This disclosure relates generally to childcare products, and, more particularly, to play yards and methods of operating the same.
In recent years, portable play yards have become very popular. Portable play yards typically include a frame, a flexible enclosure supported by the frame, and a removable floor board or mat. The frame is largely or completely contained within the flexible enclosure so that there are few if any loose parts when the frame is collapsed or when the frame is erected. When collapsed, the portable play yard typically has a compact form factor to enable easy transport and storage of the play yard. Sometimes, the floorboard is wrapped around the collapsed frame to prevent the frame from inadvertently leaving the collapsed state.
a is a perspective view of another example post that may alternatively be used with the example play yard of
b is a perspective view similar to
An example play yard 10 is shown in
As shown in
The illustrated portable play yard 10 includes a frame 22 (see
As shown in
The lower frame 24 of the illustrated play yard 10 includes four outer sides which, when the lower frame is in the erected position, together define a generally rectangular perimeter. Each of the outer sides comprises a pair of rails 32 joined by a central joint 34. One end of each of the rails 32 is pivotably coupled to one of the feet 28. The opposite end of each of the rails 32 is pivotably coupled to one of the central joints 34. The pivotable couplings enable the sides of the lower frame 24 to be moved between the erected position and the collapsed position. As shown in
For the purpose of selectively locking the lower frame 24 in the erected position and for providing support for the center of the play yard 10, the lower frame 10 is further provided with a central assembly 40. The central assembly 40 is pivotably coupled to the central joints 34 of two opposite sides of the lower frame 24. More specifically, the central assembly 40 includes two rails 42 and a central hinge 44. In the illustrated example, one end of each rail 42 is pivotably coupled to a respective one of the central joints 34 of the long sides of the play yard 10. The opposite ends of the rails 42 are coupled to the central hinge 44 of the central assembly 40.
The central hinge 44 includes a conventional lock mechanism to selectively permit or prevent movement of the central assembly 40 and, thus, the lower frame assembly 24 from the erected position to the collapsed position. The lock mechanism comprises a handle 46. When the handle 46 is pivoted into a generally horizontal position (see
To provide support for the center of the play yard floor when the play yard 10 is in the erected position, the central assembly 40 includes a pair of centrally located feet 48. To provide further lateral support for the lower frame 24, a pair of opposed outrigger feet 50 are coupled to opposed ones of the central hinges 34 (see
The upper frame 26 of the illustrated play yard 10 includes four outer sides which, when the upper frame 26 is in the erected position, together define a rounded rectangular (i.e., four sided) perimeter. The rounded rectangular shape may be an oval, a half-oval, or any combination of rounded and straight sides. However, at least one of the sides is preferably rounded. It is even more preferable that at least two opposite sides are rounded to provide symmetry.
In the illustrated example, each of the outer sides comprises a pair of outwardly bowed rails 52 joined by a central joint 54. One end of each of the rails 52 is pivotably coupled to one of the end caps 30. The opposite end of each of the rails 52 is pivotably coupled to one of the central joints 54. The pivotable couplings enable the sides of the upper frame 26 to be moved between the erected position and the collapsed position.
Each of the central joints 54 is provided with a releasable lock to enable selective collapsing of the upper frame 26. The construction of the releasable lock forms no part of the present invention and will not be discussed in detail here. Persons of ordinary skill in the art are aware of the numerous types of joint locks that are used in portable play yards. Any of those known locks may be employed in the illustrated play yard 10. For example, the releasable locks described in U.S. Pat. No. 6,250,837, which is hereby incorporated herein by reference, may be used in this role.
It is desirable for the form factor of the play yard 10 to be as small as possible when the play yard 10 is folded into the collapsed position of
Therefore, to reduce the form factor of the collapsed play yard 10, the rails 52 of the upper frame 26 are coupled to the end caps 30 such that the centers of each side of the upper frame 26 (e.g., the central joints 54) move inward and downward as the upper frame 26 moves from the erected position to the collapsed position, as indicated by the arrows in
To produce the desired inward and downward movement of the centers of the rails 52 as the upper frame 26 is collapsed, the rails 52 of the upper frame 26 are pivotably coupled to the end caps 30 by mechanical fasteners 60 that are positioned at an angle α from the horizontal. In the example of
Preferably, all of the mechanical fasteners 60 are positioned at the same angle α, but persons of ordinary skill in the art will readily appreciate that different angular orientations could optionally be used for different sides of the upper frame 26 if different pivoting motions are desired for those different sides. For example, if it is desirable to have sides that extend different distances from the center of the play yard when the play yard is erected, but which still close in to substantially the same distance from the center of the play yard when the play yard is collapsed such that the collapsed play yard has a generally rectangular form factor, the fasteners of the differently positioned sides would be positioned at different angular orientations to achieve the different movements of the differently extending sides. Similarly, in the illustrated example, the angle α is approximately 11 degrees from the horizontal plane, but other angles may be selected to obtain a desired movement of the centers of the rails 52. The mechanical fasteners may be implemented by bolts, screws, rivets, etc.
To further enlarge the volume of the play yard 10 and to enhance its rounded appearance, the posts 14 that support the upper frame 26 above the lower frame 24 are curved. In the illustrated example, the posts 14 include a body having a generally straight upper section 64, a generally straight lower section 66, and a curved central section 68 (see
As mentioned above, the illustrated play yard 10 includes an enclosure 23 that is supported by the frame 22. Preferably, the enclosure includes five flexible sides, namely, a bottom and four sides. The top is open. The enclosure 23 may be made of fabric, plastic, mesh and/or any other material which is sufficiently strong and durable to define the enclosure volume throughout the desired useful life of the play yard 10 and which is flexible enough to be folded. In the illustrated example, the enclosure 23 is a fabric structure including mesh side panels. The illustrated enclosure 23 includes upper sleeves which receive the rails 52 of the upper frame 26 and lower sleeves which receive the rails 32 of the lower frame 24. In other words, the sides of the enclosure 23 are stretched between the upper and lower frames 24, 26.
Unlike traditional play yards, the posts 14 are not covered or encased in the enclosure 23. Instead, the enclosure 23 of the illustrated play yard is coupled to the inner surface of the posts 14. As a result, the outward facing surfaces, (particularly of the curved sections 68), of the posts 14 are completely exposed.
In order to facilitate coupling of the enclosure 23 to the posts 14, each of the corners of the enclosure 23 is sewn, glued, fused or otherwise fastened into a sleeve which receives a flexible cylindrical member to define a corner bead 70 as shown in
In a presently preferred implementation, each channel 72 is defined by a track 74 which is coupled to the exterior of a respective one of the posts 14. Because the tracks 74 are coupled to the inner surfaces of the curved posts 14, the tracks 74 are curved in a manner that complements the post shape. In the example of
In the example of
An alternative post 14 is shown in
In order to provide a rigid, comfortable support for a child or infant located within the play yard 10, the play yard 10 is further provided with a floor board 90. When the illustrated play yard 10 is erected, the floor board 90 is located within the enclosure 23 on top of the lower frame 24 in a generally horizontal plane (assuming, of course, that the surface on which the play yard 10 is erected is generally horizontal). The illustrated floor board has a rounded rectangular outer perimeter substantially corresponding to the rounded rectangular shape of the upper frame 26. Since the lower frame 24 has a generally rectangular outer shape, portions of the floor board 90 extend outwardly of (i.e., overhang) the lower frame 24.
Other than its shape, the floor board 90 of the illustrated example is conventional. For example, the illustrated floor board 90 includes one or more foam pads secured to one or more boards. The pad(s) and board(s) are encased in a plastic sleeve as is conventional in portable play yards sold today such as the Travelin' Tot® play yards sold by Kolcraft Enterprises. Seams are defined between adjacent boards of the floor board 90 to facilitate folding of the floor board 90 in discrete sections. In the illustrated example, the floor board 90 includes four boards and is foldable in fourths. The floor board 90 may, thus, be wrapping around the collapsed play yard 10 for transport and/or storage.
The floor board 90 may be removably secured to the floor of the enclosure 23 by any suitable fasteners. In the illustrated example, the floor board 90 is secured to the floor of the enclosure 23 by Velcro® strips. Alternatively, the floor board 90 may be held in place by gravity without the benefit of fasteners.
Although certain example methods, apparatus and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the claims either literally or under the doctrine of equivalents.
This patent is a continuation of U.S. patent application Ser. No. 11/063,811, which was filed on Feb. 23, 2005, and which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11063811 | Feb 2005 | US |
Child | 12494932 | US |