The present invention generally relates to adaptive streaming and more specifically to adaptive bitrate streaming of encoded media contained within Matroska container files using Hypertext Transfer Protocol.
The term streaming media describes the playback of media on a playback device, where the media is stored on a server and continuously sent to the playback device over a network during playback. Typically, the playback device stores a sufficient quantity of media in a buffer at any given time during playback to prevent disruption of playback due to the playback device completing playback of all the buffered media prior to receipt of the next portion of media. In many instances, content is divided into multiple streams. For example, content can be divided into audio, video, and subtitle streams and some streams can be encoded as alternative streams that are suitable for different network connection bandwidths or comply with specific geographic restrictions and/or other restrictions.
Adaptive bit rate streaming or adaptive streaming involves detecting the present streaming conditions (e.g. the user's network bandwidth and CPU capacity) in real time and adjusting the quality of the streamed media accordingly by selecting between different streams encoded for use at different network connection data rates. Typically, the source media is encoded at multiple bitrates and the playback device or client switches between streaming the different encodings depending on available resources.
Adaptive streaming solutions typically utilize either Hypertext Transfer Protocol (HTTP), published by the Internet Engineering Task Force and the World Wide Web Consortium as RFC 2616 to stream media between a server and a playback device. HTTP is a stateless protocol that enables a playback device to request a byte range within a file. HTTP is described as stateless, because the server is not required to record information concerning the state of the playback device requesting information or the byte ranges requested by the playback device in order to respond to requests received from the playback device.
In adaptive streaming systems, the source media is typically stored on a media server as a top level index file pointing to a number of alternate streams that contain the actual video and audio data. Each stream is typically stored in one or more container files. Different adaptive streaming solutions typically utilize different index and media containers. The Synchronized Multimedia Integration Language (SMIL) developed by the World Wide Web Consortium is utilized to create indexes in several adaptive streaming solutions including IIS Smooth Streaming developed by Microsoft Corporation of Redmond, Wash., and Flash Dynamic Streaming developed by Adobe Systems Incorporated of San Jose, Calif. HTTP Adaptive Bitrate Streaming developed by Apple Computer Incorporated of Cupertino, Calif. implements index files using an extended M3U playlist file (.M3U8), which is a text file containing a list of URIs that typically identify a media container file. The most commonly used media container formats are the MP4 container format specified in MPEG-4 Part 14 (i.e. ISO/IEC 14496-14) and the MPEG transport stream (TS) container specified in MPEG-2 Part 1 (i.e. ISO/IEC Standard 13818-1). The MP4 container format is utilized in IIS Smooth Streaming and Flash Dynamic Streaming. The TS container is used in HTTP Adaptive Bitrate Streaming.
The Matroska container is a media container developed as an open standard project by the Matroska non-profit organization of Aussonne, France. The Matroska container is based upon Extensible Binary Meta Language (EBML), which is a binary derivative of the Extensible Markup Language (XML). Decoding of the Matroska container is supported by many consumer electronics (CE) devices. The DivX Plus file format developed by DivX, LLC of San Diego, Calif. utilizes an extension of the Matroska container format (i.e. is based upon the Matroska container format, but includes elements that are not specified within the Matroska format).
The term Digital Rights Management (DRM) is utilized to describe access control technologies that are used to control access to and/or copying of digital content. DRM systems typically involve the use of cryptographic information to control access to or protect a piece of content. Content protection is typically achieved using cryptographic information such as (but not limited to) one or more encryption keys to encrypt some or all of the content. An important component of most DRM systems is a mechanism for securely providing cryptographic information to authorized playback devices for use in accessing protected content. The protected content cannot be accessed without the cryptographic data and ideally the cryptographic data is bound to specific playback devices and cannot be readily used by unauthorized playback devices or is securely provided to the playback devices (often on a session basis).
Systems and methods in accordance with embodiments of the invention perform adaptive bitrate streaming using alternative streams of protected content. One embodiment of the invention includes a processor, and memory containing a client application. In addition, the client application configures the processor to: request a top level index file identifying a plurality of alternative streams of protected content, where each of the alternative streams of protected content are encrypted using common cryptographic information; obtain the common cryptographic information; request portions of content from at least the plurality of alternative streams of protected content; access the protected content using the common cryptographic information; and playback the content.
In a further embodiment, the alternative streams of protected content are alternative streams of protected video, each of the alternative streams of protected video includes DRM information indicating portions of frames of video that are encrypted and identifying at least a portion of the common cryptographic information used to access the encrypted portions of the frames of video, and the client application configures the processor to: obtain a protected frame of video from one of the alternative streams of protected video; obtain DRM information indicating a portion of the protected frame of video that is encrypted; identify at least a portion of the common cryptographic information that is used to access the encrypted portion of the protected frame using the DRM information; decrypt the encrypted portion of the protected frame of video using the identified portion of the common cryptographic information; and decode the frame of video.
In another embodiment, each of the alternative streams of protected content is contained within a separate container file, and the top level index file identifies a container file containing each of the alternative streams.
In still further embodiment, the container files containing each of the alternative streams of protected content includes at least one header including the common cryptographic information and information that describes the encoding of the stream of protected content, and the top level index file identifies the location of the at least one header within each container file.
In still another embodiment, the common cryptographic information is a set of encryption keys.
In a yet further embodiment, the common set of encryption keys is encrypted; and the client application configures the processor to securely receive cryptographic information used to unencrypt the common set of encryption keys.
In yet another embodiment, the client application configures the processor to obtain the common cryptographic information by requesting at least one header of a container file identified in the top level index file.
In a further embodiment again, each container file containing one of the alternative streams of protected content further includes an index, and the client application configures the processor to request a portion of content from one of the container files by configuring the processor to: request at least a portion of an index from the container file; identify the portion of the container file containing a specific portion of content using the index; and request the identified portion of the container file.
In another embodiment again, the container files are Matroska container files.
In a further additional embodiment, the common cryptographic information is stored in a common DRM Header element contained within a Tracks element within each of the Matroska container files containing the alternative streams of protected content.
In another additional embodiment, the common cryptographic information is a set of encryption keys; and the set of encryption keys is encrypted and stored within the DRM Header element.
In a still yet further embodiment, the client application configures the processor to: obtain cryptographic information that can be used to unencrypt the set of encryption keys stored within the DRM Header element; and unencrypt the set of encryption keys stored within the DRM Header element using the obtained cryptographic information.
In still yet another embodiment, the client application configures the processor to obtain the DRM Header element by requesting a Tracks element from one of the Matroska container files identified in the top level index file.
In a still further embodiment again, each Mastroska container file containing an alternative stream of protected content further includes an index contained within a Cues element, and the client application configures the processor to request a portion of content from one of the Matroska container files by configuring the processor to: request at least a portion of a Cues element from a Matroska container file containing one of the alternative streams of protected content; identify a portion of the Matroska container file containing a specific portion of content using at least one CueTrackPosition element within the Cues element; and request the portion of the Matroska container file identified by the at least one CueTrackPosition element.
In still another embodiment again, the index includes a plurality of CueTrackPosition elements that identify the location of a plurality of Cluster elements within the Matroska container file.
In a still further additional embodiment, each Cluster element contains a plurality of BlockGroup elements including encoded portions of content, a CueTrack Position element indexes each Cluster element, and each CueTrackPosition element includes the size of the Cluster element that it indexes.
In still another additional embodiment, the alternative streams of protected content are alternative streams of protected video, each of the Matroska container files containing an alternative stream of protected video includes a DRMInfo element in a BlockGroup element containing a protected frame of video, where the DRMInfo element indicates at least a portion of the protected frames of video that is encrypted and identifies at least a portion of the common cryptographic information used to access the at least one encrypted portion of the protected frame of video, and the client application configures the processor to access video frames in a stream of protected video using the common cryptographic information by configuring the processor to: obtain a BlockGroup containing a protected frame of video; parse the BlockGroup element to obtain a DRMInfo element indicating at least a portion of the protected frame of video that is encrypted using an encryption key from the set of encryption keys; decrypt the at least one encrypted portion of the protected frame of video using the identified encryption key; and decode the frame of video.
An embodiment of the method of the invention includes requesting a top level index file identifying a plurality of alternative streams of protected content using a playback device, where each of the alternative streams of protected content are encrypted using common cryptographic information, obtaining the common cryptographic information using the playback device, requesting portions of content from at least the plurality of alternative streams of protected content using the playback device, accessing the protected content using the playback device and the common cryptographic information, and playing back the content using the playback device.
In a further embodiment of the method of the invention, the alternative streams of protected content are alternative streams of protected video, each of the alternative streams of protected video includes DRM information indicating portions of frames of video that are encrypted and identifying at least a portion of the common cryptographic information used to access the encrypted portions of the frames of video, and the method further includes obtaining a protected frame of video from one of the alternative streams of protected video using the playback device, obtaining DRM information indicating a portion of the protected frame of video that is encrypted using the playback device, identify at least a portion of the common cryptographic information that is used to access the encrypted portion of the protected frame using the playback device and the DRM information, decrypting the encrypted portion of the protected frame of video using the playback device and the identified portion of the common cryptographic information, and decoding the frame of video using the playback device.
In another embodiment of the method of the invention, each of the alternative streams of protected content is contained within a separate container file, and the top level index file identifies a container file containing each of the alternative streams.
In a still further embodiment of the method of the invention, the container files containing each of the alternative streams of protected content include at least one header including the common cryptographic information and information that describes the encoding of the stream of protected content, and the top level index file identifies the location of the at least one header within each container file.
In still another embodiment of the method of the invention, the common cryptographic information is a set of encryption keys.
In a yet further embodiment of the method of the invention, the set of encryption keys is encrypted so that it is accessible using cryptographic information obtained by the playback device, and the method further comprising obtaining cryptographic information using the playback device.
In yet another embodiment of the method of the invention, the set of encryption keys is encrypted using at least one encryption key, and the playback device securely obtains the at least one encryption key.
In a further embodiment again of the method of the invention, the at least one encryption key is encrypted using at least one encryption key included in the cryptographic information bound to the playback device.
Another embodiment again of the method of the invention also includes obtaining the common cryptographic information by requesting at least one header of a container file identified in the top level index file using the playback device.
In a further additional embodiment of the method of the invention, each container file containing one of the alternative streams of protected content further includes an index, and the method further includes: requesting at least a portion of an index from the container file using the playback device; identify the portion of the container file containing a specific portion of content using the playback device and the index; and requesting the identified portion of the container file using the playback device.
In another additional embodiment of the method of the invention, the container files are Matroska container files.
In a still yet further embodiment of the method of the invention, the common cryptographic information is stored in a common DRM Header element contained within a Tracks element within each of the Matroska container files containing the alternative streams of protected content.
In still yet another embodiment of the method of the invention, the common cryptographic information is a set of encryption keys, and the set of encryption keys is encrypted and stored within the DRM Header element.
In a still further embodiment again of the method of the invention, the set of encryption keys is encrypted so that it is accessible using cryptographic information obtained by the playback device, and the method further comprising obtaining cryptographic information using the playback device.
Still another embodiment again of the method of the invention also includes obtaining the DRM Header element by requesting a Tracks element from one of the Matroska container files identified in the top level index file.
In a still further additional embodiment of the method of the invention, each Mastroska container file containing an alternative stream of protected content further includes an index contained within a Cues element, and the method further includes: requesting at least a portion of a Cues element from a Matroska container file containing one of the alternative streams of protected content using the playback device; identifying a portion of the Matroska container file containing a specific portion of content using the playback device and at least one CueTrackPosition element within the Cues element; and requesting the portion of the Matroska container file identified by the at least one CueTrackPosition element.
In still another additional embodiment of the method of the invention, the index includes a plurality of CueTrackPosition elements that identify the location of a plurality of Cluster elements within the Matroska container file.
In a yet further embodiment again of the method of the invention, each Cluster element contains a plurality of BlockGroup elements including encoded portions of content, a CueTrack Position element indexes each Cluster element, and each CueTrackPosition element includes the size of the Cluster element that it indexes.
In yet another embodiment again of the method of the invention, the alternative streams of protected content are alternative streams of protected video, each of the Matroska container files containing an alternative stream of protected video includes a DRMInfo element in a BlockGroup element containing a protected frame of video, where the DRMInfo element indicates at least a portion of the protected frames of video that is encrypted and identifies at least a portion of the common cryptographic information used to access the at least one encrypted portion of the protected frame of video, and the method further includes: obtaining a BlockGroup containing a protected frame of video using the playback device; parsing the BlockGroup element to obtain a DRMInfo element indicating at least a portion of the protected frame of video that is encrypted using the playback device and an encryption key from the set of encryption keys; decrypting the at least one encrypted portion of the protected frame of video using the playback device and the identified encryption key; and decoding the frame of video using the playback device.
Another further embodiment includes a machine readable medium containing processor instructions, where execution of the instructions by a processor causes the processor to perform a process including request a top level index file identifying a plurality of alternative streams of protected content, where each of the alternative streams of protected content are encrypted using common cryptographic information, obtaining the common cryptographic information, requesting portions of content from at least the plurality of alternative streams of protected content, accessing the protected content using the common cryptographic information, and playing back the content.
In still another further embodiment, the alternative streams of protected content are alternative streams of protected video, each of the alternative streams of protected video includes DRM information indicating portions of frames of video that are encrypted and identifying at least a portion of the common cryptographic information used to access the encrypted portions of the frames of video, and execution of the instructions by a processor also causes the processor to perform a process including: obtaining a protected frame of video from one of the alternative streams of protected video; obtaining DRM information indicating a portion of the protected frame of video that is encrypted; identify at least a portion of the common cryptographic information that is used to access the encrypted portion of the protected frame using the DRM information; decrypting the encrypted portion of the protected frame of video using and the identified portion of the common cryptographic information; and decoding the frame of video.
In yet another further embodiment, the machine readable medium is non-volatile memory.
Turning now to the drawings, systems and methods for performing adaptive bitrate streaming using alternative streams of protected content in accordance with embodiments of the invention are illustrated. In a number of embodiments, source media is encoded as a number of alternative streams and the alternative streams are protected using a common set of cryptographic information. In many embodiments, the alternative streams are video streams and each stream is protected by encrypting at least a portion of a plurality of video frames within the stream using the common set of cryptographic information. In several embodiments, the common set of cryptographic information is a set of frame keys. In order to protect a video frame, a frame key can be selected from the set of frame keys and used to encrypt at least a portion of the encoded frame and DRM information can be provided with the protected frame indicating the frame key utilized to perform the encryption and the location of the encrypted portion within the frame. By encrypting each of the alternative streams using the same set of cryptographic information, a playback device can switch between streams without the need to maintain or acquire multiple sets of cryptographic information in memory or to reinitialize the decryption engine of the playback device with a different set of cryptographic information.
In many embodiments, each of the alternative streams is stored in a separate container file referenced by a top level index file. In several embodiments, the common cryptographic information is embedded in each of the container files so that a playback device has access to the cryptographic information irrespective of which alternative is initially select to commence playback of the media. The common cryptographic information can be stored on a content distribution system and associated with a title identifier or title ID that uniquely identifies the source content used to create the alternative streams. When a new alternative stream is generated, a source encoder can utilize the title ID to request the common cryptographic information from the content distribution system and the common cryptographic information can be utilized to encrypt the new alternative stream and embedded in a container file created to contain the new encrypted alternative stream.
In several embodiments, each stream associated with a piece of source content and/or title ID is stored in a Matroska (MKV) container file. In many embodiments, the Matroska container file is a specialized Matroska container file in that the manner in which the media in each stream is encoded and stored within the container is constrained to improve streaming performance. In several embodiments, the Matroska container file is further specialized in that additional DRM elements (i.e. elements that are not specified as part of the Matroska container format) can be included within the file to facilitate the distribution of protected media during adaptive bitrate streaming. In a number of embodiments, common cryptographic information is included within a DRM header element in each of the Matroska container files and references to the common cryptographic information are made using DRMInfo elements within a BlockGroup element corresponding to a specific frame of encrypted video. In other embodiments, any of a variety of mechanisms can be utilized to store DRM information within a Matroska container in accordance with embodiments of the invention. In several embodiments, each stream (i.e. audio, video, or subtitle) is stored within a separate Matroska container file. In other embodiments, an encoded video stream is multiplexed with one or more encoded audio, and/or subtitle streams in each Matroska container file.
A top level index file containing an index to the streams contained within each of the container files is also generated to enable adaptive bitrate streaming of the encoded media. In many embodiments, the top level index file is a Synchronized Multimedia Integration Language (SMIL) file containing URIs for each of the Matroska container files. In other embodiments, any of a variety of file formats can be utilized in the generation of the top level index file.
The performance of an adaptive bitstrate streaming system in accordance with embodiments of the invention can be significantly enhanced by encoding each portion of the source video at each bit rate in such a way that the portion of video is encoded in each stream as a single (or at least one) closed group of pictures (GOP) starting with an Instantaneous Decoder Refresh (IDR) frame. The GOP for each stream can then be stored as a Cluster element within the Matroska container file for the stream. In this way, the playback device can switch between streams at the completion of the playback of a Cluster and, irrespective of the stream from which a Cluster is obtained the first frame in the Cluster will be an IDR frame and can be decoded without reference to any encoded media other than the encoded media contained within the Cluster element. In many embodiments, the sections of the source video that are encoded as GOPs are all the same duration. In a number of embodiments each two second sequence of the source video is encoded as a GOP.
Adaptive streaming of source media encoded in the manner outlined above can be coordinated by a playback device in accordance with embodiments of the invention. The playback device obtains information concerning each of the available streams from the top level index file and selects one or more streams to utilize in the playback of the media. The playback device can then obtain header information from the Matroska container files containing the one or more bitstreams or streams, and the headers provide information concerning the decoding of the streams including a DRM header, which contains the cryptographic information utilized to protect the stream. The playback device can also request index information that indexes the encoded media stored within the relevant Matroska container files. The index information can be stored within the Matroska container files or separately from the Matroska container files in the top level index or in separate index files. The index information enables the playback device to request byte ranges corresponding to Cluster elements within the Matroska container file containing specific portions of encoded media via HTTP from the server. As the playback device receives the Cluster elements from the HTTP server, the playback device can evaluate current streaming conditions to determine whether to increase or decrease the bitrate of the streamed media. In the event that the playback device determines that a change in bitrate is necessary, the playback device can obtain header information and index information for the container file(s) containing the desired stream(s) (assuming the playback device has not already obtained this information). The playback device need not perform the computationally intensive process of accessing the encrypted cryptographic information in the header of the new stream, because each of the alternative streams uses common cryptographic information. The index information can then be used to identify the byte range of the Cluster element containing the next portion of the source media encoded at the desired bit rate and the identified Cluster element can be retrieved from the server via HTTP. The next portion of the source media that is requested is typically identified based upon the Cluster elements already requested by the playback device and the Cluster elements buffered by the playback device. The next portion of source media requested from the alternative stream is requested to minimize the likelihood that the buffer of the playback device will underflow (i.e. run out media to playback) prior to receipt of the Cluster element containing the next portion of source media by the playback device. In this way, the playback device can achieve adaptive bitrate streaming by retrieving sequential Cluster elements from the various streams as appropriate to the streaming conditions using the top level index and index information describing the Cluster elements within each of the Matroska container files.
In a number of embodiments, variation in the bitrate between different streams can be achieved by modifying the encoding parameters for each stream including but not limited to the bitrate, frame rate, resolution and sample aspect ratio. The encoding and protection of source video using common cryptographic information for use in adaptive bitrate streaming and the playback of alternative streams of protected content via adaptive bitrate streaming in accordance with embodiments of the invention is discussed further below.
Adaptive Streaming System Architecture
An adaptive bitrate streaming system in accordance with an embodiment of the invention is illustrated in
In many embodiments, a playback device commences playback by requesting a top level index file from the content distribution server. The source encoder 12, the content distribution server 14, or another server can generate the top level index to the file(s) containing the streams, at least a plurality of which are alternative streams, at the time the request is made or at the time the streams are generated by the source encoder. The playback device can then use HTTP or another appropriate stateless protocol to request portions of the top level index file and the file(s) containing the protected streams via a network 16 such as the Internet.
In many embodiments, the top level index file is a SMIL file and the media is stored in Matroska container files. As is discussed further below, the media can be stored within the Matroska container file in a way that facilitates the protection of the content using common cryptographic information. In many embodiments, the Matroska container files are specialized Matroska container files that include enhancements (i.e. elements that do not form part of the Matroska file format specification) that facilitate retrieval and decryption using common cryptographic information of specific portions of media during adaptive bitrate streaming.
Although a specific content distribution system configured to support adaptive bitrate streaming is illustrated in
Source Encoders
In many embodiments, a source encoder can be implemented using a server. In other embodiments, the source encoder can be any processing device including a processor and sufficient resources to perform the transcoding and encryption of source media (including but not limited to video, audio, and/or subtitles). A source encoder in accordance with an embodiment of the invention is illustrated in
Although a specific source encoder in accordance with embodiments of the invention is illustrated in
Content Distribution Servers
Content distribution servers in accordance with embodiments of the invention can be responsible for storing protected streams of content for streaming to playback devices using adaptive bitrate streaming processes. Content distribution servers can also store common cryptographic information utilized to protect the alternative streams of protected content. In several embodiments, the common cryptographic information is identified utilizing a title ID associated with the common cryptographic information and a set of streams that form part of a specific title or piece of content. A content distribution server in accordance with an embodiment of the invention is illustrated in
Although a specific content distribution server is illustrated in
Playback Devices
Referring back to
Although a specific architecture for a playback device is shown in
File Structure
Files generated by a source encoder and/or stored on an HTTP server for streaming to playback devices in accordance with embodiments of the invention are illustrated in
In many embodiments, each Matroska container file contains a single protected stream. For example, the stream could be one of a number of alternate video streams protected using common cryptographic information, an audio stream, one of a number of alternate audio streams, a subtitle stream, one of a number of alternate subtitle streams, a trick play stream, or one of a number of alternate trick play streams protected using common cryptographic information. In several embodiments, the Matroska container file includes multiple multiplexed streams. For example, the Matroska container could include a video stream, and one or more audio streams, one or more subtitle streams, and/or one or more trick play streams. As is discussed further below, in many embodiments the Matroska container files are specialized files. The encoding of the media and the manner in which the media is stored within Cluster elements within the Matroska container file can be subject to constraints designed to enhance the performance of an adaptive bitrate streaming system. In a number of embodiments, common cryptographic information is included within a DRM header element in each of the Matroska container files and references to the common cryptographic information are made using DRMInfo elements included within BlockGroup elements of protected (not all frames need be protected to protect the stream). In addition, the Matroska container file can include index elements that facilitate the location and downloading of Cluster elements from the various Matroska container files during the adaptive streaming of the media. Top level index files and Matroska container files that can be used in adaptive bitrate streaming systems in accordance with embodiments of the invention are discussed below.
Top Level Index Files
Playback devices in accordance with many embodiments of the invention utilize a top level index file to identify the container files that contain the streams available to the playback device for use in adaptive bitrate streaming. In many embodiments, the top level index files can include references to container files that each include an alternative stream of encoded media. The playback device can utilize the information in the top level index file to retrieve encoded media from each of the container files according to the streaming conditions experienced by the playback device.
In several embodiments, the top level index file provides information enabling the playback device to retrieve information concerning the encoding of the media in each of the container files and an index to encoded media within each of the container files. In a number of embodiments, each container file includes information concerning the encoded media contained within the container file and an index to the encoded media within the container file and the top level index file indicates the portions of each container file containing this information. Therefore, a playback device can retrieve the top level index file and use the top level index file to request the portions of one or more of the container files that include information concerning the encoded media contained within the container file and an index to the encoded media within the container file. A variety of top level index files that can be utilized in adaptive bitrate streaming systems in accordance with embodiments of the invention are discussed further below.
In a number of embodiments, the top level index file utilized in the adaptive bitrate streaming of media is a SMIL file, which is an XML file that includes a list of URIs describing each of the streams and the container files that contain the streams. The URI can include information such as the “system-bitrate” of the stream contained within the stream and information concerning the location of specific pieces of data within the container file. The top level index SMIL file can be generated when the source media is encoded for playback via adaptive bitrate streaming. Alternatively, the top level index SMIL file can be generated when a playback device requests the commencement of playback of the encoded media. When the playback device receives the top level index SMIL file, the playback device can parse the SMIL file to identify the available streams. The playback device can then select the streams to utilize to playback the content and can use the SMIL file to identify the portions of the container file to download to obtain information concerning the encoding of a specific stream and/or to obtain an index to the encoded media within the container file.
Although top level index SMIL files are described above, any of a variety of top level index file formats can be utilized to create top level index files as appropriate to a specific application in accordance with an embodiment of the invention. The use of top level index files to enable playback of encoded media using adaptive bitrate streaming in accordance with embodiments of the invention is discussed further below.
Storing Protected Media in MKV Files for Adaptive Bitrate Streaming
A Matroska container file used to store encoded video in accordance with an embodiment of the invention is illustrated in
The Segment element 36 also includes a standard Clusters element 46. As is described below, the manner in which encoded media is inserted within individual Cluster elements 48 within the Clusters element 46 is constrained to improve the playback of the media in an adaptive streaming system. In many embodiments, the constraints imposed upon the encoded video are consistent with the specification of the Matroska container file format and involve encoding the video so that each cluster includes at least one closed GOP commencing with an IDR frame. In addition to the above elements, the Segment element 36 can optionally include a modified version of the standard Cues element. As is discussed further below, the Cues element includes specialized CuePoint elements (i.e. non-standard CuePoint elements) that facilitate the retrieval of the media contained within specific Cluster elements via HTTP. The Segment element 36 can optionally include a non-standard Hierarchical Index element 54. The Hierarchical Index element is an extension to the Matroska file format proposed by DivX, LLC of San Diego, Calif. The Hierarchical Index element is described in U.S. patent application Ser. No. 12/272,631, the disclosure of which is incorporated by reference above in its entirety.
The constraints imposed upon the encoding of media and the formatting of the encoded media within the Clusters element of a Matroska container file for adaptive bitrate streaming of protected streams and the additional DRM and index information inserted within the container file in accordance with embodiments of the invention are discussed further below.
Encoding Media for Insertion in Cluster Elements
An adaptive bitrate streaming system provides a playback device with the option of selecting between different protected streams of encoded media during playback according to the streaming conditions experienced by the playback device. In many embodiments, switching between protected streams is facilitated by separately pre-encoding discrete portions of the source media in accordance with the encoding parameters of each stream and then including each separately encoded portion in its own Cluster element within the stream's container file. Furthermore, the media contained within each Cluster is encoded so that the media is capable of playback without reference to media contained in any other Cluster within the stream. In this way, each stream includes a Cluster element corresponding to the same discrete portion of the source media and, at any time, the playback device can select the Cluster element from the stream that is most appropriate to the streaming conditions experienced by the playback device and can commence playback of the media contained within the Cluster element. Accordingly, the playback device can select clusters from different streams as the streaming conditions experienced by the playback device change over time. In several embodiments, the Cluster elements are further constrained so that each Cluster element contains a portion of encoded media from the source media having the same duration. In a number of embodiments, each Cluster element includes two seconds of encoded media. The specific constraints applied to the media encoded within each Cluster element depending upon the type of media (i.e. video, audio, or subtitles) are discussed below.
A Clusters element of a Matroska container file containing a video stream in accordance with an embodiment of the invention is illustrated in
Each Cluster element 48 includes a Timecode element 60 indicating the start time of the encoded video within the Cluster element and a plurality of BlockGroup elements. As noted above, the encoded video stored within the Cluster is constrained so that the encoded video can be played back without reference to the encoded video contained within any of the other Cluster elements in the container file. In many embodiments, encoding the video contained within the Cluster element as a GOP in which the first frame is an IDR frame enforces the constraint. In the illustrated embodiment, the first BlockGroup element 62 contains an IDR frame. Therefore, the first BlockGroup element 62 does not include a ReferenceBlock element. The first BlockGroup element 62 includes a Block element 64, which specifies the Timecode attribute of the frame encoded within the Block element 64 relative to the Timecode of the Cluster element 48 and a DRMInfo element 65 that identifies a portion of the frame that is encrypted and the cryptographic information that can be utilized to access the encrypted portion of the frame. In a number of embodiments, only a small portion of the video frame is encrypted and the DRMInfo includes a reference to the start of an encrypted block of data and the size of the encrypted block of data. As is discussed further below, the common cryptographic information utilized to protect alternative streams of video content is a set of frame keys in many embodiments of the invention and the DRMInfo element can also include an index to a specific frame key in the set of frame keys that can be utilized to access the encrypted block of data in the clear. In other embodiments, any of a variety of information appropriate to identifying encrypted data within a video frame and decrypting the encrypted data can be stored within a DRMInfo element.
Subsequent BlockGroup elements 66 are not restricted in the types of frames that they can contain (other than that they cannot reference frames that are not contained within the Cluster element). Therefore, subsequent BlockGroup elements 66 can include ReferenceBlock elements 68 referencing other BlockGroup element(s) utilized in the decoding of the frame contained within the BlockGroup or can contain IDR frames and are similar to the first BlockGroup element 62. In addition, subsequent BlockGroup elements 66 can also include DRMInfo elements to describe the manner in which the frame of video contained within the BlockGroup element is protected. As noted above, the manner in which encoded video is inserted within the Cluster elements of the Matroska file conforms with the specification of the Matroska file format.
The insertion of encoded audio and subtitle information within a Clusters element 46 of a Matroska container file in accordance with embodiments of the invention is illustrated in
Muliplexing Streams in a Single MKV Container File
The Clusters elements shown in
Incorporating Trick Play Streams in MKV Container Files for Use in Adaptive Bitrate Streaming Systems
The incorporation of trick play tracks within Matroska container files is proposed by DivX, LLC in U.S. patent application Ser. No. 12/260,404 entitled “Application Enhancement Tracks”, filed Oct. 29, 2008, the disclosure of which is hereby incorporated by reference in its entirety. Trick play tracks similar to the trick play tracks described in U.S. patent application Ser. No. 12/260,404 can be used to provide a trick play stream in an adaptive bitrate streaming system in accordance with an embodiment of the invention to provide smooth visual search through source content encoded for adaptive bitrate streaming. A separate trick play stream can be encoded that appears to be an accelerated visual search through the source media when played back, when in reality the trick play stream is simply a separate stream encoding the source media at a lower frame rate. In several embodiments, a trick play stream is generated in the manner outlined in U.S. patent application Ser. No. 12/260,404 and inserting the trick play stream into a Matroska container file subject to the constraints mentioned above with respect to insertion of a video stream into a Matroksa container file. In many embodiments, the trick play stream is also subject to the further constraint that every frame in the GOP of each Cluster element in the trick play stream is encoded as an IDR frame. As with the other video streams, each Cluster element contains a GOP corresponding to the same two seconds of source media as the corresponding Cluster elements in the other streams. There are simply fewer frames in the GOPs of the trick play stream and each frame has a longer duration. In this way, transitions to and from a trick play stream can be treated in the same way as transitions between any of the other encoded streams are treated within an adaptive bitrate streaming system in accordance with embodiments of the invention. In embodiments where the trick play stream(s) are protected, the same common cryptographic information utilized to encrypt the primary video stream(s) is utilized to protect the trick play stream(s). Playback of the frames contained within the trick play stream to achieve accelerated visual search typically involves the playback device manipulating the timecodes assigned to the frames of encoded video prior to providing the frames to the playback device's decoder to achieve a desired increase in rate of accelerated search (e.g. ×2, ×4, ×6, etc.).
A Clusters element containing encoded media from a trick play stream is shown in
In many embodiments, source content can be encoded to provide a single trick play stream or multiple trick play streams for use by the adaptive bit rate streaming system. When a single trick play stream is provided, the trick play stream is typically encoded at a low bitrate. When multiple alternative trick play streams are provided, adaptive streaming can also be performed with respect to the trick play streams. In several embodiments, multiple trick play streams are provided to support different rates of accelerated visual search through the encoded media.
Incorporating Indexing Information within MKV Container Files
The specification for the Matroska container file format provides for an optional Cues element that is used to index Block elements within the container file. A modified Cues element that can be incorporated into a Matroska container file in accordance with an embodiment of the invention to facilitate the requesting of clusters by a playback device using HTTP is illustrated in
The use of a modified Cues element to index encoded media within a Clusters element of a Matroska file in accordance with an embodiment of the invention is illustrated in
As can readily be appreciated the Cues element 52 forms an index to each of the Cluster elements 48 within the Matroska container file. Furthermore, the CueTrackPosition elements provide information that can be used by a playback device to request the byte range of a specific Cluster element 48 via HTTP or another suitable protocol from a remote server. The Cues element of a conventional Matroska file does not directly provide a playback device with information concerning the number of bytes to request from the start of the Cluster element in order to obtain all of the encoded video contained within the Cluster element. The size of a Cluster element is, therefore, inferred by using the CueClusterPosition attribute of the CueTrackPositions element that indexes the first byte of the next Cluster element. Alternatively, additional CueTrackPosition elements could be added that index the last byte of the Cluster element (in addition to the CueTrackPositions elements that index the first byte of the Cluster element), and/or a non-standard CueClusterSize attribute that specifies the size of the Cluster element pointed to by the CueClusterPosition attribute is included in each CueTrackPosition element to assist with the retrieval of specific Cluster elements within a Matroska container file via HTTP byte range requests or a similar protocol.
The modification of the Cues element in the manner outlined above significantly simplifies the retrieval of Cluster elements from a Matroska container file via HTTP or a similar protocol during adaptive bitrate streaming. In addition, by only indexing the first frame in each Cluster the size of the index is significantly reduced. Given that the index is typically downloaded prior to playback, the reduced size of the Cues element (i.e. index) means that playback can commence more rapidly. Using the CueClusterPosition elements, a playback device can request a specific Cluster element from the stream most suited to the streaming conditions experienced by the playback device by simply referencing the index of the relevant Matroska container file using the Timecode attribute for the desired Cluster element.
A number of the attributes within the Cues element are not utilized during adaptive bitrate streaming. Therefore, the Cues element can be further modified by removing the unutilized attributes to reduce the overall size of the index for each Matroska container file. A modified Cues element that can be utilized in a Matroska container file that includes a single encoded stream, where portions of the encoded stream having the same duration are contained in each Cluster element within the Matroska file in accordance with an embodiment of the invention is illustrated in
Although various modifications to the Cues element to include information concerning the size of each of the Cluster elements within a Matroska container file and to eliminate unnecessary attributes are described above, many embodiments of the invention utilize a conventional Matroska container. In several embodiments, the playback device simply determines the size of Cluster elements on the fly using information obtained from a conventional Cues element, and/or relies upon a separate index file containing information concerning the size and/or location of the Cluster elements within the MKV container file. In several embodiments, the additional index information is stored in the top level index file. In a number of embodiments, the additional index information is stored in separate files that are identified in the top level index file. When index information utilized to retrieve Cluster elements from a Matroska container file is stored separately from the container file, the Matroska container file is still typically constrained to encode media for inclusion in the Cluster elements in the manner outlined above. In addition, wherever the index information is located, the index information will typically index each Cluster element and include (but not be limited to) information concerning at least the starting location and, in many instances, the size of each Cluster element.
Incorporating Hierarchical Indexes into MKV Containers
Retrieval of media using HTTP during adaptive streaming can be improved by adding additional index information to the Matroska container files used to contain each of the encoded streams. In a number of embodiments, the index is a reduced index in that the index only points to the IDRs at the start of each cluster. In many embodiments, the index of the Matroska container file includes additional non-standard attributes (i.e. attributes that do not form part of the Matroska container file format specification) that specify the size of each of the clusters so that a playback device can retrieve a Cluster element from the Matroska container file via HTTP using a byte range request. In several embodiments, the Matroska container file includes a hierarchical index using a HierarchicalIndex element similar to the hierarchical indexes disclosed in U.S. patent application Ser. No. 12/272,631 entitled “Hierarchical and Reduced Index Structures for Multimedia Files” to Soroushian et al. filed Nov. 17, 2008 to increase the speed with which a playback device can seek to a specific Cluster element containing encoded media within the container file. The disclosure of U.S. patent application Ser. No. 12/272,631 is hereby incorporated by reference in its entirety.
A hierarchical index included in a Matroska container file using a HierarchicalIndex element in accordance with an embodiment of the invention is illustrated in
In several embodiments, the HierarchicalIndex element is generated so that the HierarchicalIndexPointer elements point to CuePoint elements indexing Cluster elements that are a predetermined time period apart. For example, the HierarchicalIndexPointer elements can point to CuePoint elements indexing Cluster elements that are spaced 30 seconds apart. In other implementations, any of a variety of implementations can be utilized to determine the interval between the CuePoint elements referenced by the higher layers of the hierarchical index. In addition, although a two layer hierarchical index is illustrated in
As noted above, index information can be stored in a separate file to the Matroska container file in accordance with embodiments of the invention. In embodiments where the index information is stored separately, the index can be hierarchical to prevent the need to download the entire index for a container file prior to playback and to facilitate seeking within the index.
Encoding and Protecting Source Media for Adaptive Bitrate Streaming
A process for encoding source media as a top level index file and a plurality of Matroska container files for use in an adaptive bitrate streaming system in accordance with an embodiment of the invention is illustrated in
A process for encoding and protecting frames of video to create a plurality of alternative streams of protected video in accordance with embodiments of the invention is illustrated in
Each portion of source video that is encoded (123) can be encoded as a single GOP commencing with an IDR frame. In many embodiments, encoding parameters used to create the alternative GOPs vary based upon bitrate, frame rate, encoding parameters and resolution. In this way, the portion of media is encoded as a set of interchangeable alternatives and a playback device can select the alternative most appropriate to the streaming conditions experienced by the playback device. When different resolutions are supported, the encoding of the streams is constrained so that each stream has the same display aspect ratio. A constant display aspect ratio can be achieved across different resolution streams by varying the sample aspect ratio with the resolution of the stream. In many instances, reducing resolution can result in higher quality video compared with higher resolution video encoded at the same bit rate.
Although specific processes involving the encoding and protection of a source video stream as a set of alternative streams are illustrated in
DRM Headers
Common cryptographic information utilized in protecting alternative streams can be inserted into container files containing each of the alternative streams. When the container files are Matroska container files, the common cryptographic information can be inserted into the container file as a DRMHeader element. A DRMHeader element configured to contain a set of keys in accordance with an embodiment of the invention is illustrated in
If the frame key record 134 is communicated in the clear, then any playback device can access the protected streams. Therefore, the frame keys record 134 is typically encrypted using one or more encryption keys. The encryption key(s) used to encrypt the frame key record 134 can be securely provided to an individual playback device using any of a variety of techniques appropriate to a specific application. In the context of streaming systems that also support the downloading of content.
Although a specific format for storing common cryptographic information in a Matroska container file is illustrated in
Adaptive Bitrate Streaming from MKV Container Files Using HTTP
When source media is encoded so that there are alternative streams of protected media contained in separate Matroska container files for at least one of video, audio, and subtitle content, adaptive streaming of the media contained within the Matroska container files can be achieved using HTTP requests or a similar stateless data transfer protocol. In many embodiments, a playback device requests a top level index file from a content distribution server and uses the index information to identify the streams that are available to the playback device and the cryptographic information required to access any protected streams. The playback device can then retrieve the indexes for one or more of the Matroska files and can use the indexes to request media from one or more of the protected streams contained within the Matroska container files using HTTP requests or using a similar stateless protocol. As noted above, many embodiment of the invention implement the indexes for each of the Matroska container files using a modified Cues element. In several embodiments, the index is a hierarchical index and is also includes a HierarchicalIndex element contained within the Matroska container file. In a number of embodiments, however, the encoded media for each stream is contained within a standard Matroska container file and separate index file(s) can also be provided for each of the container files.
Based upon the streaming conditions experienced by the playback device, the playback device can select media from alternative protected streams encoded at different bitrates. When the media from each of the streams is protected using common cryptographic information and inserted into the Matroska container files in the manner outlined above, transitions between streams can occur upon the completion of playback of media within a Cluster element without the need to retrieve additional cryptographic information. As noted above, the size of the Cluster elements (i.e. the duration of the encoded media within the Cluster elements) is typically chosen so that the playback device is able to respond quickly enough to changing streaming conditions and to instructions from the user that involve utilization of a trick play track. The smaller the Cluster elements (i.e. the smaller the duration of the encoded media within each Cluster element) the higher the overhead associated with requesting each Cluster element. Therefore, a tradeoff exists between the responsiveness of the playback device to changes in streaming conditions and the effective data rate of the adaptive streaming system for a given set of streaming conditions (i.e. the portion of the available bandwidth actually utilized to transmit encoded media). In many embodiments, the size of the Cluster elements is chosen so that each Cluster element contains two seconds of encoded media. In other embodiments, the duration of the encoded media can be greater or less than two seconds and/or the duration of the encoded media can vary from Cluster element to Cluster element.
Communication between a playback device or client and an HTTP server during the playback of media encoded in separate streams contained within Matroska container files indexed by a top level index file in accordance with an embodiment of the invention is illustrated in
ELEM(“EBML”)
The EBML element is typically processed by the playback device to ensure that the file version is supported. The SeekHead element is parsed to find the location of the Matroska index elements and the SegmentInfo element contains two key elements utilized in playback: TimecodeScale and Duration. The TimecodeScale specifies the timecode scale for all timecodes within the Segment of the Matroska container file and the Duration specifies the duration of the Segment based upon the TimecodeScale. The Tracks element contains the information used by the playback device to decode the encoded media contained within the Clusters element of the Matroska file including the common cryptographic information, which can take a variety of forms including but not limited to a DRMHeader element. As noted above, adaptive bitrate streaming systems in accordance with embodiments of the invention can support different streams encoded using different encoding parameters including but not limited to frame rate, and resolution. Therefore, the playback device can use the information contained within the Matroska container file's headers to configure the decoder every time a transition is made between encoded streams. Due to the fact that alternative protected streams utilize the same cryptographic information, the engine utilized to decrypt the content on the client 200 (i.e. the software process used to decrypt encrypted portions of frames of video) does not require reconfiguration using different cryptographic information with each stream switch.
In many embodiments, the playback device does not retrieve the headers for all of the Matroska container files indexed in the top level index file. Instead, the playback device determines the stream(s) that will be utilized to initially commence playback and requests the headers from the corresponding Matroska container files. Depending upon the structure of the URIs contained within the top level index file, the playback device can either use information from the URIs or information from the headers of the Matroska container files to request byte ranges from the server that contain at least a portion of the index from relevant Matroska container files. The byte ranges can correspond to the entire index or can correspond to the top level of a hierarchical index and a portion of a lower level index (i.e. a HierarchicalIndex element and one or more CuePoint elements). The server provides the relevant byte ranges containing the index information to the playback device, and the playback device can use the index information to request the byte ranges of Cluster elements containing encoded media using this information. When the Cluster elements are received, the playback device can extract encoded media from the BlockGroup elements within the Cluster element, and can decode and playback the media within the BlockGroup elements in accordance with their associated Timecode attributes. Prior to decoding the encoded media, the playback device can check for the presence of a DRMInfo element within each BlockGroup of a video stream to identify whether the encoded media is protected. The playback device can use the information within the DRMInfo element to decrypt encrypted portions of the video prior to decoding.
In the illustrated embodiment, the playback device 200 requests sufficient index information from the HTTP server prior to the commencement of playback that the playback device can stream the entirety of each of the selected streams using the index information. In other embodiments, the playback device continuously retrieves index information as media is played back. In several embodiments, all of the index information for the lowest bitrate steam is requested prior to playback so that the index information for the lowest bitrate stream is available to the playback device in the event that streaming conditions deteriorate rapidly during playback.
Switching Between Streams
The communications illustrated in
Communication between a playback device and a server when a playback device switches to a new stream in accordance with embodiments of the invention are illustrated in
Byte ranges for index information for the Matroska container file(s) containing the new stream(s) can be requested from the HTTP server 202 in a manner similar to that outlined above with respect to
When the Matroska file includes a hierarchical index, the process for switching between streams can involve downloading less than the entire index of the new streams. The index information can be downloaded by requesting the byte range for the hierarchical index and then using the Timecode attribute of media played back by the playback device 200 to identify the location of CuePoint elements within the Matroska container file(s) containing the new stream(s) that reference Cluster elements containing sequential encoded media and requesting the byte ranges of the CuePoint elements from the HTTP server 202. After the HTTP server has provided the byte ranges including the CuePoint elements, the playback device can use the information within the CuePoint elements to request byte ranges containing desired Cluster elements from the HTTP server. At which point, playback of the encoded media contained within the Cluster elements proceeds in the manner discussed above.
When the playback device caches the header and the entire index for each stream that has be utilized in the playback of the media, the process of switching back to a previously used stream can be simplified. The playback device already has the header and index information for the Matroska file containing the previously utilized stream and the playback device can simply use this information to start requesting Cluster elements from the Matroska container file of the previously utilized stream via HTTP. Communication between a playback device and an HTTP server when switching back to a stream(s) for which the playback device has cached header and index information in accordance with an embodiment of the invention is illustrated in
Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including various changes in the implementation such as utilizing encoders and decoders that support features beyond those specified within a particular standard with which they comply, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.
The current application is a continuation of U.S. patent application Ser. No. 15/481,340, filed Apr. 6, 2017, entitled “Systems and Methods for Playing Back Alternative Streams of Protected Content Protected Using Common Cryptographic Information” to Kiefer et al., which application is a continuation of U.S. patent application Ser. No. 14/970,412, filed Dec. 15, 2015, entitled “Systems and Methods for Playing Back Alternative Streams of Protected Content Protected Using Common Cryptographic Information” to Kiefer et al., which is a continuation of U.S. patent application Ser. No. 14/564,003, filed Dec. 8, 2014 and issued on Jan. 26, 2016 as U.S. Pat. No. 9,247,311, entitled “Systems and Methods for Playing Back Alternative Streams of Protected Content Protected Using Common Cryptographic Information” to Kiefer et al., which application is a continuation of U.S. patent application Ser. No. 13/340,623, filed Dec. 29, 2011 and issued on Dec. 9, 2014 as U.S. Pat. No. 8,909,922, entitled “Systems and Methods for Playing Back Alternative Streams of Protected Content Protected Using Common Cryptographic Information” to Kiefer et al., which application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 61/530,305 filed Sep. 1, 2011, entitled “Multi-Asset Protected Content Multimedia Delivery System”, the disclosures of which are expressly incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4009331 | Goldmark et al. | Feb 1977 | A |
4694357 | Rahman et al. | Sep 1987 | A |
4802170 | Trottier | Jan 1989 | A |
4964069 | Ely | Oct 1990 | A |
5119474 | Beitel et al. | Jun 1992 | A |
5274758 | Beitel et al. | Dec 1993 | A |
5361332 | Yoshida et al. | Nov 1994 | A |
5396497 | Veltman | Mar 1995 | A |
5404436 | Hamilton | Apr 1995 | A |
5420801 | Dockter et al. | May 1995 | A |
5420974 | Morris et al. | May 1995 | A |
5471576 | Yee | Nov 1995 | A |
5479303 | Suzuki et al. | Dec 1995 | A |
5487167 | Dinallo et al. | Jan 1996 | A |
5502766 | Boebert et al. | Mar 1996 | A |
5509070 | Schull | Apr 1996 | A |
5533021 | Branstad et al. | Jul 1996 | A |
5537408 | Branstad et al. | Jul 1996 | A |
5539908 | Chen et al. | Jul 1996 | A |
5541662 | Adams et al. | Jul 1996 | A |
5583652 | Ware | Dec 1996 | A |
5589993 | Naimpally et al. | Dec 1996 | A |
5621794 | Matsuda et al. | Apr 1997 | A |
5627936 | Prasad | May 1997 | A |
5633472 | DeWitt et al. | May 1997 | A |
5642171 | Baumgartner et al. | Jun 1997 | A |
5655117 | Goldberg et al. | Aug 1997 | A |
5664044 | Ware | Sep 1997 | A |
5675382 | Bauchspies | Oct 1997 | A |
5675511 | Prasad et al. | Oct 1997 | A |
5684542 | Tsukagoshi | Nov 1997 | A |
5715403 | Stefik | Feb 1998 | A |
5717816 | Boyce et al. | Feb 1998 | A |
5719786 | Nelson et al. | Feb 1998 | A |
5745643 | Mishina | Apr 1998 | A |
5751280 | Abbott | May 1998 | A |
5754648 | Ryan et al. | May 1998 | A |
5763800 | Rossum et al. | Jun 1998 | A |
5765164 | Prasad et al. | Jun 1998 | A |
5794018 | Vrvilo et al. | Aug 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5822524 | Chen et al. | Oct 1998 | A |
5828370 | Moeller et al. | Oct 1998 | A |
5841432 | Carmel et al. | Nov 1998 | A |
5844575 | Reid | Dec 1998 | A |
5848217 | Tsukagoshi et al. | Dec 1998 | A |
5867625 | McLaren | Feb 1999 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5903261 | Walsh et al. | May 1999 | A |
5907597 | Mark | May 1999 | A |
5946446 | Yanagihara | Aug 1999 | A |
5956729 | Goetz et al. | Sep 1999 | A |
5959690 | Toebes, VIII et al. | Sep 1999 | A |
5970147 | Davis | Oct 1999 | A |
5999812 | Himsworth | Dec 1999 | A |
6031622 | Ristow et al. | Feb 2000 | A |
6038257 | Brusewitz et al. | Mar 2000 | A |
6044469 | Horstmann | Mar 2000 | A |
6046778 | Nonomura et al. | Apr 2000 | A |
6047100 | McLaren | Apr 2000 | A |
6058240 | McLaren | May 2000 | A |
6064794 | McLaren et al. | May 2000 | A |
6065050 | DeMoney | May 2000 | A |
6018611 | Nogami et al. | Jun 2000 | A |
6079566 | Eleftheriadis et al. | Jun 2000 | A |
6097877 | Katayama et al. | Aug 2000 | A |
6141754 | Choy | Oct 2000 | A |
6155840 | Sallette | Dec 2000 | A |
6169242 | Fay et al. | Jan 2001 | B1 |
6175921 | Rosen | Jan 2001 | B1 |
6195388 | Choi et al. | Feb 2001 | B1 |
6204883 | Tsukagoshi | Mar 2001 | B1 |
6222981 | Rijckaert | Apr 2001 | B1 |
6282653 | Berstis et al. | Aug 2001 | B1 |
6289450 | Pensak et al. | Sep 2001 | B1 |
6292621 | Tanaka et al. | Sep 2001 | B1 |
6308005 | Ando et al. | Oct 2001 | B1 |
6330286 | Lyons et al. | Dec 2001 | B1 |
6374144 | Viviani et al. | Apr 2002 | B1 |
6389218 | Gordon et al. | May 2002 | B2 |
6389473 | Carmel et al. | May 2002 | B1 |
6395969 | Fuhrer | May 2002 | B1 |
6397230 | Carmel et al. | May 2002 | B1 |
6418270 | Steenhof et al. | Jul 2002 | B1 |
6449719 | Baker | Sep 2002 | B1 |
6466671 | Maillard et al. | Oct 2002 | B1 |
6466733 | Kim | Oct 2002 | B1 |
6510513 | Danieli | Jan 2003 | B1 |
6510554 | Gordon et al. | Jan 2003 | B1 |
6621979 | Eerenberg et al. | Sep 2003 | B1 |
6625320 | Nilsson et al. | Sep 2003 | B1 |
6658056 | Duruöz et al. | Dec 2003 | B1 |
6665835 | Gutfreund et al. | Dec 2003 | B1 |
6671408 | Kaku | Dec 2003 | B1 |
6697568 | Kaku | Feb 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6771703 | Oguz et al. | Aug 2004 | B1 |
6807306 | Girgensohn et al. | Oct 2004 | B1 |
6810031 | Hegde et al. | Oct 2004 | B1 |
6810389 | Meyer | Oct 2004 | B1 |
6819394 | Nomura et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6856997 | Lee et al. | Feb 2005 | B2 |
6859496 | Boroczky et al. | Feb 2005 | B1 |
6917652 | Lyu | Jul 2005 | B2 |
6931531 | Takahashi | Aug 2005 | B1 |
6944621 | Collart | Sep 2005 | B1 |
6944629 | Shioi et al. | Sep 2005 | B1 |
6956901 | Boroczky et al. | Oct 2005 | B2 |
6965724 | Boccon-Gibod et al. | Nov 2005 | B1 |
6965993 | Baker | Nov 2005 | B2 |
6985588 | Glick et al. | Jan 2006 | B1 |
6988144 | Luken et al. | Jan 2006 | B1 |
7007170 | Morten | Feb 2006 | B2 |
7023924 | Keller et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7103906 | Katz et al. | Sep 2006 | B1 |
7127155 | Ando et al. | Oct 2006 | B2 |
7150045 | Koelle et al. | Dec 2006 | B2 |
7151832 | Fetkovich et al. | Dec 2006 | B1 |
7151833 | Candelore et al. | Dec 2006 | B2 |
7165175 | Kollmyer et al. | Jan 2007 | B1 |
7185363 | Narin et al. | Feb 2007 | B1 |
7197234 | Chatterton | Mar 2007 | B1 |
7206940 | Evans et al. | Apr 2007 | B2 |
7209892 | Galuten et al. | Apr 2007 | B1 |
7231132 | Davenport | Jun 2007 | B1 |
7237061 | Boic | Jun 2007 | B1 |
7242772 | Tehranchi | Jul 2007 | B1 |
7243346 | Seth et al. | Jul 2007 | B1 |
7295673 | Grab et al. | Nov 2007 | B2 |
7328345 | Morten et al. | Feb 2008 | B2 |
7330875 | Parasnis et al. | Feb 2008 | B1 |
7340528 | Noblecourt et al. | Mar 2008 | B2 |
7349886 | Morten et al. | Mar 2008 | B2 |
7356143 | Morten | Apr 2008 | B2 |
7356245 | Belknap et al. | Apr 2008 | B2 |
7366788 | Jones et al. | Apr 2008 | B2 |
7376831 | Kollmyer et al. | May 2008 | B2 |
7406174 | Palmer | Jul 2008 | B2 |
7421411 | Kontio et al. | Sep 2008 | B2 |
7454780 | Katsube et al. | Nov 2008 | B2 |
7457359 | Mabey et al. | Nov 2008 | B2 |
7460668 | Grab et al. | Dec 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7478325 | Foehr | Jan 2009 | B2 |
7484103 | Woo et al. | Jan 2009 | B2 |
7493018 | Kim | Feb 2009 | B2 |
7499938 | Collart | Mar 2009 | B2 |
7515710 | Russell et al. | Apr 2009 | B2 |
7526450 | Hughes et al. | Apr 2009 | B2 |
7594271 | Zhuk et al. | Sep 2009 | B2 |
7610365 | Kraft et al. | Oct 2009 | B1 |
7640435 | Morten | Dec 2009 | B2 |
7689510 | Lamkin et al. | Mar 2010 | B2 |
7720352 | Belknap et al. | May 2010 | B2 |
7747853 | Candelore et al. | Jun 2010 | B2 |
7761892 | Ellis et al. | Jul 2010 | B2 |
7779097 | Lamkin et al. | Aug 2010 | B2 |
7788271 | Soma et al. | Aug 2010 | B2 |
7817608 | Rassool et al. | Oct 2010 | B2 |
7869691 | Kelly et al. | Jan 2011 | B2 |
7882034 | Hug et al. | Feb 2011 | B2 |
7949703 | Matsuzaki et al. | May 2011 | B2 |
7962942 | Craner | Jun 2011 | B1 |
7974714 | Hoffberg | Jul 2011 | B2 |
7991156 | Miller | Aug 2011 | B1 |
8023562 | Zheludkov et al. | Sep 2011 | B2 |
8046453 | Olaiya | Oct 2011 | B2 |
8054880 | Yu et al. | Nov 2011 | B2 |
8065708 | Smyth et al. | Nov 2011 | B1 |
8069260 | Speicher et al. | Nov 2011 | B2 |
8082442 | Keljo et al. | Dec 2011 | B2 |
8195714 | Mckibben et al. | Jun 2012 | B2 |
8201264 | Grab et al. | Jun 2012 | B2 |
8225061 | Greenebaum | Jul 2012 | B2 |
8233768 | Soroushian et al. | Jul 2012 | B2 |
8245124 | Gupta | Aug 2012 | B1 |
8249168 | Graves | Aug 2012 | B2 |
8261356 | Choi et al. | Sep 2012 | B2 |
8265168 | Masterson et al. | Sep 2012 | B1 |
8270473 | Chen et al. | Sep 2012 | B2 |
8270819 | Vannier | Sep 2012 | B2 |
8275871 | Ram et al. | Sep 2012 | B2 |
8289338 | Priyadarshi et al. | Oct 2012 | B2 |
8291460 | Peacock | Oct 2012 | B1 |
8296434 | Miller et al. | Oct 2012 | B1 |
8311111 | Xu et al. | Nov 2012 | B2 |
8311115 | Gu et al. | Nov 2012 | B2 |
8321556 | Chatterjee et al. | Nov 2012 | B1 |
8341715 | Sherkin et al. | Dec 2012 | B2 |
8386621 | Park | Feb 2013 | B2 |
8396114 | Gu et al. | Mar 2013 | B2 |
8401900 | Cansler et al. | Mar 2013 | B2 |
8407753 | Kuo | Mar 2013 | B2 |
8412841 | Swaminathan et al. | Apr 2013 | B1 |
8423889 | Zagorie et al. | Apr 2013 | B1 |
8452110 | Shoham et al. | May 2013 | B2 |
8456380 | Pagan | Jun 2013 | B2 |
8472792 | Ahsan et al. | Jun 2013 | B2 |
8473630 | Galligan et al. | Jun 2013 | B1 |
8510303 | Soroushian et al. | Aug 2013 | B2 |
8510404 | Carmel et al. | Aug 2013 | B2 |
8515265 | Kwon et al. | Aug 2013 | B2 |
8516529 | Lajoie et al. | Aug 2013 | B2 |
8527645 | Proffit et al. | Sep 2013 | B1 |
8595378 | Cohn | Nov 2013 | B1 |
8606069 | Okubo et al. | Dec 2013 | B2 |
8640166 | Craner et al. | Jan 2014 | B1 |
8649669 | Braness et al. | Feb 2014 | B2 |
8656183 | Russell et al. | Feb 2014 | B2 |
8677428 | Lewis et al. | Mar 2014 | B2 |
8681866 | Jia | Mar 2014 | B1 |
8689267 | Hunt | Apr 2014 | B2 |
8726264 | Allen et al. | May 2014 | B1 |
RE45052 | Li | Jul 2014 | E |
8767825 | Wang et al. | Jul 2014 | B1 |
8774609 | Drake et al. | Jul 2014 | B2 |
8781122 | Chan et al. | Jul 2014 | B2 |
8805109 | Shoham et al. | Aug 2014 | B2 |
8806188 | Braness et al. | Aug 2014 | B2 |
8832434 | Apostolopoulos et al. | Sep 2014 | B2 |
8843586 | Pantos et al. | Sep 2014 | B2 |
8856218 | Inskip | Oct 2014 | B1 |
8908984 | Shoham et al. | Dec 2014 | B2 |
8909922 | Kiefer et al. | Dec 2014 | B2 |
8914534 | Braness et al. | Dec 2014 | B2 |
8914836 | Shivadas et al. | Dec 2014 | B2 |
8918535 | Ma et al. | Dec 2014 | B2 |
8918636 | Kiefer | Dec 2014 | B2 |
8918908 | Ziskind et al. | Dec 2014 | B2 |
8948249 | Sun et al. | Feb 2015 | B2 |
8997161 | Priyadarshi et al. | Mar 2015 | B2 |
8997254 | Amidei et al. | Mar 2015 | B2 |
9014471 | Shoham et al. | Apr 2015 | B2 |
9025659 | Soroushian et al. | May 2015 | B2 |
9042670 | Carmel et al. | May 2015 | B2 |
9060207 | Scherkus et al. | Jun 2015 | B2 |
9094737 | Shivadas et al. | Jul 2015 | B2 |
9098335 | Muthiah et al. | Aug 2015 | B2 |
9124773 | Chan et al. | Sep 2015 | B2 |
9125073 | Oyman et al. | Sep 2015 | B2 |
9184920 | Grab et al. | Nov 2015 | B2 |
9191457 | Van Der Schaar | Nov 2015 | B2 |
9197685 | Soroushian | Nov 2015 | B2 |
9203816 | Brueck et al. | Dec 2015 | B2 |
9210481 | Braness et al. | Dec 2015 | B2 |
9215466 | Zhai et al. | Dec 2015 | B2 |
9247311 | Kiefer | Jan 2016 | B2 |
9247312 | Braness et al. | Jan 2016 | B2 |
9247317 | Shivadas et al. | Jan 2016 | B2 |
9253178 | Blom et al. | Feb 2016 | B2 |
9264475 | Shivadas et al. | Feb 2016 | B2 |
9294531 | Zhang et al. | Mar 2016 | B2 |
9313510 | Shivadas et al. | Apr 2016 | B2 |
9343112 | Amidei et al. | May 2016 | B2 |
9344517 | Shivadas et al. | May 2016 | B2 |
9344721 | Dikvall | May 2016 | B2 |
9479805 | Rothschild et al. | Oct 2016 | B2 |
9485546 | Chen et al. | Nov 2016 | B2 |
9571827 | Su et al. | Feb 2017 | B2 |
9584557 | Panje et al. | Feb 2017 | B2 |
9584847 | Ma et al. | Feb 2017 | B2 |
9621522 | Kiefer et al. | Apr 2017 | B2 |
9706259 | Chan et al. | Jul 2017 | B2 |
9712890 | Shivadas et al. | Jul 2017 | B2 |
9798863 | Grab et al. | Oct 2017 | B2 |
9813740 | Panje et al. | Nov 2017 | B2 |
9866878 | Van Der Schaar et al. | Jan 2018 | B2 |
9883204 | Braness et al. | Jan 2018 | B2 |
9906785 | Naletov et al. | Feb 2018 | B2 |
9967189 | Patel et al. | May 2018 | B2 |
9967305 | Braness | May 2018 | B2 |
20010030710 | Werner | Oct 2001 | A1 |
20010036355 | Kelly et al. | Nov 2001 | A1 |
20010046299 | Wasilewski et al. | Nov 2001 | A1 |
20010053222 | Wakao et al. | Dec 2001 | A1 |
20020026560 | Jordan et al. | Feb 2002 | A1 |
20020034252 | Owen et al. | Mar 2002 | A1 |
20020051494 | Yamaguchi et al. | May 2002 | A1 |
20020057898 | Normile | May 2002 | A1 |
20020062313 | Lee et al. | May 2002 | A1 |
20020076112 | Devara | Jun 2002 | A1 |
20020087569 | Fischer et al. | Jul 2002 | A1 |
20020091665 | Beek et al. | Jul 2002 | A1 |
20020093571 | Hyodo | Jul 2002 | A1 |
20020110193 | Yoo et al. | Aug 2002 | A1 |
20020116481 | Lee | Aug 2002 | A1 |
20020118953 | Kim | Aug 2002 | A1 |
20020120934 | Abrahams et al. | Aug 2002 | A1 |
20020136298 | Anantharamu et al. | Sep 2002 | A1 |
20020143413 | Fay et al. | Oct 2002 | A1 |
20020143547 | Fay et al. | Oct 2002 | A1 |
20020147980 | Satoda | Oct 2002 | A1 |
20020159598 | Rubinstein et al. | Oct 2002 | A1 |
20020161462 | Fay | Oct 2002 | A1 |
20020180929 | Tseng et al. | Dec 2002 | A1 |
20020184159 | Tadayon et al. | Dec 2002 | A1 |
20020184515 | Oho et al. | Dec 2002 | A1 |
20020191112 | Akiyoshi et al. | Dec 2002 | A1 |
20020191959 | Lin et al. | Dec 2002 | A1 |
20020191960 | Fujinami et al. | Dec 2002 | A1 |
20030001964 | Masukura et al. | Jan 2003 | A1 |
20030002578 | Tsukagoshi et al. | Jan 2003 | A1 |
20030005442 | Brodersen et al. | Jan 2003 | A1 |
20030021296 | Wee et al. | Jan 2003 | A1 |
20030031178 | Haeri | Feb 2003 | A1 |
20030035488 | Barrau | Feb 2003 | A1 |
20030035545 | Jiang | Feb 2003 | A1 |
20030035546 | Jiang et al. | Feb 2003 | A1 |
20030041257 | Wee et al. | Feb 2003 | A1 |
20030061305 | Copley et al. | Mar 2003 | A1 |
20030061369 | Aksu et al. | Mar 2003 | A1 |
20030065777 | Mattila et al. | Apr 2003 | A1 |
20030078930 | Surcouf et al. | Apr 2003 | A1 |
20030093799 | Kauffman et al. | May 2003 | A1 |
20030123855 | Okada et al. | Jul 2003 | A1 |
20030128296 | Lee | Jul 2003 | A1 |
20030133506 | Haneda | Jul 2003 | A1 |
20030152370 | Otomo et al. | Aug 2003 | A1 |
20030163824 | Gordon et al. | Aug 2003 | A1 |
20030165328 | Grecia | Sep 2003 | A1 |
20030174844 | Candelore | Sep 2003 | A1 |
20030185302 | Abrams | Oct 2003 | A1 |
20030185542 | McVeigh et al. | Oct 2003 | A1 |
20030206558 | Parkkinen et al. | Nov 2003 | A1 |
20030216922 | Gonzales et al. | Nov 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030231863 | Eerenberg et al. | Dec 2003 | A1 |
20030231867 | Gates et al. | Dec 2003 | A1 |
20030233464 | Walpole et al. | Dec 2003 | A1 |
20030236836 | Borthwick | Dec 2003 | A1 |
20030236907 | Stewart et al. | Dec 2003 | A1 |
20040006701 | Kresina | Jan 2004 | A1 |
20040021684 | Millner | Feb 2004 | A1 |
20040024688 | Bi et al. | Feb 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040031058 | Reisman | Feb 2004 | A1 |
20040039916 | Aldis et al. | Feb 2004 | A1 |
20040047614 | Green | Mar 2004 | A1 |
20040052501 | Tam | Mar 2004 | A1 |
20040071453 | Valderas | Apr 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040081434 | Jung et al. | Apr 2004 | A1 |
20040084035 | Newton | May 2004 | A1 |
20040093618 | Baldwin et al. | May 2004 | A1 |
20040105549 | Suzuki et al. | Jun 2004 | A1 |
20040114687 | Ferris et al. | Jun 2004 | A1 |
20040117347 | Seo et al. | Jun 2004 | A1 |
20040136698 | Mock | Jul 2004 | A1 |
20040139335 | Diamand et al. | Jul 2004 | A1 |
20040143760 | Alkove et al. | Jul 2004 | A1 |
20040146276 | Ogawa | Jul 2004 | A1 |
20040158878 | Ratnakar et al. | Aug 2004 | A1 |
20040184534 | Wang | Sep 2004 | A1 |
20040184616 | Morten et al. | Sep 2004 | A1 |
20040202320 | Amini et al. | Oct 2004 | A1 |
20040217971 | Kim | Nov 2004 | A1 |
20040255115 | DeMello et al. | Dec 2004 | A1 |
20040255236 | Collart | Dec 2004 | A1 |
20050004875 | Kontio et al. | Jan 2005 | A1 |
20050005025 | Harville et al. | Jan 2005 | A1 |
20050015797 | Noblecourt et al. | Jan 2005 | A1 |
20050038826 | Bae et al. | Feb 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050071280 | Irwin et al. | Mar 2005 | A1 |
20050108320 | Lord et al. | May 2005 | A1 |
20050114534 | Lee | May 2005 | A1 |
20050114896 | Hug | May 2005 | A1 |
20050132208 | Hug et al. | Jun 2005 | A1 |
20050149450 | Stefik et al. | Jul 2005 | A1 |
20050180641 | Clark | Aug 2005 | A1 |
20050183120 | Jain et al. | Aug 2005 | A1 |
20050193070 | Brown et al. | Sep 2005 | A1 |
20050193322 | Lamkin et al. | Sep 2005 | A1 |
20050196147 | Seo et al. | Sep 2005 | A1 |
20050204289 | Mohammed et al. | Sep 2005 | A1 |
20050207442 | Van Zoest et al. | Sep 2005 | A1 |
20050207578 | Matsuyama et al. | Sep 2005 | A1 |
20050254508 | Aksu et al. | Nov 2005 | A1 |
20050273695 | Schnurr | Dec 2005 | A1 |
20050275656 | Corbin et al. | Dec 2005 | A1 |
20060015580 | Gabriel et al. | Jan 2006 | A1 |
20060026294 | Virdi et al. | Feb 2006 | A1 |
20060026302 | Bennett et al. | Feb 2006 | A1 |
20060036549 | Wu | Feb 2006 | A1 |
20060037057 | Xu | Feb 2006 | A1 |
20060052095 | Vazvan | Mar 2006 | A1 |
20060053080 | Edmonson et al. | Mar 2006 | A1 |
20060064605 | Giobbi | Mar 2006 | A1 |
20060078301 | Ikeda et al. | Apr 2006 | A1 |
20060093320 | Hallberg et al. | May 2006 | A1 |
20060120378 | Usuki et al. | Jun 2006 | A1 |
20060129909 | Butt et al. | Jun 2006 | A1 |
20060165233 | Nonaka et al. | Jul 2006 | A1 |
20060168639 | Gan et al. | Jul 2006 | A1 |
20060173887 | Breitfeld et al. | Aug 2006 | A1 |
20060179239 | Fluhr | Aug 2006 | A1 |
20060181965 | Collart | Aug 2006 | A1 |
20060235880 | Qian | Oct 2006 | A1 |
20060245727 | Nakano et al. | Nov 2006 | A1 |
20060259588 | Lerman et al. | Nov 2006 | A1 |
20060263056 | Lin et al. | Nov 2006 | A1 |
20060267986 | Bae | Nov 2006 | A1 |
20060274835 | Hamilton et al. | Dec 2006 | A1 |
20060294164 | Armangau et al. | Dec 2006 | A1 |
20070005333 | Setiohardjo et al. | Jan 2007 | A1 |
20070031110 | Rijckaert | Feb 2007 | A1 |
20070033419 | Kocher et al. | Feb 2007 | A1 |
20070044010 | Sull et al. | Feb 2007 | A1 |
20070047901 | Ando et al. | Mar 2007 | A1 |
20070053513 | Hoffberg | Mar 2007 | A1 |
20070058928 | Naito et al. | Mar 2007 | A1 |
20070083617 | Chakrabarti et al. | Apr 2007 | A1 |
20070086528 | Mauchly et al. | Apr 2007 | A1 |
20070100757 | Rhoads | May 2007 | A1 |
20070133603 | Weaver | Jun 2007 | A1 |
20070136817 | Nguyen | Jun 2007 | A1 |
20070140647 | Kusunoki et al. | Jun 2007 | A1 |
20070154165 | Hemmeryckz-Deleersnijder et al. | Jul 2007 | A1 |
20070168541 | Gupta et al. | Jul 2007 | A1 |
20070168542 | Gupta et al. | Jul 2007 | A1 |
20070178933 | Nelson | Aug 2007 | A1 |
20070180125 | Knowles et al. | Aug 2007 | A1 |
20070185982 | Nakanowatari et al. | Aug 2007 | A1 |
20070192810 | Pritchett et al. | Aug 2007 | A1 |
20070217339 | Zhao | Sep 2007 | A1 |
20070217759 | Dodd | Sep 2007 | A1 |
20070234391 | Hunter et al. | Oct 2007 | A1 |
20070239839 | Buday et al. | Oct 2007 | A1 |
20070255940 | Ueno | Nov 2007 | A1 |
20070271317 | Carmel et al. | Nov 2007 | A1 |
20070271385 | Davis et al. | Nov 2007 | A1 |
20070274679 | Yahata et al. | Nov 2007 | A1 |
20070277219 | Toebes et al. | Nov 2007 | A1 |
20070277234 | Bessonov et al. | Nov 2007 | A1 |
20070280298 | Hearn et al. | Dec 2007 | A1 |
20070288745 | Kwan | Dec 2007 | A1 |
20070292107 | Yahata et al. | Dec 2007 | A1 |
20070297422 | Matsuo et al. | Dec 2007 | A1 |
20080005175 | Bourke et al. | Jan 2008 | A1 |
20080008455 | De Lange et al. | Jan 2008 | A1 |
20080043832 | Barkley et al. | Feb 2008 | A1 |
20080046718 | Grab | Feb 2008 | A1 |
20080066099 | Brodersen et al. | Mar 2008 | A1 |
20080066181 | Haveson et al. | Mar 2008 | A1 |
20080077592 | Brodie et al. | Mar 2008 | A1 |
20080086456 | Rasanen et al. | Apr 2008 | A1 |
20080086747 | Rasanen et al. | Apr 2008 | A1 |
20080101466 | Swenson et al. | May 2008 | A1 |
20080104633 | Noblecourt et al. | May 2008 | A1 |
20080120330 | Reed et al. | May 2008 | A1 |
20080120342 | Reed et al. | May 2008 | A1 |
20080120389 | Bassali et al. | May 2008 | A1 |
20080126248 | Lee et al. | May 2008 | A1 |
20080137541 | Agarwal et al. | Jun 2008 | A1 |
20080137736 | Richardson et al. | Jun 2008 | A1 |
20080151817 | Fitchett | Jun 2008 | A1 |
20080172441 | Speicher et al. | Jul 2008 | A1 |
20080187283 | Takahashi | Aug 2008 | A1 |
20080192818 | DiPietro et al. | Aug 2008 | A1 |
20080195664 | Maharajh et al. | Aug 2008 | A1 |
20080195744 | Bowra et al. | Aug 2008 | A1 |
20080201705 | Wookey | Aug 2008 | A1 |
20080205860 | Holtman | Aug 2008 | A1 |
20080209534 | Keronen et al. | Aug 2008 | A1 |
20080240144 | Kruse et al. | Oct 2008 | A1 |
20080256105 | Nogawa et al. | Oct 2008 | A1 |
20080263354 | Beuque et al. | Oct 2008 | A1 |
20080279535 | Hague et al. | Nov 2008 | A1 |
20080294453 | Baird-Smith et al. | Nov 2008 | A1 |
20080298358 | John et al. | Dec 2008 | A1 |
20080310454 | Bellwood et al. | Dec 2008 | A1 |
20080310496 | Fang | Dec 2008 | A1 |
20090031220 | Tranchant et al. | Jan 2009 | A1 |
20090037959 | Suh et al. | Feb 2009 | A1 |
20090048852 | Burns et al. | Feb 2009 | A1 |
20090055546 | Jung et al. | Feb 2009 | A1 |
20090060452 | Chaudhri | Mar 2009 | A1 |
20090064341 | Hartung et al. | Mar 2009 | A1 |
20090066839 | Jung et al. | Mar 2009 | A1 |
20090097644 | Haruki | Apr 2009 | A1 |
20090132599 | Soroushian et al. | May 2009 | A1 |
20090132721 | Soroushian et al. | May 2009 | A1 |
20090132824 | Terada et al. | May 2009 | A1 |
20090136216 | Soroushian et al. | May 2009 | A1 |
20090150557 | Wormley et al. | Jun 2009 | A1 |
20090165148 | Frey et al. | Jun 2009 | A1 |
20090168795 | Segel et al. | Jul 2009 | A1 |
20090169181 | Priyadarshi et al. | Jul 2009 | A1 |
20090172201 | Carmel et al. | Jul 2009 | A1 |
20090178090 | Oztaskent | Jul 2009 | A1 |
20090196139 | Bates et al. | Aug 2009 | A1 |
20090201988 | Gazier et al. | Aug 2009 | A1 |
20090217317 | White et al. | Aug 2009 | A1 |
20090226148 | Nesvadba et al. | Sep 2009 | A1 |
20090228395 | Wegner et al. | Sep 2009 | A1 |
20090265737 | Issa et al. | Oct 2009 | A1 |
20090276636 | Grab et al. | Nov 2009 | A1 |
20090290706 | Amini et al. | Nov 2009 | A1 |
20090290708 | Schneider et al. | Nov 2009 | A1 |
20090293116 | DeMello | Nov 2009 | A1 |
20090303241 | Priyadarshi et al. | Dec 2009 | A1 |
20090307258 | Priyadarshi et al. | Dec 2009 | A1 |
20090307267 | Chen et al. | Dec 2009 | A1 |
20090310819 | Hatano | Dec 2009 | A1 |
20090310933 | Lee | Dec 2009 | A1 |
20090313544 | Wood et al. | Dec 2009 | A1 |
20090313564 | Rottler et al. | Dec 2009 | A1 |
20090316783 | Au et al. | Dec 2009 | A1 |
20090328124 | Khouzam et al. | Dec 2009 | A1 |
20090328228 | Schnell | Dec 2009 | A1 |
20100040351 | Toma et al. | Feb 2010 | A1 |
20100057928 | Kapoor et al. | Mar 2010 | A1 |
20100058405 | Ramakrishnan et al. | Mar 2010 | A1 |
20100074324 | Qian et al. | Mar 2010 | A1 |
20100074333 | Au et al. | Mar 2010 | A1 |
20100083322 | Rouse | Apr 2010 | A1 |
20100094969 | Zuckerman et al. | Apr 2010 | A1 |
20100095121 | Shetty et al. | Apr 2010 | A1 |
20100106968 | Mori et al. | Apr 2010 | A1 |
20100107260 | Orrell et al. | Apr 2010 | A1 |
20100111192 | Graves | May 2010 | A1 |
20100138903 | Medvinsky | Jun 2010 | A1 |
20100142917 | Isaji | Jun 2010 | A1 |
20100158109 | Dahlby et al. | Jun 2010 | A1 |
20100161825 | Ronca et al. | Jun 2010 | A1 |
20100166060 | Ezure et al. | Jul 2010 | A1 |
20100186092 | Takechi et al. | Jul 2010 | A1 |
20100189183 | Gu et al. | Jul 2010 | A1 |
20100218208 | Holden | Aug 2010 | A1 |
20100228795 | Hahn | Sep 2010 | A1 |
20100235472 | Sood et al. | Sep 2010 | A1 |
20100250532 | Soroushian et al. | Sep 2010 | A1 |
20100290761 | Drake et al. | Nov 2010 | A1 |
20100299522 | Khambete et al. | Nov 2010 | A1 |
20100306249 | Hill et al. | Dec 2010 | A1 |
20100313225 | Cholas et al. | Dec 2010 | A1 |
20100313226 | Cholas et al. | Dec 2010 | A1 |
20100319014 | Lockett et al. | Dec 2010 | A1 |
20100319017 | Cook | Dec 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
20110002381 | Yang et al. | Jan 2011 | A1 |
20110016225 | Park et al. | Jan 2011 | A1 |
20110047209 | Lindholm et al. | Feb 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110060808 | Martin et al. | Mar 2011 | A1 |
20110066673 | Outlaw | Mar 2011 | A1 |
20110067057 | Karaoguz et al. | Mar 2011 | A1 |
20110078440 | Feng et al. | Mar 2011 | A1 |
20110080940 | Bocharov | Apr 2011 | A1 |
20110082924 | Gopalakrishnan | Apr 2011 | A1 |
20110096828 | Chen et al. | Apr 2011 | A1 |
20110107379 | Lajoie et al. | May 2011 | A1 |
20110116772 | Kwon et al. | May 2011 | A1 |
20110126191 | Hughes et al. | May 2011 | A1 |
20110129011 | Cilli et al. | Jun 2011 | A1 |
20110135090 | Chan et al. | Jun 2011 | A1 |
20110138018 | Raveendran et al. | Jun 2011 | A1 |
20110142415 | Rhyu | Jun 2011 | A1 |
20110145726 | Wei et al. | Jun 2011 | A1 |
20110149753 | Bapst et al. | Jun 2011 | A1 |
20110150100 | Abadir | Jun 2011 | A1 |
20110153785 | Minborg et al. | Jun 2011 | A1 |
20110153835 | Rimac et al. | Jun 2011 | A1 |
20110184738 | Kalisky et al. | Jul 2011 | A1 |
20110191439 | Dazzi et al. | Aug 2011 | A1 |
20110191803 | Baldwin et al. | Aug 2011 | A1 |
20110197237 | Turner | Aug 2011 | A1 |
20110197267 | Gravel et al. | Aug 2011 | A1 |
20110213827 | Kaspar et al. | Sep 2011 | A1 |
20110222786 | Carmel et al. | Sep 2011 | A1 |
20110225302 | Park et al. | Sep 2011 | A1 |
20110225315 | Wexler et al. | Sep 2011 | A1 |
20110225417 | Maharajh et al. | Sep 2011 | A1 |
20110239078 | Luby et al. | Sep 2011 | A1 |
20110246657 | Glow | Oct 2011 | A1 |
20110246659 | Bouazizi | Oct 2011 | A1 |
20110252118 | Pantos et al. | Oct 2011 | A1 |
20110264530 | Santangelo et al. | Oct 2011 | A1 |
20110268178 | Park et al. | Nov 2011 | A1 |
20110276695 | Maldaner et al. | Nov 2011 | A1 |
20110283012 | Melnyk | Nov 2011 | A1 |
20110291723 | Hashimoto | Dec 2011 | A1 |
20110302319 | Ha et al. | Dec 2011 | A1 |
20110305273 | He et al. | Dec 2011 | A1 |
20110314176 | Frojdh et al. | Dec 2011 | A1 |
20110314500 | Gordon | Dec 2011 | A1 |
20120005368 | Knittle et al. | Jan 2012 | A1 |
20120017282 | Kang et al. | Jan 2012 | A1 |
20120023251 | Pyle et al. | Jan 2012 | A1 |
20120036365 | Kyslov et al. | Feb 2012 | A1 |
20120036544 | Chen et al. | Feb 2012 | A1 |
20120066360 | Ghosh | Mar 2012 | A1 |
20120093214 | Urbach | Apr 2012 | A1 |
20120114302 | Randall | May 2012 | A1 |
20120124191 | Lyon | May 2012 | A1 |
20120137336 | Applegate et al. | May 2012 | A1 |
20120144117 | Weare et al. | Jun 2012 | A1 |
20120144445 | Bonta et al. | Jun 2012 | A1 |
20120166633 | Baumback et al. | Jun 2012 | A1 |
20120170642 | Braness et al. | Jul 2012 | A1 |
20120170643 | Soroushian et al. | Jul 2012 | A1 |
20120170906 | Soroushian et al. | Jul 2012 | A1 |
20120170915 | Braness et al. | Jul 2012 | A1 |
20120173751 | Braness et al. | Jul 2012 | A1 |
20120177101 | Van Der Schaar | Jul 2012 | A1 |
20120179834 | Van Der Schaar et al. | Jul 2012 | A1 |
20120201475 | Carmel et al. | Aug 2012 | A1 |
20120201476 | Carmel et al. | Aug 2012 | A1 |
20120233345 | Hannuksela | Sep 2012 | A1 |
20120240176 | Ma et al. | Sep 2012 | A1 |
20120254455 | Adimatyam et al. | Oct 2012 | A1 |
20120260277 | Kosciewicz | Oct 2012 | A1 |
20120263434 | Wainner et al. | Oct 2012 | A1 |
20120265562 | Daouk et al. | Oct 2012 | A1 |
20120278496 | Hsu | Nov 2012 | A1 |
20120289147 | Raleigh et al. | Nov 2012 | A1 |
20120294355 | Holcomb et al. | Nov 2012 | A1 |
20120297039 | Acuna et al. | Nov 2012 | A1 |
20120307883 | Graves | Dec 2012 | A1 |
20120311094 | Biderman et al. | Dec 2012 | A1 |
20120314778 | Salustri et al. | Dec 2012 | A1 |
20120317235 | Nguyen et al. | Dec 2012 | A1 |
20130007223 | Luby et al. | Jan 2013 | A1 |
20130013730 | Li et al. | Jan 2013 | A1 |
20130019107 | Grab et al. | Jan 2013 | A1 |
20130019273 | Ma et al. | Jan 2013 | A1 |
20130041808 | Pham et al. | Feb 2013 | A1 |
20130044821 | Braness et al. | Feb 2013 | A1 |
20130046849 | Wolf | Feb 2013 | A1 |
20130046902 | Villegas Nuñez et al. | Feb 2013 | A1 |
20130051554 | Braness et al. | Feb 2013 | A1 |
20130054958 | Braness et al. | Feb 2013 | A1 |
20130055084 | Soroushian et al. | Feb 2013 | A1 |
20130058480 | Ziskind et al. | Mar 2013 | A1 |
20130061040 | Kiefer et al. | Mar 2013 | A1 |
20130061045 | Kiefer et al. | Mar 2013 | A1 |
20130064466 | Carmel et al. | Mar 2013 | A1 |
20130066838 | Singla et al. | Mar 2013 | A1 |
20130094565 | Yang et al. | Apr 2013 | A1 |
20130097309 | Ma et al. | Apr 2013 | A1 |
20130114944 | Soroushian et al. | May 2013 | A1 |
20130124859 | Pestoni et al. | May 2013 | A1 |
20130128962 | Rajagopalan et al. | May 2013 | A1 |
20130152767 | Katz et al. | Jun 2013 | A1 |
20130166580 | Maharajh | Jun 2013 | A1 |
20130166765 | Kaufman | Jun 2013 | A1 |
20130166906 | Swaminathan et al. | Jun 2013 | A1 |
20130170561 | Hannuksela | Jul 2013 | A1 |
20130170764 | Carmel et al. | Jul 2013 | A1 |
20130173513 | Chu et al. | Jul 2013 | A1 |
20130179199 | Ziskind et al. | Jul 2013 | A1 |
20130179992 | Ziskind et al. | Jul 2013 | A1 |
20130182952 | Carmel et al. | Jul 2013 | A1 |
20130196292 | Brennen et al. | Aug 2013 | A1 |
20130212228 | Butler | Aug 2013 | A1 |
20130223812 | Rossi | Aug 2013 | A1 |
20130226578 | Bolton et al. | Aug 2013 | A1 |
20130226635 | Fisher | Aug 2013 | A1 |
20130227081 | Luby et al. | Aug 2013 | A1 |
20130227122 | Gao | Aug 2013 | A1 |
20130301424 | Kotecha et al. | Nov 2013 | A1 |
20130311670 | Tarbox et al. | Nov 2013 | A1 |
20130329781 | Su et al. | Dec 2013 | A1 |
20140003516 | Soroushian | Jan 2014 | A1 |
20140019593 | Reznik et al. | Jan 2014 | A1 |
20140037620 | Ferree et al. | Feb 2014 | A1 |
20140052823 | Gavade et al. | Feb 2014 | A1 |
20140059156 | Freeman, II et al. | Feb 2014 | A1 |
20140096171 | Shivadas et al. | Apr 2014 | A1 |
20140101722 | Moore | Apr 2014 | A1 |
20140115650 | Zhang et al. | Apr 2014 | A1 |
20140119432 | Wang et al. | May 2014 | A1 |
20140140396 | Wang et al. | May 2014 | A1 |
20140140417 | Shaffer et al. | May 2014 | A1 |
20140143301 | Watson et al. | May 2014 | A1 |
20140143431 | Watson et al. | May 2014 | A1 |
20140143440 | Ramamurthy et al. | May 2014 | A1 |
20140177734 | Carmel et al. | Jun 2014 | A1 |
20140189065 | Van Der Schaar et al. | Jul 2014 | A1 |
20140201382 | Shivadas et al. | Jul 2014 | A1 |
20140211840 | Butt et al. | Jul 2014 | A1 |
20140211859 | Carmel et al. | Jul 2014 | A1 |
20140241420 | Orton-Jay et al. | Aug 2014 | A1 |
20140241421 | Orton-Jay et al. | Aug 2014 | A1 |
20140247869 | Su et al. | Sep 2014 | A1 |
20140250473 | Braness et al. | Sep 2014 | A1 |
20140258714 | Grab | Sep 2014 | A1 |
20140269927 | Naletov et al. | Sep 2014 | A1 |
20140269936 | Shivadas et al. | Sep 2014 | A1 |
20140280763 | Grab et al. | Sep 2014 | A1 |
20140297804 | Shivadas et al. | Oct 2014 | A1 |
20140297881 | Shivadas et al. | Oct 2014 | A1 |
20140355668 | Shoham et al. | Dec 2014 | A1 |
20140359678 | Shivadas et al. | Dec 2014 | A1 |
20140359679 | Shivadas et al. | Dec 2014 | A1 |
20140359680 | Shivadas et al. | Dec 2014 | A1 |
20140376720 | Chan et al. | Dec 2014 | A1 |
20150006662 | Braness | Jan 2015 | A1 |
20150026677 | Stevens et al. | Jan 2015 | A1 |
20150049957 | Shoham et al. | Feb 2015 | A1 |
20150063693 | Carmel et al. | Mar 2015 | A1 |
20150067715 | Koat et al. | Mar 2015 | A1 |
20150104153 | Braness et al. | Apr 2015 | A1 |
20150117836 | Amidei et al. | Apr 2015 | A1 |
20150117837 | Amidei et al. | Apr 2015 | A1 |
20150139419 | Kiefer et al. | May 2015 | A1 |
20150188758 | Amidei et al. | Jul 2015 | A1 |
20150188842 | Amidei et al. | Jul 2015 | A1 |
20150188921 | Amidei et al. | Jul 2015 | A1 |
20150189017 | Amidei et al. | Jul 2015 | A1 |
20150189373 | Amidei et al. | Jul 2015 | A1 |
20150288996 | Van Der Schaar et al. | Oct 2015 | A1 |
20150334435 | Shivadas et al. | Nov 2015 | A1 |
20150373421 | Chan et al. | Dec 2015 | A1 |
20160070890 | Grab et al. | Mar 2016 | A1 |
20160112382 | Kiefer et al. | Apr 2016 | A1 |
20160149981 | Shivadas et al. | May 2016 | A1 |
20160219303 | Braness et al. | Jul 2016 | A1 |
20170214947 | Kiefer et al. | Jul 2017 | A1 |
20170280203 | Chan et al. | Sep 2017 | A1 |
20180007451 | Shivadas et al. | Jan 2018 | A1 |
20180060543 | Grab et al. | Mar 2018 | A1 |
20180131980 | Van Der Schaar et al. | May 2018 | A1 |
20180220153 | Braness et al. | Aug 2018 | A1 |
20180332094 | Braness | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2010203605 | May 2015 | AU |
1169229 | Dec 1997 | CN |
1221284 | Jun 1999 | CN |
1723696 | Jan 2006 | CN |
757484 | Feb 1997 | EP |
813167 | Dec 1997 | EP |
0936812 | Aug 1999 | EP |
1056273 | Nov 2000 | EP |
1187483 | Mar 2002 | EP |
1420580 | May 2004 | EP |
1553779 | Jul 2005 | EP |
1657835 | May 2006 | EP |
1718074 | Nov 2006 | EP |
2486517 | Aug 2012 | EP |
2486727 | Aug 2012 | EP |
2507995 | Oct 2012 | EP |
2564354 | Mar 2013 | EP |
2616991 | Jul 2013 | EP |
2617192 | Jul 2013 | EP |
2661696 | Nov 2013 | EP |
2661875 | Nov 2013 | EP |
2661895 | Nov 2013 | EP |
2486727 | Mar 2014 | EP |
2564354 | Mar 2014 | EP |
2616991 | Mar 2014 | EP |
2617192 | Mar 2014 | EP |
2716048 | Apr 2014 | EP |
2721826 | Apr 2014 | EP |
2486517 | Jun 2014 | EP |
2751990 | Jul 2014 | EP |
2807821 | Dec 2014 | EP |
2751990 | Apr 2015 | EP |
1125765 | Aug 2009 | HK |
08046902 | Feb 1996 | JP |
08111842 | Apr 1996 | JP |
08163488 | Jun 1996 | JP |
08287613 | Nov 1996 | JP |
09037225 | Feb 1997 | JP |
11164307 | Jun 1999 | JP |
11275576 | Oct 1999 | JP |
11328929 | Nov 1999 | JP |
2000201343 | Jul 2000 | JP |
02001043668 | Feb 2001 | JP |
2001209726 | Aug 2001 | JP |
2001346165 | Dec 2001 | JP |
2002164880 | Jun 2002 | JP |
2002170363 | Jun 2002 | JP |
2002518898 | Jun 2002 | JP |
2002218384 | Aug 2002 | JP |
2003179597 | Jun 2003 | JP |
2003250113 | Sep 2003 | JP |
2004013823 | Jan 2004 | JP |
2004515941 | May 2004 | JP |
2004172830 | Jun 2004 | JP |
2004187161 | Jul 2004 | JP |
2004234128 | Aug 2004 | JP |
2005027153 | Jan 2005 | JP |
2005080204 | Mar 2005 | JP |
2006155500 | Jun 2006 | JP |
2006524007 | Oct 2006 | JP |
2007036666 | Feb 2007 | JP |
2007174375 | Jul 2007 | JP |
2007235690 | Sep 2007 | JP |
2007535881 | Dec 2007 | JP |
2008235999 | Oct 2008 | JP |
2009530917 | Aug 2009 | JP |
2013513298 | Apr 2013 | JP |
5200204 | Jun 2013 | JP |
2014506430 | Mar 2014 | JP |
5723888 | Apr 2015 | JP |
2015167357 | Sep 2015 | JP |
6038805 | Dec 2016 | JP |
6078574 | Jan 2017 | JP |
2017063453 | Mar 2017 | JP |
2018160923 | Oct 2018 | JP |
100221423 | Sep 1999 | KR |
2002013664 | Feb 2002 | KR |
1020020064888 | Aug 2002 | KR |
100669616 | Jan 2007 | KR |
1020130133830 | Dec 2013 | KR |
101874907 | Jul 2018 | KR |
146026 | Dec 2010 | SG |
1995015660 | Jun 1995 | WO |
1996013121 | May 1996 | WO |
1997031445 | Apr 1998 | WO |
1999010836 | Mar 1999 | WO |
1999065239 | Dec 1999 | WO |
0104892 | Jan 2001 | WO |
2001031497 | May 2001 | WO |
2001050732 | Jul 2001 | WO |
2001065762 | Sep 2001 | WO |
2002001880 | Jan 2002 | WO |
2002008948 | Jan 2002 | WO |
2002035832 | May 2002 | WO |
2002037210 | May 2002 | WO |
2002054196 | Jul 2002 | WO |
2003030000 | Apr 2003 | WO |
2003096136 | Nov 2003 | WO |
2004054247 | Jun 2004 | WO |
2004097811 | Nov 2004 | WO |
2004102571 | Nov 2004 | WO |
2006018843 | Feb 2006 | WO |
20060012398 | Feb 2006 | WO |
2006018843 | Dec 2006 | WO |
2007044590 | Apr 2007 | WO |
2007113836 | Oct 2007 | WO |
2008010275 | Jan 2008 | WO |
2008042242 | Apr 2008 | WO |
2008086313 | Jul 2008 | WO |
2007113836 | Nov 2008 | WO |
2008135932 | Nov 2008 | WO |
2007113836 | Dec 2008 | WO |
2009065137 | May 2009 | WO |
201005673 | Jan 2010 | WO |
2010060106 | May 2010 | WO |
2010080911 | Jul 2010 | WO |
2010089962 | Aug 2010 | WO |
2010108053 | Sep 2010 | WO |
2010111261 | Sep 2010 | WO |
2010122447 | Oct 2010 | WO |
2010147878 | Dec 2010 | WO |
2011042898 | Apr 2011 | WO |
2011042900 | Apr 2011 | WO |
2011068668 | Jun 2011 | WO |
2011103364 | Aug 2011 | WO |
2011132184 | Oct 2011 | WO |
2011135558 | Nov 2011 | WO |
2012035533 | Mar 2012 | WO |
2012035534 | Mar 2012 | WO |
2012035534 | Jul 2012 | WO |
2012094171 | Jul 2012 | WO |
20120094181 | Jul 2012 | WO |
20120094189 | Jul 2012 | WO |
2012035533 | Aug 2012 | WO |
2012162806 | Dec 2012 | WO |
2012171113 | Dec 2012 | WO |
2013030833 | Mar 2013 | WO |
2013032518 | Mar 2013 | WO |
2013103986 | Jul 2013 | WO |
2013111126 | Aug 2013 | WO |
2013111126 | Aug 2013 | WO |
2013032518 | Sep 2013 | WO |
2013144942 | Oct 2013 | WO |
2014145901 | Sep 2014 | WO |
2014193996 | Dec 2014 | WO |
2014193996 | Feb 2015 | WO |
2015031982 | Mar 2015 | WO |
Entry |
---|
Papagiannaki et al., “Experimental Characterization of Home Wireless Networks and Design Implications”, INFOCOM 2006, 25th IEEE International Conference of Computer Communications, Proceedings, Apr. 2006, 13 pgs. |
Peek, David, “Consumer Distributed File Systems”, Dissertation, Doctor of Philosophy, Computer Science and Engineering, The University of Michigan, 2009, 118 pgs. |
Phamdo, “Theory of Data Compression”, printed on Oct. 10, 2003, 12 pgs. |
RGB Networks, “Comparing Adaptive HTTP Streaming Technologies”, Nov. 2011, Retrieved from: http://btreport.net/wp-content/uploads/2012/02/RGB-Adaptive-HTTP-Streaming-Comparison-1211-01.pdf, 20 pgs. |
Rosenberg et al., “Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”, Network Working Group, RFC 3840, Aug. 2004, 36 pgs. |
Schulzrinne, H., “Real Time Streaming Protocol 2.0 (RTSP): draft-ietfmmusic-rfc2326bis-27”, MMUSIC Working Group of the Internet Engineering Task Force (IETF), Mar. 9, 2011, 296 pgs. (presented in two parts). |
Siglin, “HTTP Streaming: What You Need to Know”, streamingmedia.com, 2010, 15 pgs. |
Siglin, “Unifying Global Video Strategies, MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Nov. 16, 2011, 16 pgs. |
Silvio, “adaptive HTTP streaming for open codecs”, Oct. 9, 2010, [retrieved on: Mar. 2, 2018], 15 pgs. |
Tan, Yap-Peng et al., “Video transcoding for fast forward/reverse video playback”, IEEE ICIP, 2002, 4 pgs. |
Taxan, “AVel LinkPlayer2 for Consumer”, I-O Data USA—Products—Home Entertainment, printed May 4, 2007 from http://www.iodata.com/usa/products/products.php?cat=HNP&sc=AVEL&pld=AVLP2/DVDLA&ts=2&tsc, 1 page. |
Tripathi et al., “Improving Multimedia Streaming with Content-Aware Video Scaling”, Retrieved from: http://digitalcommons.wpi.edu/computerscience-pubs/96, 2001, 17 pgs. |
Unknown, “AVI RIFF File Reference (Direct X 8.1 C++ Archive)”, printed from http://msdn.microsoft.com/archive/en-us/dx81_c/directx_cpp/htm/avirifffilereference.asp?fr . . . on Mar. 6, 2006, 7 pgs. |
Unknown, “Entropy and Source Coding (Compression)”, TCOM 570, Sep. 1999, pp. 1-22. |
Venkatramani et al., “Securing Media for Adaptive Streaming”, Multimedia 2003 Proceedings of the Eleventh ACM International Conference on Multimedia, Nov. 2-8, 2003, Berkeley, California, 4 pgs. |
Wang et al., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transactions on Image Processing, Apr. 2004, vol. 13, No. 4, pp. 600-612. |
Wu, Feng et al., “Next Generation Mobile Multimedia Communications: Media Codec and Media Transport Perspectives”, In China Communications, Oct. 2006, pp. 30-44. |
Zambelli, “IIS Smooth Streaming Technical Overview”, Microsoft Corporation, Mar. 2009, 17 pgs. |
“IBM Closes Cryptolopes Unit,” Dec. 17, 1997, CNET News, Printed on Apr. 25, 2014 from http://news.cnet.com/IBM-closes-Cryptolopes-unit/2100-1001_3206465.html, 3 pgs. |
“Information Technology-Coding of Audio Visual Objects—Part 2: Visual” International Standard, ISO/IEC 14496-2, Third Edition, Jun. 1, 2004, pp. 1-724. (presented in three parts). |
U.S. Appl. No. 13/905,804, “Notice of Allowance,” dated Aug. 12, 2015, 8 pgs. |
Broadq—The Ultimate Home Entertainment Software, printed May 11, 2009 from ittp://web.srchive.org/web/20030401122010/www.broadq.com/qcasttuner/, 1 pg. |
Cloakware Corporation, “Protecting Digital Content Using Cloakware Code Transformation Technology”, Version 1.2, May 2002, pp. 1-10. |
European Search Report Application No. EP 08870152, Search Completed May 19, 2011, dated May 26, 2011, 9 pgs. |
European Search Report for Application 11855103.5, search completed Jun. 26, 2014, 9 pgs. |
European Search Report for Application 11855237.1, search completed Jun. 12, 2014, 9 pgs. |
European Supplementary Search Report for Application EP09759600, completed Jan. 25, 2011, 11 pgs. |
Extended European Search Report for European Application EP10821672, completed Jan. 30, 2014, 3 pgs. |
Extended European Search Report for European Application EP11824682, completed Feb. 6, 2014, 4 pgs. |
Extended European Search Report for European Application No. 14763140.2, Search completed Sep. 26, 2016, dated Oct. 5, 2016, 9 pgs. |
Federal Computer Week, “Tool Speeds Info to Vehicles”, Jul. 25, 1999, 5 pgs. |
Final draft ETSI ES 202 109, V1.1.1, ETSI Standard, Terrestrial Trunked Radio (TETRA); Security; Synchronization mechanism for end-to-end encryption, Oct. 2002, 17 pgs. |
HTTP Live Streaming Overview, Networking & Internet, Apple, Inc., Apr. 1, 2011, 38 pgs. |
IBM Corporation and Microsoft Corporation, “Multimedia Programming Interface and Data Specifications 1.0”, Aug. 1991, printed from http://www.kk.iij4u.or.jp/˜kondo/wave/mpidata.txt on Mar. 6, 2006, 100 pgs. |
InformationWeek, “Internet on Wheels”, InformationWeek: Front End: Daily Dose, Jul. 20, 1999, Printed on Mar. 26, 2014, 3 pgs. |
International Preliminary Report for Application No. PCT/US2011/066927, Filed Dec. 22, 2011, dated Jul. 10, 2013, 13 pgs. |
International Preliminary Report for International Application No. PCT/US2011/067243, International Filing Date Dec. 23, 2011, dated Jul. 10, 2013, 7 pgs. |
International Preliminary Report on Patentability for International Application PCT/US14/30747, dated Sep. 15, 2015, dated Sep. 24, 2015, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2007/063950, Report Completed Dec. 18, 2009, 3 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/083816, dated May 18, 2010, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2010/56733, dated Jun. 5, 2012, pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/068276, dated Mar. 4, 2014, 23 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2011/067167, dated Feb. 25, 2014, 8 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/043181, dated Dec. 31, 2014, dated Jan. 8, 2015, 11 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/039852, dated Dec. 1, 2015, dated Dec. 5, 2015, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US07/63950, completed Feb. 19, 2008; dated Mar. 19, 2008, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US08/87999, completed Feb. 7, 2009, dated Mar. 19, 2009, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US09/46588, completed Jul. 13, 2009, dated Jul. 23, 2009, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2004/041667, completed May 24, 2007, dated Jun. 20, 2007, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2005/025845, completed Feb. 5, 2007 and dated May 10, 2007, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2008/083816, completed Jan. 10, 2009, dated Jan. 22, 2009, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2010/020372, Completed Feb. 10, 2009, dated Mar. 1, 2010, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2010/56733, Completed Jan. 3, 2011, dated Jan. 14, 2011, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2011/067243, International Filing Date Dec. 23, 2011, Search Completed Apr. 24, 2012, dated May 8, 2012, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/043181, completed Nov. 27, 2013, dated Dec. 6, 2013, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/30747, completed Jul. 30, 2014, dated Aug. 22, 2014, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/39852, completed Oct. 21, 2014, dated Dec. 5, 2014, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/066927, completed Apr. 3, 2012, dated Apr. 20, 2012, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/067167, completed Jun. 19, 2012, dated Jul. 2, 2012, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/068276, completed Jun. 19, 2013, dated Jul. 8, 2013, 24 pgs. |
International Search Report and Written Opinion for PCT/US2013/020572, International Filing Date Jan. 7, 2013, Search Completed Mar. 19, 2013, dated Apr. 29, 2013, 10 pgs. |
International Telecommunication Union, Telecommunication Standardization Sector of ITU, H.233, Line Transmission of Non-Telephone Signals, Confidentiality System for Audiovisual Services, ITU-T Recommendation H.233, Mar. 1993, 18 pgs. |
ITS International, “Fleet System Opts for Mobile Server”, Aug. 26, 1999, Printed on Oct. 21, 2011 from http://www.itsinternational.com/News/article.cfm?recordID=547, 2 pgs. |
Lifehacker—Boxqueue Bookmarklet Saves Videos for Later Boxee Watching, printed Jun. 16, 2009 from http://feeds.gawker.com/˜r/lifehacker/full/˜3/OHvDmrlgZZc/boxqueue-bookmarklet-saves-videos-for-late-boxee-watching, 2 pgs. |
Linksys Wireless-B Media Adapter Reviews, printed May 4, 2007 from http://reviews.cnet.com/Linksys_Wireless_B_Media_Adapter/4505-6739_7-30421900.html?tag=box, 5 pgs. |
Linksys, KISS DP-500, printed May 4, 2007 from http://www.kiss-technology.com/?p=dp500, 2 pgs. |
LINKSYS®: “Enjoy your digital music and pictures on your home entertainment center, without stringing wires!”, Model No. WMA 11B, printed May 9, 2007 from http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US/Layout&cid=1115416830950&p, 4 pgs. |
Microsoft Corporation, “Chapter 8, Multimedia File Formats” 1991, Microsoft Windows Multimedia Programmer's Reference, 23 pgs. |
Microsoft Media Platform: Player Framework, “Microsoft Media Platform: Player Framework v2.5 (formerly Silverlight Media Framework)”, May 3, 2011, 2 pgs. |
Microsoft Media Platform: Player Framework, “Silverlight Media Framework v1.1”, Jan. 2010, 2 pgs. |
Microsoft Windows® XP Media Center Edition 2005, Frequently asked Questions, printed May 4, 2007 from http://www.microsoft.com/windowsxp/mediacenter/evaluation/faq.mspx, 6 pgs. |
Microsoft Windows® XP Media Center Edition 2005: Features, printed May 9, 2007, from http://www.microsoft.com/windowsxp/mediacenter/evaluation/features.mspx, 4 pgs. |
Office Action for Chinese Patent Application No. CN200880127596.4, dated May 6, 2014, 8 pgs. |
Office Action for U.S. Appl. No. 13/223,210, dated Apr. 30, 2015, 14 pgs. |
Office Action for U.S. Appl. No. 14/564,003, dated Apr. 17, 2015, 28 pgs. |
Open DML AVI-M-JPEG File Format Subcommittee, “Open DML AVI File Format Extensions”, Version 1.02, Feb. 28, 1996, 29 pgs. |
PC world.com, Future Gear: PC on the HiFi, and the TV, from http://www.pcworld.com/article/id,108818-page,1/article.html, printed May 4, 2007, from IDG Networks, 2 pgs. |
QTV—About BroadQ, printed May 11, 2009 from http://www.broadq.com/en/about.php, 1 page. |
Supplementary European Search Report for Application No. EP 04813918, Search Completed Dec. 19, 2012, 3 pgs. |
Supplementary European Search Report for Application No. EP 10729513, completed Dec. 9, 2013, 4 pgs. |
Supplementary European Search Report for EP Application 11774529, completed Jan. 31, 2014, 2 pgs. |
Supplementary European Search Report for International Application No. PCT/US2007063950, Report Completed Jan. 25, 2013, 8 pgs. |
Windows Media Center Extender for Xbox, printed May 9, 2007 from http://www.xbox.com/en-US/support/systemuse/xbox/console/mediacenterextender.htm, 2 pgs. |
Windows® XP Media Center Edition 2005, “Experience more entertainment”, retrieved from http://download.microsoft.com/download/c/9/a/c9a7000a-66b3-455b-860b-1c16f2eecfec/MCE.pdf on May 9, 2007, 2 pgs. |
Written Opinion for International Application No. PCT/US2007/063950 filed Mar. 14, 2007, report completed Mar. 1, 2008; dated Mar. 19, 2008, 6 pgs. |
Written Opinion for International Application No. PCT/US2009/046588, completed Jul. 14, 2009, dated Jul. 23, 2009, 5 pgs. |
Invitation to Pay Add'l Fees Rcvd for International Application PCT/US14/39852, dated Sep. 25, 2014, 2 pgs. |
3GPP TS 26.247, V1.3.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects Transparent end-to-end Packet-switches Streaming Services (PSS);, Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) (Release 10), Mar. 2011, 72 pgs. |
“Adaptive Streaming Comparison”, Jan. 28, 2010, 5 pgs. |
“Best Practices for Multi-Device Transcoding”, Kaltura Open Source Video, Printed on Nov. 27, 2013 from knowledge.kaltura.com/best-practices-multi-device-transcoding, 13 pgs. |
“Container format (digital)”, printed Aug. 22, 2009 from http://en.wikipedia.org/wiki/Container_format_(digital), 4 pgs. |
“Diagram | Matroska”, Dec. 17, 2010, Retrieved from http://web.archive.org/web/20101217114656/http:l/matroska.org/technical/diagram/index.html on Jan. 29, 2016, Dec. 17, 2010, 5 pgs. |
“Draft CR: Trick Mode for HTTP Streaming”, 3GPP TSG-SA4 Meeting #58, Apr. 26-30, 2010, Vancouver, Canada, S4-100237, 3 pgs. |
“DVD—MPeg differences”, printed Jul. 2, 2009 from http://dvd.sourceforge.net/dvdinfo/dvdmpeg.html, 1 page. |
“DVD subtitles”, sam.zoy.org/writings/dvd/subtitles, dated Jan. 9, 2001, printed Jul. 2, 2009, 4 pgs. |
“Final Committee Draft of MPEG-4 streaming text format”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“IBM Spearheading Intellectual Property Protection Technology for Information on the Internet; Cryptolope Containers Have Arrived”, May 1, 1996, Business Wire, Printed on Aug. 1, 2014 from http://www.thefreelibrary.com/IBM+Spearheading+Intellectual+Property+Protection+Technology+for . . . -a018239381, 6 pgs. |
“Information Technology—Coding of audio-visual objects—Part 14: MP4 file format”, International Standard, ISO/IEC 14496-14, First Edition, Nov. 15, 2003, 18 pgs. |
“Information Technology—Coding of audio-visual objects—Part 17: Streaming text”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“Information technology—Coding of audio-visual objects—Part 18: Font compression and streaming”, ISO/IEC 14496-18, First edition Jul. 1, 2004, 26 pgs. |
“Information technology—Generic coding of moving pictures and associated audio information: Systems”, International Standard ISO/IEC 13818-1, Second Edition, Dec. 1, 2000, 174 pgs (presented in two parts). |
“Information-Technology—Generic coding of moving pictures and associated audio: Systems, Recommendation H.222.0”, International Standard, ISO/IEC 13818-1, Draft 1209, Apr. 25, 1995, 151 pgs. |
“Information-Technology—Generic coding of moving pictures and associated audio: Systems, Recommendation H.222.0”, International Standard, ISO/IEC 13818-1, Draft 1540, Nov. 13, 1994, 161 pgs. |
“Innovation of technology arrived”, I-O Data, Nov. 2004, Retrieved from http://www.iodata.com/catalogs/AVLP2DVDLA_Flyer200505.pdf on May 30, 2013, 2 pgs., I-O Data, 2 pgs. |
KISS Players, “KISS DP-500”, retrieved from http://www.kiss-technology.com/?p=dp500 on May 4, 2007, 1 page. |
“Matroska”, Wkipedia, Jul. 10, 2017, retrieved from https://en.wikipedia.org/wiki/Matroska on Jul. 20, 2017, 3 pgs. |
“Matroska Streaming | Matroska”, Retrieved from the Internet: URL:http://web.archive.org/web/201 0121711431 O/http://matroska.org/technical!streaming/index.html [retrieved on Jan. 29, 2016], Dec. 17, 2010, 2 pgs. |
“MovieLabs Specification for Next Generation Video—Version 1.0”, Motion Picture Laboratories, Inc., 2013, Retrieved from: http://movielabs.com/ngvideo/MovieLabs%20Specification%20for%20Next%20Generation%20Video%20v1.0.pdf, 5 pgs. |
“MPEG-2”, Wkipedia, Jun. 13, 2017, retrieved from https://en.wikipedia.org/wiki/MPEG-2 on Jul. 20, 2017, 13 pgs. |
“MPEG-4 File Format, Version 2”, Sustainability of Digital Formats: Planning for Library of Congress Collections, Retrieved from: https://www.loc.gov/preservation/digital/formats/fdd/fdd000155.shtml, Last updated Feb. 21, 2017, 8 pgs. |
“MPEG-4 Part 14”, Wikipedia, Jul. 10, 2017, retrieved from https://en.wikipedia.org/wiki/MPEG-4_Part_14 on Jul. 20, 2017, 5 pgs. |
“Netflix turns on subtitles for PC, Mac streaming”, Yahoo! News, Apr. 21, 2010, Printed on Mar. 26, 2014, 3 pgs. |
“OpenDML AVI File Format Extensions”, OpenDML AVI M-JPEG File Format Subcommittee, retrieved from www.the-labs.com/Video/odmlff2-avidef.pdf, Sep. 1997, 42 pgs. |
“OpenDML AVI File Format Extensions Version 1.02”, OpenDMLAVI MJPEG File Format Subcommittee. Last revision: Feb. 28, 1996. Reformatting: Sep. 1997, 56 pgs. |
“QCast Tuner for PS2”, printed May 11, 2009 from http://web.archive.org/web/20030210120605/www.divx.com/software/detail.php?i e=39, 2 pgs. |
“Series H: Audiovisual and Multimedia Systems Infrastructure of audiovisual services—Coding of moving video; High efficiency video coding”, International Telecommunication Union, ITU-T H.265, Apr. 2015, 634 pages (presented in six parts). |
“Smooth Streaming Client”, The Official Microsoft IIS Site, Sep. 24, 2010, 4 pgs. |
“Specifications | Matroska”, Retrieved from the Internet: URL:http://web.archive.org/web/201 00706041303/http:/1www.matroska.org/technical/specs/index.html [retrieved on Jan. 29, 2016, Jul. 6, 2010, 14 pgs. |
“Specifications Matroska”, Dec. 17, 2010, [retrieved on Mar. 2, 2018], 12 pgs. |
“Supplementary European Search Report for Application No. EP 10834935”, International Filing Date Nov. 15, 2010, Search Completed May 27, 2014, 9 pgs. |
“Supported Media Formats”, Supported Media Formats, Android Developers, Printed on Nov. 27, 2013 from developer.android.com/guide/appendix/media-formats.html, 3 pgs. |
“Text of ISO/IEC 14496-18/COR1, Font compression and streaming”, ITU Study Group 16—Video Coding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N8664, Oct. 27, 2006, 8 pgs. |
“Text of ISO/IEC 14496-18/FDIS, Coding of Moving Pictures and Audio”, ITU Study Group 16—Videocoding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N6215, Dec. 2003, 26 pgs. |
“Thread: SSME (Smooth Streaming Medial Element) config.xml review (Smooth Streaming Client configuration file)”, Printed on Mar. 26, 2014, 3 pgs. |
“Transcoding Best Practices”, From movideo, Printed on Nov. 27, 2013 from code.movideo.com/Transcoding_Best_Practices, 5 pgs. |
“Using HTTP Live Streaming”, iOS Developer Library, http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple_ref/doc/uid/TP40008332-CH102-SW1, Feb. 11, 2014, 10 pgs. |
“Video Manager and Video Title Set IFO file headers”, printed Aug. 22, 2009 from http://dvd.sourceforge.net/dvdinfo/ifo.htm, 6 pgs. |
“What is a DVD?”, printed Aug. 22, 2009 from http://www.videohelp.com/dvd, 8 pgs. |
“What is a VOB file”, http://www.mpucoder.com/DVD/vobov.html, printed on Jul. 2, 2009, 2 pgs. |
“What's on a DVD?”, printed Aug. 22, 2009 from http://www.doom9.org/dvd-structure.htm, 5 pgs. |
U.S. Appl. No. 13/224,298, “Final Office Action Received”, dated May 19, 2014, 26 pgs. |
U.S. Appl. No. 13/905,804, “Non-Final Office Action Received”, dated Jul. 25, 2014, 15 pgs. |
Adams et al, “Will http adaptive streaming become the dominant mode of video delivery in cable networks?”, https://www.nctatechnicalpapers.com/Paper/2011/2011-will-http-adaptive-streaming-become-the-dominant-mode-of-video-delivery-in-cable-networks-, 10 pgs. |
Adhikari et al., “Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery”, 2012 Proceedings IEEE InfoCom, Mar. 25-30, 2012, Orlando, Florida, 9 pgs. |
Adzic et al., “Optimized Adaptive HTTP Streaming for Mobile Devices”, International Society for Optics and Photonics, Applications of Digital Image Processing XXXIV, vol. 8135, Sep. 2011, 10 pgs. |
Akhshabi et al., “An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP”, MMSys'11, Feb. 23-25, 2011, 12 pgs. |
Anonymous, “Method for the encoding of a compressed video sequence derived from the same video sequence compressed at a different bit rate without loss of data”, ip.com, ip.com No. IPCOM000008165D, May 22, 2002, 9 pgs. |
Author Unknown, “Blu-ray Disc—Blu-ray Disc—Wikipedia, the free encyclopedia”, printed Oct. 30, 2008 from http://en.wikipedia.org/wiki/Blu-ray_Disc, 11 pgs. |
Author Unknown, “Blu-ray Movie Bitrates Here—Blu-ray Forum”, printed Oct. 30, 2008 from http://forum.blu-ray.com/showthread.php?t=3338, 6 pgs. |
Author Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., printed Jan 24, 2007, USA, pp. 1-15. |
Author Unknown, “O'Reilly—802.11 Wireless Networks: The Definitive Guide, Second Edition”, printed Oct. 30, 2008 from http://oreilly.com/catalog/9780596100520, 2 pgs. |
Author Unknown, “Tunneling QuickTime RTSP and RTP over HTTP”, Published by Apple Computer, Inc.: 1999 (month unknown), 6 pgs. |
Author Unknown, “Turbo-Charge Your Internet and PC Performance”, printed Oct. 30, 2008 from Speedtest.net—The Global Broadband Speed Test, 1 page. |
Author Unknown, “White paper, The New Mainstream Wireless LAN Standard”, Broadcom Corporation, Jul. 2003, 12 pgs. |
Blasiak, “Video Transrating and Transcoding: Overview of Video Transrating and Transcoding Technologies”, Ingenient Technologies, TI Developer Conference, Aug. 6-8, 2002, 22 pgs. |
Bloom et al., “Copy Protection for DVD Video”, Proceedings of the IEEE, vol. 87, No. 7, Jul. 1999, pp. 1267-1276. |
Bocharov et al., “Portable encoding of audio-video objects: The Protected Interoperable File Format (PIFF)”, Microsoft Corporation, Sep. 8, 2009, Revised: Mar. 9, 2010, 32 pgs. |
Bross et al., “High Efficiency Video Coding (HEVC) text specification draft 10 (for FDIS & Last Call)”, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Document: JCTVC-L1003_v34, 12th Meeting: Geneva, CH, Jan. 14-23, 2013, 310 pgs (presented in three parts). |
Casares et al., “Simplifying Video Editing Using Metadata”, DIS2002, 2002, pp. 157-166. |
Concolato et al., “Live HTTP Streaming of Video and Subtitles within a Browser”, MMSys 2013, Feb. 26-Mar. 1, 2013, Oslo, Norway, 5 pgs. |
Deutscher, “IIS Transform Manager Beta—Using the MP4 to Smooth Task”, Retrieved from: https://web.archive.org/web/20130328111303/http://blog.johndeutscher.com/category/smooth-streaming, Blog post of Apr. 29, 2011, 14 pgs. |
Eskicioglu et al., “An Integrated Approach to Encrypting Scalable Video”, Proceedings IEEE International Conference on Multimedia and Expo, Aug. 26-29, 2002, Lausanne, Switzerland, 4 pgs. |
Fecheyr-Lippens, “A Review of HTTP Live Streaming”, Internet Citation, Jan. 25, 2010, pp. 1-37. |
Gannes, “The Lowdown on Apple's HTTP Adaptive Bitrate Streaming”, GigaOM, Jun. 10, 2009, 12 pgs. |
Garg et al., “An Experimental Study of Throughput for UDP and VolP Traffic in IEEE 802.11b Networks”, Wireless Communications and Networkings, Mar. 2003, pp. 1748-1753. |
Gast, “When is 54 Not Equal to 54? A Look at 802.11a, b and g Throughput”, Aug. 8, 2003, printed Oct. 30, 2008 from www.oreillynet.com/pub/a/wireless/2003/08/08/wireless_throughput.html, 4 pgs. |
Ghosh, “Enhancing Silverlight Video Experiences with Contextual Data”, Retrieved from: http://msdn.microsoft.com/en-us/magazine/ee336025.aspx, 2010, 15 pgs. |
Griffith, Eric, “The Wireless Digital Picture Frame Arrives”, Wi-Fi Planet, printed May 4, 2007 from http://www.wi-fiplanet.com/news/article.php/3093141, Oct. 16, 2003, 3 pgs. |
Hartung et al., “DRM Protected Dynamic Adaptive HTTP Streaming”, MMSys 2011 Proceedings of the Second Annual ACM Conference on Multimedia Systems, San Jose, California, Feb. 23-25, 2011, pp. 277-282. |
Hurtado Guzman, Juan Esteban, “Development and Implementation of an Adaptive HTTP Streaming Framework for H264/MVC Coded Media”, Politecnico di Torino, Nov. 2010, 108 pgs. |
Hwang et al., “Efficient and User Friendly Inter-domain Device Authentication/Access control for Home Networks”, Proceedings of the 2006 International Conference on Embedded and Ubiquitous Computing, Seoul, Korea, Aug. 1-4, 2006, pp. 131-140. |
Inlet Technologies, “Adaptive Delivery to iDevices”, 2010, 2 pgs. |
Inlet Technologies, “Adaptive delivery to iPhone 3.0”, 2009, 2 pgs. |
Inlet Technologies, “HTTP versus RTMP”, 2009, 3 pgs. |
Inlet Technologies, “The World's First Live Smooth Streaming Event: The French Open”, 2009, 2 pgs. |
Kaspar et al., “Using HTTP Pipelining to Improve Progressive Download over Multiple Heterogeneous Interfaces”, IEEE ICC proceedings, 2010, 5 pgs. |
Kim, Kyuheon, “MPEG-2 ES/PES/TS/PSI”, Kyung-Hee University, Oct. 4, 2010, 66 pgs. |
Kozintsev et al., “Improving last-hop multicast streaming video over 802.11”, Workshop on Broadband Wireless Multimedia, Oct. 2004, pp. 1-10. |
Kurzke et al., “Get Your Content Onto Google TV”, Google, Retrieved from: http://commondatastorage.googleapis.com/io2012/presentations/live%20to%20website/1300.pdf, 2012, 58 pgs. |
Lang, “Expression Encoder, Best Practices for live smooth streaming broadcasting”, Microsoft Corporation, 2010, retrieved from http://www.streamingmedia.com/conferences/west2010/presentations/SMWest-12010-Expression-Encoder.pdf, 20 pgs. |
Levkov, “Mobile Encoding Guidelines for Android Powered Devices”, Adobe Systems Inc., Addendum B, Dec. 22, 2010, 42 pgs. |
Li et al., “Content-Aware Playout and Packet Scheduling for Video Streaming Over Wireless Links”, IEEE Transactions on Multimedia, vol. 10, No. 5, Aug. 2008, pp. 885-895. |
Lian et al., “Efficient video encryption scheme based on advanced video coding”, Multimed. Tools Appl. vol. 38, 2008, pp. 75-89. |
Liu et al., “A Formal Framework for Component Deployment”, OOPSLA 2006, Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Language, and Applications, Portland, Oregon, Oct. 22-26, 2006, pp. 325-344. |
Long et al., “Silver: Simplifying Video Editing with Metadata”, CHI 2003: New Horizons, Apr. 5-10, 2003, pp. 628-629. |
Matroska, “Diagram”, Matroska, Technical/Info, Diagram, 2016, retrieved from https://www.matroska.org/technical/diagram/index.html on Jul. 20, 2017, 9 pgs. |
Matroska, “Specifications”, Matroska, Technical/Info, Specifications, Jun. 25, 2017, retrieved from https://www.matroska.org/technical/specs/index.html on Jul. 20, 2017, 20 pgs. |
Miras, “On Quality Aware Adaptation of Internet Video”, University of London, PhD dissertation, 2004, 181 pgs. |
Morrison, “EA IFF 85 Standard for Interchange Format Files”, Jan. 14, 1985, printed from http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/IFF.txt on Mar. 6, 2006, 24 pgs. |
Moscoso, Pedro Gomes, “Interactive Internet TV Architecture Based on Scalable Video Coding”, Instituto Superior Techico, Universidad Technica de Lisboa, May 2011, 103 pgs. |
MSDN, “Adaptive streaming, Expression Studio 2.0”, Apr. 23, 2009, 2 pgs. |
Nelson, “Arithmetic Coding + Statistical Modeling = Data Compression: Part 1 Arithmetic Coding”, Doctor Dobb's Journal, Feb. 1991, USA, pp. 1-12. |
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pgs. |
Nelson, Michael, “IBM's Cryptolopes”, Complex Objects in Digital Libraries Course, Spring 2001, Retrieved from http://www.cs.odu.edu/˜mln/teaching/unc/inls210/?method=display&pkg_name=cryptolopes.pkg&element_name=cryptolopes.ppt, 12 pgs. |
Noboru, “Play Fast and Fine Video on Web! codec”, Co.9 No. 12, Dec. 1, 2003, pp. 178-179. |
Noe, A., “Matroska File Format (under construction!)”, Retrieved from the Internet: URL:http://web.archive.orgweb/20070821155146/www.matroska.org/technical/specs/matroska.pdf [retrieved on Jan. 19, 2011], Jun. 24, 2007, pp. 1-51. |
Noe, Alexander, “AVI File Format”, http://www.alexander-noe.com/video/documentation/avi.pdf, Dec. 14, 2006, pp. 1-26. |
Noe, Alexander, “Definitions”, Apr. 11, 2006, retrieved from http://www.alexander-noe.com/video/amg/definitions.html on Oct. 16, 2013, 2 pgs. |
Ooyala, “Widevine Content Protection”, Ooyala Support Center for Developers. Ooyala, Inc., 2013. Jun. 3, 2013. http://support.ooyala.com/developers/documentation/concepts/player_v3_widevine_integration.html, 7 pgs. |
Oyman et al., “Quality of Experience for HTTP Adaptive Streaming Services”, IEEE Communications Magazine, Apr. 2012, vol. 50, No. 4, DOI: 10.1109/MCOM.2012.6178830, pp. 20-27. |
Ozer, “The 2012 Encoding and Transcoding Buyers' Guide”, Streamingmedia.com, Retrieved from: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-2012-Encoding-and-Transcoding-Buyers-Guide-84210.aspx, 2012, 8 pgs. |
Ozer, Jan, “Adaptive Streaming in the Field”, Streaming Media, Dec. 2010-Jan. 2011, pp. 36-47. |
Padiadpu, Rashmi, “Towards Mobile Learning: A SCORM Player for the Google Android Platform”, Master Thesis, Hamburg University of Applied Sciences, 2008, 66 pgs. |
Pantos, “HTTP Live Streaming, draft-pantos-http-live-streaming-10”, IETF Tools, Oct. 15, 2012, Retrieved from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-10, 37 pgs. |
Pantos, R., “HTTP Live Streaming: draft-pantos-http-live-streaming-06”, Published by the Internet Engineering Task Force (IETF), Mar. 31, 2011, 24 pgs. |
“Microsoft Announces Breakthrough Technology Enabling Simple Access to Broad Set of Digital Content, Including Music, Games, Video, Ring Tones and Pictures”, Microsoft, Feb. 12, 2007, Retrieved from https://news.microsoft.com/2007/02/12/microsoft-announces-breakthrough-technology-enabling-simple-access-to-broad-set-of-digital-content-including-music-games-video-ring-tones-and-pictures/, 5 pgs. |
Number | Date | Country | |
---|---|---|---|
20190020907 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
61530305 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15481340 | Apr 2017 | US |
Child | 16136183 | US | |
Parent | 14970412 | Dec 2015 | US |
Child | 15481340 | US | |
Parent | 14564003 | Dec 2014 | US |
Child | 14970412 | US | |
Parent | 13340623 | Dec 2011 | US |
Child | 14564003 | US |