, which is a continuation of U.S. Ser. No. 14/513,506, filed Oct. 14, 2014, now U.S. Pat. No. 9,385,329, entitled “PLATINUM COMPLEXES AND DEVICES”, which claims priority to U.S. Ser. No. 61/890,545 entitled “PLATINUM COMPLEXES, DEVICES, AND USES THEREOF” and U.S. Ser. No. 61/890,580 entitled “PLATINUM COMPLEXES, DEVICES, AND USES THEREOF”, both filed on Oct. 14, 2013, and all of which are incorporated by reference herein in their entirety.

Provisional Applications (2)
Number Date Country
61890545 Oct 2013 US
61890580 Oct 2013 US
Divisions (1)
Number Date Country
Parent 17519002 Nov 2021 US
Child 18910811 US
Continuations (4)
Number Date Country
Parent 16739480 Jan 2020 US
Child 17519002 US
Parent 15947273 Apr 2018 US
Child 16739480 US
Parent 15202111 Jul 2016 US
Child 15947273 US
Parent 14513506 Oct 2014 US
Child 15202111 US