1. Field of the Disclosure
The present disclosure relates to data communications, and, in particular, to a novel system and apparatus for the automatic generation of media playlists.
2. The Prior Art
One application of the Internet that has received considerable attention is the ability to transmit or stream media content over the Internet. Once an audio or video work has been digitally encoded it may be both downloaded by users for play, or broadcast (“streamed”) over the Internet. When works are streamed, they may be listened to or viewed by Internet users in a manner much like traditional radio and television stations.
Given the widespread use of digital media, audio works, or video works may need to be identified. The need for identification of works may arise in a variety of situations. For example, an artist may wish to verify royalty payments or generate their own Arbitron®-like ratings by identifying how often their works are being streamed or downloaded. Thus, playlists of media may need to be generated. The prior art has made efforts to create methods for identifying digital works and generating playlists.
As is known by those skilled in the art, a playlist is the documentation of the performance of one or more works at a particular time over a particular media.
If a match is made, typically the module 102 will keep a record of all matches made during a predetermined period of time on the database 108. For example, the module 102 may keep a record of song titles detected during a 24-hour period.
The system 100 may further include a playlist server 110 having a processor 112 and database 114. The server 110 is typically configured to receive information such as the titles of identified songs from the one or more detection modules 102 through a network such as the Internet 109 and generate a playlist which may be stored on database 114.
The system 100 of the prior art in operation typically requires the identity of an unknown work to be determined by the individual detection modules. The playlist server 110 is typically only configured to receive and compile identities of works from the modules 102 into a playlist.
A playlist generation system is disclosed. In one aspect, the system may include at least one analysis module for receiving and analyzing an unknown work and generating a corresponding representation thereof, and at least one identification (ID) server for receiving the representation from the at least one analysis modules and determining the identity of the unknown work.
The system may receive unknown works from networked sources or broadcast sources, or directly from the source prior to the work being provided to a network or broadcast source. The analysis modules and ID servers may be coupled over a network, such as the Internet.
The representations and identification may be based upon feature vectors, a spectral representation of the unknown work, the text output of a speech recognition system, musical score produced by a music transcription system, or a bit calculated key method, such as MD5 hash, as are known in the art.
The system analysis modules may receive a plurality of streaming sources for analysis at a single location, or from a plurality of streaming sources for analysis at a plurality of access points of the network.
The system provides representations in approximately real time, and the system may generate a playlist of identified works. The ID server may generate a playlist of identified works received from different access points of the network in approximately real time.
Various methods for generating a playlist are also disclosed.
Persons of ordinary skill in the art will realize that the following description is illustrative only and not in any way limiting. Other modifications and improvements will readily suggest themselves to such skilled persons having the benefit of this disclosure.
This disclosure may relate to data communications. Various disclosed aspects may be embodied in various computer and machine readable data structures. Furthermore, it is contemplated that data structures embodying the teachings of the disclosure may be transmitted across computer and machine readable media, and through communications systems by use of standard protocols such as those used to enable the Internet and other computer networking standards.
The disclosure may relate to machine readable media on which are stored various aspects of the disclosure. It is contemplated that any media suitable for retrieving instructions is within the scope of the present disclosure. By way of example, such media may take the form of magnetic, optical, or semiconductor media.
Various aspects of the disclosure may be described through the use of flowcharts. Often, a single instance of an aspect of the present disclosure may be shown. As is appreciated by those of ordinary skill in the art, however, the protocols, processes, and procedures described herein may be repeated continuously or as often as necessary to satisfy the needs described herein. Accordingly, the representation of various aspects of the present disclosure through the use of flowcharts should not be used to limit the scope of the present disclosure.
Exemplary Structure
The analysis module 202 may also be configured to receive an unknown work from one or more networked sources 206. In one aspect of a disclosed system, the input port 210 of the analysis module 202 may be configured to monitor sources providing content in standard formats such as Real®, QuickTime®, Windows Media®, MP3®, and similar formats, using hardware and software as is known in the art.
In another aspect of a disclosed system, the input port 210 may be configured to directly receive audio or video through any of the various means know in the art, such as a microphone or video acquisition system. These unknown works may also be provided in standard formats such as MP3, Windows Media, and similar formats. Thus, the analysis module 202 may be configured to receive an unknown work prior to the unknown work being presented to the broadcast system or network source. It is envisioned that this presentation could occur almost simultaneously.
The input port 210 may be operatively coupled to a network 208 through which the source 206 may be accessed. The network 208 may comprise any packet- or frame-based network known in the art, such as the Internet. The input port 210 may also be configured to access the network 208 through any means known in the art, such as through traditional copper connections. Furthermore, the input port 210 may also be configured to access the network 208 using wireless connectivity methods as known in the art, including low-power broadband methods such as Bluetooth®, or cellular-based access methods such as those used to provide wireless connectivity to cellular phones and personal digital assistants (PDAs).
The analysis module 202 may also include an output port 212 for providing connectivity to the network 208. The output port 212 may comprise a separate unit within the analysis module 202 and may include hardware and software to provide the same functionality as the input port 210. Additionally, it is contemplated that the output port 212 may comprise substantially the same circuitry as the input port 210 in order to save space and cost.
Referring now to
It is contemplated that any processor known in the art may be employed in the module 202, and the choice of a processor may depend on the application. For example, if the module 202 is embodied in a personal computer, the processor 202 may comprise a microprocessor capable of running conventional operating systems such as Microsoft Windows®, while if the module 202 is deployed in a mobile unit such as a PDA, the processor 202 may need only be capable of running an operating system such as Palm OS®, or other embedded systems such as may be present in a cell phone or other consumer device.
The module 202 may include ancillary hardware and software, such as conventional memory 304 and a conventional database 306 for the storage and retrieval of various aspects of the disclosed system and data.
The module 202 may be configured to generate a representation of an unknown work which may then be used by the system to identify the unknown work. It is contemplated that a wide variety of methods may be used by the analysis module 202 to generate the representation. The analysis module may be configured to generate a representation of the unknown work using the psychoacoustic properties of the audio content of the unknown work. Such methods are known in the art. For example, the analysis module may generate feature vectors as disclosed in U.S. Pat. No. 5,918,223 to Blum, et al., which is assigned to the same assignee of the present disclosure and incorporated by reference as though fully set forth herein.
Additionally, the module 202 may use audio or video spectral or wavelet representation techniques as are known in the art. For example, other representation forms may comprise the text output of a speech recognition system, text output of a close captioned transmission, or a musical score produced by a music transcription system. In another embodiment, the representation may comprise a bit calculated key using any of the techniques as are known in the art such as MD5 hash and CRC. It is contemplated that a wide variety of analysis methods may be employed singly or in combination advantageously in the present disclosure.
Referring back to
The ID server 220 may comprise a computer suitable for running an operating system such as Microsoft Windows®, UNIX®, LINUX®, MAC OS®, and the like. The ID server 220 may include a conventional processor 222 for operation of the server. The ID server may further include associated hardware and software known in the art such as a conventional database 224 for storing embodiments of the disclosure or data.
It is contemplated that the ID server 220 may be configured to identify the unknown work using a variety of methods known in the art. The method for identification may correspond to the method(s) used to generate the representation within the analysis module. For example, the ID server 220 may be configured to perform identification using the methods disclosed in U.S. Pat. No. 5,918,223 to Blum, et al, if the representation were generated using corresponding methods.
Another example would be the pure spectral representations as are known in the art. It is envisioned that other representations such as wavelets may be used. The invention could also identify the unknown work from the speech recognized text compared against a database of song lyrics using any of a variety of methods known to those skilled in the art.
Yet another example would be any of a number of search techniques as are known in the art when the representation is a bit calculated key.
The system may also identify the unknown work by searching a collection of musical works for musical note sequences that correspond to the musical score in the representation.
In another configuration the system may use a combination of identification techniques, each of which correspond to a representation of the unknown work. By using several identification techniques, the chance of a mis-identification may be greatly reduced.
Though the analysis module and ID server are shown as being located separately, it is contemplated that they also may be co-located in a single server. For example, it is contemplated that the analysis module and ID server may each be embodied in a single board computer wherein the analysis module and ID server are housed in a single unit and operatively coupled through a common backplane.
Exemplary Operation
Additionally, one or more of the analysis modules may be configured to receive a plurality of streaming sources simultaneously for analysis. It is contemplated that the analysis modules may be located and configured to receive and analyze a wide variety of content, including analog radio or video, digital streaming audio or video, or any other media.
In act 402, the analysis module then creates a representation of the received unknown work as shown and described above. The representation may be created by the analysis module by extracting psychoacoustic properties from the received unknown work as described above.
In act 404, the representations created by the one or more analysis modules may be provided to an ID server. The ID server may comprise hardware and software as described above. It is contemplated that the ID server may comprise a single server, multiple servers networked at a single location, or multiple servers located at different locations.
It is contemplated that the various analysis modules may provide representations to one or more ID servers in a wide variety of manners. For example, all of the analysis modules present in a system may provide representations in real-time. Or, different analysis modules may be configured to provide representations at different intervals depending on the needs of the end user. The analysis modules may transmit representations every sixty seconds, hourly, or as often as is needed.
In some cases where network connectivity is challenging, the representations may be batched up and sent to the ID server(s) once a day or less. In particularly harsh or secretive conditions, the representations may be stored within the analysis modules until the modules could be physically retrieved and operatively coupled to an ID server at another physical location.
It is contemplated that an out-of-band event may be used to trigger the transmission of representations. For example, such a trigger may comprise the initialization of a connection to a network, or the activation of media playing software or hardware.
In act 502, the ID server identifies the unknown work based upon the representation. This identification may be performed using the methods as described above. The identification may include such information as the song title, artist, label, or any other information as is known in the art that may be associated with the work. The identification information might contain information such as the name of the advertiser or a descriptive notation of an FCC broadcaster identification segment.
Once an identification of the unknown work is made, it is contemplated that a wide variety of further acts maybe performed. For example, the identifications made by the ID server may be used to construct or maintain a playlist database. Such a playlist may be stored on the ID server, or on a distant server. As will be appreciated by those skilled in the art, if representations are provided to the ID server in real-time (or near real-time depending on the equipment or network used), a playlist may be generated in corresponding real-time. Thus, a playlist may be generated in real-time from inputs provided from distant geographic locations or multiple sources that contains a comprehensive playlist of every identified media segment.
Additionally, the identification may be transmitted back to the analysis module which generated the representation. This may be advantageous where it is desired to generate a playlist for the particular analysis module's location or user. Thus, the ID server may be configured to provide an identification back to the source analysis module.
The identity of the received work may also be used for the maintenance of the system. Typically, copies of received works are stored on local drives for audit purposes. Since the intermediate representation files may be larger in size than the identities, it may be desirable to configure the analysis module to purge intermediate files for identified works to recover drive space. It is contemplated that the ID server may be configured to transmit the identity of received works back to the generating analysis module, and the corresponding representation files may then be deleted from local drives by the analysis module, thereby recovering valuable capacity.
Furthermore, it is contemplated that the ID server or analysis module may be configured to send information regarding identified works to third parties, such as third-party servers. Additionally, the ID server or analysis module may be configured to provide an electronic notification to third parties of identifications made by the ID server. Examples of electronic notifications may include email, HTTP POST transactions, or other electronic communication as is known in the art. As is known by those skilled in the art, these electronic notifications may be used to initiate an action based on their content. For example, such notifications may allow the playlist to be accessed in real-time or as desired.
It is contemplated that the ID server may be configured to provide customized playlists containing information tailored to a customer's individual needs. For example, a customer may wish to be notified whenever a certain work is broadcast, or whether a particular work is broadcast on a particular media outlet. Customers may wish to have complete playlists provided to them periodically at desired intervals that may include statistics known in the art. By using the system as disclosed herein, such requests may be satisfied automatically in real-time, or at whatever interval may be desired. It is to be understood that any of the aspects of the present disclosure may be performed in real time or as often as desired.
In some embodiments of this invention the received data may be divided into segments. For purposes of this discussion, a segment is an arbitrary portion of the data of the unknown work of a predetermined length. It is contemplated that the ID server may examine the representations of all segments that were not identified in the process described above, and determine that some sub-segments were actually performances of a single work. Furthermore, this examination may extract a plurality of other characteristics of the original broadcast such as the amount of musical content, amount of speech content, a transcription based on speech recognition, the beat of any music present etc. These characteristics of the unidentified segments can then be used to classify the unidentified unknown representations. For instance, a sub-segment that has been performed many times may be correlated with a high amount of musical content and a certain minimum length of play time to indicate that a new song has been detected. Correlating other values and characteristics could indicate that a new advertisement has been detected. In some cases a corresponding segment of the original broadcast signal could be retrieved and played for a human to perform an identification.
While embodiments and applications have been shown and described, it would be apparent to those skilled in the art that many more modifications and improvements than mentioned above are possible without departing from the inventive concepts herein. The disclosure, therefore, is not to be restricted except in the spirit of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3919479 | Moon et al. | Nov 1975 | A |
4230990 | Lert et al. | Oct 1980 | A |
4449249 | Price | May 1984 | A |
4450531 | Kenyon et al. | May 1984 | A |
4454594 | Hefron et al. | Jun 1984 | A |
4623837 | Efron et al. | Nov 1986 | A |
4677455 | Okajima | Jun 1987 | A |
4677466 | Lert et al. | Jun 1987 | A |
4739398 | Thomas et al. | Apr 1988 | A |
4843562 | Kenyon et al. | Jun 1989 | A |
4918730 | Schulze | Apr 1990 | A |
5210820 | Kenyon | May 1993 | A |
5247688 | Ishigami | Sep 1993 | A |
5283819 | Glick et al. | Feb 1994 | A |
5327521 | Savic et al. | Jul 1994 | A |
5437050 | Lamb et al. | Jul 1995 | A |
5442645 | Ugon | Aug 1995 | A |
5504518 | Ellis | Apr 1996 | A |
5581658 | O'Hagan et al. | Dec 1996 | A |
5588119 | Vincent | Dec 1996 | A |
5612729 | Ellis et al. | Mar 1997 | A |
5612974 | Astrachan | Mar 1997 | A |
5613004 | Cooperman et al. | Mar 1997 | A |
5638443 | Stefik | Jun 1997 | A |
5692213 | Goldberg et al. | Nov 1997 | A |
5701452 | Siefert | Dec 1997 | A |
5710916 | Barbara et al. | Jan 1998 | A |
5724605 | Wissner | Mar 1998 | A |
5732193 | Aberson | Mar 1998 | A |
5850388 | Anderson | Dec 1998 | A |
5862260 | Rhoads | Jan 1999 | A |
5881182 | Fiete et al. | Mar 1999 | A |
5918223 | Blum et al. | Jun 1999 | A |
5924071 | Morgan et al. | Jul 1999 | A |
5930369 | Cox et al. | Jul 1999 | A |
5943422 | Van Wie et al. | Aug 1999 | A |
5949885 | Leighton | Sep 1999 | A |
5959659 | Dokic | Sep 1999 | A |
5983176 | Hoffert et al. | Nov 1999 | A |
6006183 | Lai et al. | Dec 1999 | A |
6006256 | Zdepski et al. | Dec 1999 | A |
6011758 | Dockes et al. | Jan 2000 | A |
6012051 | Sammons | Jan 2000 | A |
6026411 | Delp | Feb 2000 | A |
6026439 | Chowdhury et al. | Feb 2000 | A |
6044402 | Jacobson et al. | Mar 2000 | A |
6067369 | Kamei | May 2000 | A |
6088455 | Logan et al. | Jul 2000 | A |
6092040 | Voran | Jul 2000 | A |
6096961 | Bruti | Aug 2000 | A |
6118450 | Proehl et al. | Sep 2000 | A |
6192340 | Abecassis | Feb 2001 | B1 |
6195693 | Berry | Feb 2001 | B1 |
6229922 | Sasakawa et al. | May 2001 | B1 |
6243615 | Neway | Jun 2001 | B1 |
6243725 | Hempleman et al. | Jun 2001 | B1 |
6253193 | Ginter et al. | Jun 2001 | B1 |
6253337 | Maloney et al. | Jun 2001 | B1 |
6279010 | Anderson | Aug 2001 | B1 |
6279124 | Brouwer et al. | Aug 2001 | B1 |
6285596 | Miura et al. | Sep 2001 | B1 |
6330593 | Roberts et al. | Dec 2001 | B1 |
6345256 | Milsted et al. | Feb 2002 | B1 |
6345274 | Zhu | Feb 2002 | B1 |
6360265 | Falck et al. | Mar 2002 | B1 |
6363381 | Lee et al. | Mar 2002 | B1 |
6370513 | Kolawa | Apr 2002 | B1 |
6374260 | Hoffert et al. | Apr 2002 | B1 |
6385596 | Wiser | May 2002 | B1 |
6418421 | Hurtado et al. | Jul 2002 | B1 |
6425081 | Iwamura | Jul 2002 | B1 |
6434520 | Kanevsky et al. | Aug 2002 | B1 |
6438556 | Malik et al. | Aug 2002 | B1 |
6449226 | Kumagai | Sep 2002 | B1 |
6452874 | Otsuka et al. | Sep 2002 | B1 |
6453252 | Laroche | Sep 2002 | B1 |
6460050 | Pace et al. | Oct 2002 | B1 |
6463508 | Wolf et al. | Oct 2002 | B1 |
6477704 | Cremia | Nov 2002 | B1 |
6487641 | Cusson et al. | Nov 2002 | B1 |
6490279 | Chen et al. | Dec 2002 | B1 |
6496802 | van Zoest et al. | Dec 2002 | B1 |
6526411 | Ward | Feb 2003 | B1 |
6542869 | Foote | Apr 2003 | B1 |
6550001 | Corwin et al. | Apr 2003 | B1 |
6550011 | Sims, III | Apr 2003 | B1 |
6552254 | Hasegawa et al. | Apr 2003 | B2 |
6591245 | Klug | Jul 2003 | B1 |
6609093 | Gopinath et al. | Aug 2003 | B1 |
6609105 | van Zoest et al. | Aug 2003 | B2 |
6628737 | Timus | Sep 2003 | B1 |
6636965 | Beyda et al. | Oct 2003 | B1 |
6654757 | Stern | Nov 2003 | B1 |
6675174 | Bolle et al. | Jan 2004 | B1 |
6714921 | Stefik et al. | Mar 2004 | B2 |
6732180 | Hale | May 2004 | B1 |
6771316 | Iggulden | Aug 2004 | B1 |
6771885 | Agnihotri et al. | Aug 2004 | B1 |
6788800 | Carr et al. | Sep 2004 | B1 |
6834308 | Ikezoye | Dec 2004 | B1 |
6947909 | Hoke, Jr. | Sep 2005 | B1 |
6968337 | Wold | Nov 2005 | B2 |
6990453 | Wang et al. | Jan 2006 | B2 |
7043536 | Philyaw | May 2006 | B1 |
7047241 | Erickson et al. | May 2006 | B1 |
7058223 | Cox et al. | Jun 2006 | B2 |
7181398 | Thong et al. | Feb 2007 | B2 |
7266645 | Garg et al. | Sep 2007 | B2 |
7269556 | Kiss et al. | Sep 2007 | B2 |
7281272 | Rubin et al. | Oct 2007 | B1 |
7289643 | Brunk et al. | Oct 2007 | B2 |
7349552 | Levy et al. | Mar 2008 | B2 |
7363278 | Schmelzer et al. | Apr 2008 | B2 |
7426750 | Cooper et al. | Sep 2008 | B2 |
7443797 | Cheung et al. | Oct 2008 | B2 |
7474759 | Sternberg et al. | Jan 2009 | B2 |
7500007 | Ikezoye et al. | Mar 2009 | B2 |
7529659 | Wold | May 2009 | B2 |
7546120 | Ulvenes et al. | Jun 2009 | B1 |
7562012 | Wold | Jul 2009 | B1 |
7565327 | Schmelzer | Jul 2009 | B2 |
7593576 | Meyer et al. | Sep 2009 | B2 |
7653210 | Rhoads | Jan 2010 | B2 |
7701941 | O'Callaghan et al. | Apr 2010 | B2 |
7707088 | Schmelzer et al. | Apr 2010 | B2 |
7711652 | Schmelzer et al. | May 2010 | B2 |
7770013 | Rhoads et al. | Aug 2010 | B2 |
7797249 | Schmelzer et al. | Sep 2010 | B2 |
7877438 | Schrempp et al. | Jan 2011 | B2 |
7917645 | Ikezoye et al. | Mar 2011 | B2 |
8006314 | Wold | Aug 2011 | B2 |
8082150 | Wold | Dec 2011 | B2 |
8086445 | Wold | Dec 2011 | B2 |
8112818 | Wold | Feb 2012 | B2 |
8130746 | Schrempp et al. | Mar 2012 | B2 |
8199651 | Schrempp et al. | Jun 2012 | B1 |
8316238 | Mergen et al. | Nov 2012 | B2 |
8332326 | Schrempp et al. | Dec 2012 | B2 |
8484691 | Schmelzer et al. | Jul 2013 | B2 |
20010013061 | DeMartin et al. | Aug 2001 | A1 |
20010027493 | Wallace | Oct 2001 | A1 |
20010027522 | Saito | Oct 2001 | A1 |
20010034219 | Hewitt et al. | Oct 2001 | A1 |
20010037304 | Paiz | Nov 2001 | A1 |
20010041989 | Vilcauskas et al. | Nov 2001 | A1 |
20010051996 | Cooper et al. | Dec 2001 | A1 |
20010056430 | Yankowki | Dec 2001 | A1 |
20020019858 | Kaiser et al. | Feb 2002 | A1 |
20020023220 | Kaplan | Feb 2002 | A1 |
20020049760 | Scott | Apr 2002 | A1 |
20020064149 | Elliott et al. | May 2002 | A1 |
20020069098 | Schmidt | Jun 2002 | A1 |
20020073316 | Collins | Jun 2002 | A1 |
20020082999 | Lee | Jun 2002 | A1 |
20020083060 | Wang et al. | Jun 2002 | A1 |
20020087885 | Peled et al. | Jul 2002 | A1 |
20020120577 | Hans et al. | Aug 2002 | A1 |
20020123990 | Abe et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020133494 | Goedken | Sep 2002 | A1 |
20020133499 | Ward et al. | Sep 2002 | A1 |
20020141384 | Liu et al. | Oct 2002 | A1 |
20020152261 | Arkin et al. | Oct 2002 | A1 |
20020152262 | Arkin et al. | Oct 2002 | A1 |
20020156737 | Kahn | Oct 2002 | A1 |
20020157005 | Brunk et al. | Oct 2002 | A1 |
20020158737 | Yokoyama | Oct 2002 | A1 |
20020186887 | Rhoads | Dec 2002 | A1 |
20020198789 | Waldman | Dec 2002 | A1 |
20030014530 | Bodin et al. | Jan 2003 | A1 |
20030018709 | Schrempp et al. | Jan 2003 | A1 |
20030023852 | Wold | Jan 2003 | A1 |
20030033321 | Schrempp et al. | Feb 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030051100 | Patel | Mar 2003 | A1 |
20030061352 | Bohrer et al. | Mar 2003 | A1 |
20030061490 | Abajian | Mar 2003 | A1 |
20030095660 | Lee et al. | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030135623 | Schrempp et al. | Jul 2003 | A1 |
20030191719 | Ginter et al. | Oct 2003 | A1 |
20030191764 | Richards | Oct 2003 | A1 |
20030195852 | Campbell et al. | Oct 2003 | A1 |
20040008864 | Watson et al. | Jan 2004 | A1 |
20040010495 | Kramer et al. | Jan 2004 | A1 |
20040028281 | Cheng et al. | Feb 2004 | A1 |
20040053654 | Kokumai et al. | Mar 2004 | A1 |
20040073513 | Stefik et al. | Apr 2004 | A1 |
20040089142 | Georges et al. | May 2004 | A1 |
20040133797 | Arnold | Jul 2004 | A1 |
20040148191 | Hoke, Jr. | Jul 2004 | A1 |
20040163106 | Schrempp et al. | Aug 2004 | A1 |
20040167858 | Erickson | Aug 2004 | A1 |
20040201784 | Dagtas et al. | Oct 2004 | A9 |
20050021783 | Ishii | Jan 2005 | A1 |
20050038819 | Hicken et al. | Feb 2005 | A1 |
20050039000 | Erickson | Feb 2005 | A1 |
20050044189 | Ikezoye et al. | Feb 2005 | A1 |
20050097059 | Shuster | May 2005 | A1 |
20050154678 | Schmelzer | Jul 2005 | A1 |
20050154680 | Schmelzer | Jul 2005 | A1 |
20050154681 | Schmelzer | Jul 2005 | A1 |
20050216433 | Bland et al. | Sep 2005 | A1 |
20050267945 | Cohen et al. | Dec 2005 | A1 |
20050289065 | Weare | Dec 2005 | A1 |
20060034177 | Schrempp | Feb 2006 | A1 |
20060062426 | Levy et al. | Mar 2006 | A1 |
20070033409 | Brunk et al. | Feb 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070078769 | Way | Apr 2007 | A1 |
20070186229 | Conklin et al. | Aug 2007 | A1 |
20070226365 | Hildreth et al. | Sep 2007 | A1 |
20080008173 | Kanevsky et al. | Jan 2008 | A1 |
20080019371 | Anschutz et al. | Jan 2008 | A1 |
20080133415 | Ginter et al. | Jun 2008 | A1 |
20080141379 | Schmelzer | Jun 2008 | A1 |
20080154730 | Schmelzer | Jun 2008 | A1 |
20080155116 | Schmelzer | Jun 2008 | A1 |
20090030651 | Wold | Jan 2009 | A1 |
20090031326 | Wold | Jan 2009 | A1 |
20090043870 | Ikezoye et al. | Feb 2009 | A1 |
20090077673 | Schmelzer | Mar 2009 | A1 |
20090089586 | Brunk | Apr 2009 | A1 |
20090131152 | Busse | May 2009 | A1 |
20090192640 | Wold | Jul 2009 | A1 |
20090240361 | Wold et al. | Sep 2009 | A1 |
20090328236 | Schmelzer | Dec 2009 | A1 |
20100042843 | Brunk | Feb 2010 | A1 |
20110119149 | Ikezoye et al. | May 2011 | A1 |
20120124679 | Wold | May 2012 | A1 |
20130011008 | Ikezoye et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
0349106 | Jan 1990 | EP |
0402210 | Jun 1990 | EP |
0517405 | May 1992 | EP |
0689316 | Dec 1995 | EP |
0 731 446 | Sep 1996 | EP |
0859503 | Aug 1998 | EP |
0459046 | Apr 1999 | EP |
1354276 | Dec 2007 | EP |
1485815 | Oct 2009 | EP |
177191 | Feb 2012 | EP |
1449103 | Mar 2012 | EP |
2464049 | Dec 2012 | GB |
WO 9636163 | Nov 1996 | WO |
WO 9820672 | May 1998 | WO |
WO 0005650 | Feb 2000 | WO |
WO 0039954 | Jul 2000 | WO |
WO 0063800 | Oct 2000 | WO |
WO 0123981 | Apr 2001 | WO |
WO 0147179 | Jun 2001 | WO |
WO 0152540 | Jul 2001 | WO |
WO 0162004 | Aug 2001 | WO |
WO 0203203 | Jan 2002 | WO |
WO 0215035 | Feb 2002 | WO |
WO 0237316 | May 2002 | WO |
WO 02082271 | Oct 2002 | WO |
03009149 | Jan 2003 | WO |
WO 03007235 | Jan 2003 | WO |
WO 03036496 | May 2003 | WO |
WO 03067459 | Aug 2003 | WO |
WO 03091990 | Nov 2003 | WO |
WO 2004044820 | May 2004 | WO |
WO 2004070558 | Aug 2004 | WO |
WO 2006015168 | Feb 2006 | WO |
WO 2009017710 | Feb 2009 | WO |
Entry |
---|
L. Baum et al., A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains, The Annals of Mathematical Statistics,, vol. 41, No. 1 pp. 164-171, 1970 (no month). |
A. P. Dempster et al. “Maximum Likelihood from Incomplete Data via the $EM$ Algorithm”, Journal of the Royal Statistical Society, Series B (Methodological), vol. 39, Issue 1, pp. 1-38, 1977 (no month). |
D. Reynolds et al., “Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models”, IEEE Transactions on Speech and Audio Processing, vol. 3, No. 1, pp. 72-83, Jan. 1995. |
B. Pellom et al., “Fast Likelihood Computation Techniques in Nearest-Neighbor Based search for Continuous Speech Recognition”, IEEE Signal Processing Letters, vol. 8. No. * pp. 221-224, Aug. 2001. |
J. Haitsma et al., “Robust Audio hashing for Content Identification”, CBMI 2001, Second International Workshop on Content Based Multimedia and Indexing, Sep. 19-21, 2001, Brescia, Italy., Sep. 19-21, 2001. |
European Supplementary Search Report for Corresponding PCT/US0233186, Feb. 7, 2007, pp. 1-4 . |
Gasaway Laura, Close of Century Sees New Copyright Amendments, March 200, Information Outlook, 4, 3, 42. |
Gonzalez, R. and Melih, K., “Content Based Retrieval of Audio,” The Institute for Telecommunication Research, University of Wollongong, Australia. ATNAC '96 Proceedings. |
Harris, Lesley Ellen, “To register or not,” Mar. 2006, Information Outlook, 10, 3, 32(s). |
Kanth, K.V. et al. “Dimensionality Reduction or Similarity Searching in Databases,” Computer Vision and Image understanding, vol. 75, Nos. 1/2 Jul./Aug. 1999, pp. 59-72, Academic Press. Santa Barbara, CA, USA. |
Keislar, D., Blum, T., Wheaton, J., and Wold, E., “Audio Analysis for Content-Based Retrieval” Proceedings of the 1995 International Computer Music Conference. |
Ohtsuki, K., et al. , “Topic extraction based on continuous speech recognition in broadcast-news speech,” Proceedings IEEE Workshop on Automated Speech Recognition and Understanding, 1997, pp. 527-534, N.Y., N.Y., USA. |
Packethound Tech Specs, www.palisdesys.com/products/packethount/tck specs/prodPhtechspecs.shtml, 2002. |
“How does PacketHound work?”, www.palisdesys.com/products/packethound/how—does—it—work/prod—Pghhow.shtml 2002. |
Pankanti, Sharath, “Verification Watermarks on Fingerprint Recognition and Retrieval,” Part of IS&T/SPIE Conference on Security and Watermarking of Multimedia Contents, San Jose, CA Jan. 1999, SPIE vol. 3657, pp. 66-78. |
Pellom, B. et al., “Fast Likelihood Computation Techniques in Nearest-Neighbor search for Continuous Speech Recognition.”, IEEE Signal Processing Letters, vol. 8, pp. 221-224 Aug. 2001. |
Scheirer, E., Slaney, M., “Construction and Evaluation of a Robust Multifeature Speech/Music Discriminator,” pp. 1-4, Proceedings of ICASSP-97, Apr. 2-24, Munich, Germany. |
Scheirer, E.D., “Tempo and Beat Analysis of Acoustic Musical Signals,” Machine Listening Group, E15-401D MIT Media Laboratory, pp. 1-21, Aug. 8, 1997, Cambridge, MA. |
Schneier, Bruce, Applied Cryptography, Protocols, Algorithms and Source Code in C, Chapter 2 Protocol Building Blocks, 1996, pp. 30-31. |
Smith, Alan J., “Cache Memories,” Computer Surveys, Sep. 1982, University of California, Berkeley, California, vol. 14, No. 3, pp. 1-61. |
Vertegaal, R. and Bonis, E., “ISEE: An Intuitive Sound Editing Environment,” Computer Music Journal, 18:2, pp. 21-22, Summer 1994. |
Wang, Yao, et al., “Multimedia Content Analysis,” IEEE Signal Processing Magazine, pp. 12-36, Nov. 2000, IEEE Service Center, Piscataway, N.J., USA. |
Wold, Erling, et al., “Content Based Classification, Search and Retrieval of Audio,” IEEE Multimedia, vol. 3, No. 3, pp. 27-36, 1996 IEEE Service Center, Piscataway, N.J., USA. |
Zawodny, Jeremy, D., “A C Program to Compute CDDB discids on Linus and FreeBSD,” [internet] http://jeremy.zawodny.com/c/discid-linux-1.3tar.gz, 1 page, Apr. 14, 2001, retrieved Jul. 17, 2007. |
European Patent Application No. 02752347.1, Supplementary European Search Report Dated May 8, 2006, 4 pages. |
European Patent Application No. 02756525.8, Supplementary European Search Report Dated Jun. 28, 2006, 4 pages. |
European Patent Application No. 02782170, Supplementary European Search Report Dated Feb. 7, 2007, 4 pages. |
European Patent Application No. 02725522.3, Supplementary European Search Report Dated May 12, 2006, 2 Pages. |
European Patent Application No. 04706547.9 European Search Report Dated Feb. 25, 2010, 3 Pages. |
European Patent Application No. 05778109.8 European Search Report Dated Sep. 10, 2010, 7 Pages. |
PCT Search Report PCT/US01/50295, International Search Report dated May 14, 2003, 5 Pages. |
PCT Search Report PCT/US02/10615, International Search Report dated Aug. 7, 2002, 5 Pages. |
PCT Search Report PCT/US04/02748, International Search Report and Written Opinion dated Aug. 20, 2007, 8 Pages. |
PCT Search Report PCT/US05/26887, International Search Report dated May 3, 2006, 3 Pages. |
PCT Search Report PCT/US08/09127, International Search Report dated Oct. 30, 2008, 8 Pages. |
USPTO Office Action for U.S. Appl. No. 09/511,632 mailed Dec. 4, 2002. |
USPTO Office Action for U.S. Appl. No. 09/511,632 mailed May 13, 2003. |
USPTO Office Action for U.S. Appl. No. 09/511,632 mailed Aug. 27, 2003. |
USPTO Office Action for U.S. Appl. No. 09/910,680 mailed Nov. 17, 2004. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Apr. 6, 2005. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Oct. 6, 2005. |
USPTO Office Action for U.S. Appl. No. 09/511,632 mailed Feb. 5, 2004. |
USPTO Notice of Allowance for U.S. Appl. No. 09/511,632 mailed Aug. 10, 2004. |
USPTO Notice of Allowance for U.S. Appl. No. 10/955,841 mailed Sep. 25, 2006. |
USPTO Notice of Allowance for U.S. Appl. No. 10/955,841 mailed Mar. 23, 2007. |
USPTO Notice of Allowance for U.S. Appl. No. 10/955,841 mailed Sep. 11, 2007. |
USPTO Notice of Allowance for U.S. Appl. No. 10/955,841 mailed Feb. 25, 2008. |
USPTO Notice of Allowance for U.S. Appl. No. 12/251,404 mailed May 14, 2010. |
USPTO Office Action for U.S. Appl. No. 13/011,776 mailed Feb. 26, 2013. |
USPTO Office Action for U.S. Appl. No. 13/011,776 mailed Jul. 10, 2013. |
USPTO Office Action for U.S. Appl. No. 13/011,776 mailed Feb. 5, 2013. |
USPTO Office Action for U.S. Appl. No. 13/011,776 mailed Jul. 19, 2013. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Apr. 7, 2006. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Oct. 6, 2006. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Mar. 7, 2007. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Aug. 20, 2007. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Jan. 7, 2008. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Jun. 27, 2008. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Dec. 22, 2008. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Jul. 20, 2009. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Dec. 21, 2009. |
USPTO Office Action for U.S. Appl. No. 09/999,763 mailed Jun. 23, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 09/999,763 mailed Sep. 16, 2010. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed May 3, 2005. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Oct. 25, 2005. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Apr. 25, 2006. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Sep. 19, 2007. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Apr. 7, 2008. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Oct. 1, 2008. |
USPTO Office Action for U.S. Appl. No. 08/897,662 mailed Aug. 13, 1998. |
USPTO Notice of Allowance for U.S. Appl. No. 08/897,662 mailed Jan. 29, 1999. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed May 5, 2004. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed Nov. 12, 2004. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed May 9, 2005. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed Nov. 1, 2005. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed Jun. 23, 2006. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed Nov. 7, 2006. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed Mar. 29, 2007. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed Sep. 17, 2007. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed May 29, 2008. |
USPTO Office Action for U.S. Appl. No. 09/706,227 mailed Jan. 9, 2009. |
USPTO Office Action for U.S. Appl. No. 12/482,313 mailed Feb. 4, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/482,313 mailed Aug. 23, 2011. |
USPTO Office Action for U.S. Appl. No. 10/192,783 mailed Dec. 13, 2004. |
USPTO Notice of Allowance for U.S. Appl. No. 10/192,783 mailed Jun. 7, 2005. |
USPTO Office Action for U.S. Appl. No. 11/239,543 mailed Apr. 23, 2008. |
USPTO Notice of Allowance for U.S. Appl. No. 11/239,543 mailed Nov. 6, 2008. |
USPTO Notice of Allowance for U.S. Appl. No. 11/239,543 mailed Feb. 25, 2009. |
USPTO Office Action for U.S. Appl. No. 12/410,445 mailed Aug. 10, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 12/410,445 mailed Oct. 20, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 12/410,445 mailed Aug. 12, 2011. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Jan. 9, 2009. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Mar. 31, 2009. |
USPTO Office Action for U.S. Appl. No. 10/072,238 mailed Aug. 6, 2010. |
USPTO Office Action for U.S. Appl. No. 11/116,710 mailed Dec. 13, 2004. |
USPTO Office Action for U.S. Appl. No. 11/116,710 mailed Apr. 8, 2005. |
USPTO Office Action for U.S. Appl. No. 11/116,710 mailed Oct. 7, 2005. |
USPTO Office Action for U.S. Appl. No. 11/116,710 mailed Apr. 20, 2006. |
USPTO Office Action for U.S. Appl. No. 11/116,710 mailed Jul. 31, 2006. |
USPTO Office Action for U.S. Appl. No. 11/116,710 mailed Jan. 16, 2007. |
USPTO Notice of Allowance for U.S. Appl. No. 11/116,710 mailed Nov. 19, 2007. |
USPTO Office ACtion for U.S. Appl. No. 12/042,023 mailed Dec. 29, 2008. |
USPTO Office Action for U.S. Appl. No. 12/042,023 mailed Apr. 25, 2009. |
USPTO Notice of Allowance for U.S. Appl. No. 12/042,023 mailed Mar. 8, 2010. |
USPTO Office Action for U.S. Appl. No. 11/048,307 mailed Aug. 22, 2007. |
USPTO Office Action for U.S. Appl. No. 11/048,307 mailed May 16, 2008. |
USPTO Notice of Allowance for U.S. Appl. No. 11/048,307 mailed May 29, 2009. |
USPTO Office Action for U.S. Appl. No. 12/488,504 mailed Nov. 10, 2010. |
USPTO Office Action for U.S. Appl. No. 12/488,504 mailed Apr. 26, 2013. |
USPTO Office Action for U.S. Appl. No. 12/488,504 mailed May 23, 2013. |
USPTO Office Action for U.S. Appl. No. 11/048,308 mailed Feb. 25, 2008. |
USPTO Office Action for U.S. Appl. No. 11/048,308 mailed Mar. 5, 2009. |
USPTO Notice of Allowance for U.S. Appl. No. 11/048,308 mailed Aug. 7, 2009. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Apr. 18, 2007. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Oct. 11, 2007. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Jan. 14, 2008. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Jul. 9, 2008. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Jan. 7, 2009. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Jul. 6, 2009. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Dec. 28, 2009. |
USPTO Office Action for U.S. Appl. No. 11/048,338 mailed Jun. 24, 2010. |
USPTO Office Action for U.S. Appl. No. 12/035,599 mailed Nov. 17, 2008. |
USPTO Office Action for U.S. Appl. No. 12/035,599 mailed May 29, 2009. |
USPTO Office Action for U.S. Appl. No. 12/035,599 mailed Nov. 24, 2009. |
USPTO Office Action for U.S. Appl. No. 12/035,599 mailed Jun. 9, 2010. |
USPTO Office Action for U.S. Appl. No. 12/035,599 mailed Aug. 7, 2012. |
USPTO Notice of Allowance for U.S. Appl. No. 12/035,599 mailed Mar. 11, 2013. |
USPTO Office Action for U.S. Appl. No. 12/035,609 mailed Dec. 29, 2008. |
USPTO Office Action for U.S. Appl. No. 12/035,609 mailed Jun. 24, 2009. |
USPTO Notice of Allowance for U.S. Appl. No. 12/035,609 mailed Dec. 11, 2009. |
USPTO Notice of Allowance for U.S. Appl. No. 12/277,291 mailed May 12, 2010. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed May 24, 2006. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Nov. 2, 2006. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Apr. 11, 2007. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Nov. 1, 2007. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed May 9, 2008. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Jan. 6, 2009. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Jun. 15, 2009. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Jan. 21, 2010. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Jan. 7, 2011. |
USPTO Office Action for U.S. Appl. No. 10/356,318 mailed Jun. 17, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 10/356,318 mailed Oct. 16, 2012. |
USPTO Office Action for U.S. Appl. No. 11/191,493 mailed Jul. 17, 2008. |
USPTO Office Action for U.S. Appl. No. 11/191,493 mailed Jan. 9, 2009. |
USPTO Office Action for U.S. Appl. No. 11/191,493 mailed Apr. 28, 2009. |
USPTO Office Action for U.S. Appl. No. 11/191,493 mailed Nov. 19, 2009. |
USPTO Office Action for U.S. Appl. No. 11/191,493 mailed May 25, 2010. |
USPTO Office Action for U.S. Appl. No. 11/191,493 mailed Oct. 4, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 11/191,493 mailed Feb. 17, 2011. |
USPTO Office Action for U.S. Appl. No. 11/829,662 mailed Oct. 8, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 11/829,662 mailed Apr. 11, 2011. |
USPTO Office Action for U.S. Appl. No. 11/923,491 mailed Nov. 12, 2010. |
USPTO Notice of Allowance for U.S. Appl. No. 11/923,491 mailed Sep. 29, 2011. |
USPTO Office Action for U.S. Appl. No. 13/355,424 mailed Jan. 18, 2013. |
USPTO Office Action for U.S. Appl. No. 13/355,424 mailed May 24, 2013. |
USPTO Office Action for U.S. Appl. No. 12/405,174 mailed Mar. 2, 2011. |
USPTO Office Action for U.S. Appl. No. 12/405,174 mailed Sep. 9, 2011. |
USPTO Notice of Allowance for U.S. Appl. No. 12/405,174 mailed Jan. 4, 2012. |
Audible Magic Corporation, “Audio Identification Technology Provides the Cornerstone for Online Distribution,” 2000, http://www.audiblemagic.com/documents/Technology—Summary.pdf. |
Beritelli, F., et al., “Multilayer Chaotic Encryption for Secure Communications in packet switching Networks,” IEEE, vol. 2Aug. 2000, pp. 1575-1582. |
Blum, T., Keislar, D., Wheaton, J., and Wold, E., “Audio Databases with Content-Based Retrieval,” Proceedings of the 1995 International Joint Conference on Artificial Intelligence (IJCAI) Workshop on Intelligent Multimedia Information Retrieval, 1995. |
Breslin, Pat, et al., Relatable Website, “Emusic uses Relatable's open source audio recognition solution, TRM, to signature its music catabblog for MusicBrainz database,” http://www.relatable.com/news/pressrelease/001017.release.html, Oct. 17, 2000. |
Business Wire, “Cisco and Fox Host Groundbreaking Screening of Titan A.E.; Animated Epic Will Be First Film Ever to be Digitaly Transmitted Over the Internet Monday,” Jun. 5, 2000, 08:14 EDT. |
Business Wire, “IBM: IBM Announces New Descrambler Software; First to Offer Software to Work With Digital Video Chips,” Jun. 5, 25, 1997, 07:49. |
Chen, et al., Yong-Cong, A Secure and Robust Digital Watermaking Technique by the Blcok Cipher RC6 and Secure Hash Algorithm, Deparment of Computer Science, National Tsing Hua University, 2001. |
Cosi, P., De Poli, G., Prandoni, P., “Timbre Characterization with Mel-Cepstrum and Neural Nets,” Proceedings of the 1994 International Computer Music Conference, pp. 42-45, San Francisco, No date. |
Feiten, B. and Gunzel, S., “Automatic Indexing of a Sound Database Using Self-Organizing Neural Nets,” Computer Music Journal, 18:3, pp. 53-65, Fall 1994. |
Fischer, S., Lienhart, R., and Effelsberg, W., “Automatic Recognition of Film Genres,” Reihe Informatik, Jun. 1995, Universitat Mannheim, Praktische Informatik IV, L15, 16, D-68131 Mannheim. |
Foote, J., “A Similarity Measure for Automatic Audio Classification,” Institute of Systems Science, National University of Singapore, 1977, Singapore. |
Lin, et al., “Generating Robust Digital Signature for Image/Video Authentication,” Proc. Multimedia and Security workshop at ACM Multimedia'98, Sep. 1, 1998, pp. 49-54. |
USPTO Office Action for U.S. Appl. No. 13/011,776 mailed Dec. 13, 2013. |
USPTO Notice of Allowance for U.S. Appl. No. 12/488,504 mailed Sep. 13, 2013. |
Number | Date | Country | |
---|---|---|---|
20030018709 A1 | Jan 2003 | US |