The invention relates to a pleatable nonwoven material comprising supporting, form-giving, thicker fibers and thinner fibers determining the filter effect as well as a method and an apparatus for production thereof.
A nonwoven material of this type is disclosed in DE 103 10 435 B3. In this prior-art filter element is provided an air-permeable support material which is coated on both sides with a fiber coating consisting of nanofibers or microfibers, wherein the coating thickness increases from the inflow side to the outflow side such as to form a progressive filter element. With respect to former prior art filter materials, this embodiment already resulted in a considerable improvement of the filter performance.
In such filter materials, which are conventionally pleated and are as such used as air filters in vehicles, a lowest possible pressure decrease is crucial when the air passes through since a low pressure decrease is synonymous with a small-size blower motor, and therefore with a correspondingly low energy consumption and a low noise development.
This demand for filter systems having a low pressure difference is in contrast with the necessary separation performance and the required service life.
These two demands can principally be fulfilled by fibers of different thicknesses, with usually approximately 20 μm on the one hand and approximately 4 μm on the other.
The progressive design of the fiber density is achieved in that the side of the nonwoven material on which the nonwoven material is laid down during the production is used as outflow side when it is inserted in the filter.
For further improvement of the filter properties, the industry focuses on the development of smaller and smaller fiber diameters for use in the filter production.
The so-called melt blowing process is currently the most common technique of producing fine fibers. Due to the constructional design, this process has so far been limited to fiber sizes of more than 2 μm. In this process, a low-viscosity medium is used which is torn apart at the attempt to achieve lower fiber thicknesses.
In order to increase the separation performance of the filter while minimizing the resulting increase in pressure loss, very fine fibers are important, however, because they lead to an increase of the inner surface area, thus enabling finer and finer particles to be separated while simultaneously increasing the service life.
A fiber size smaller than approximately 500 nm causes a so-called slip-flow effect to occur due to which, other than in the case of thicker fibers, the flow speed is not reduced to zero at the surface of the very thin fibers (nanofibers), thus enabling fine particles contained in the air stream to diffuse more easily while being intercepted and collected to a greater degree.
According to prior art, nanofibers of this type are produced from solution by means of a so-called electrospinning process as for example described in DE 103 10 435 B3. In this process, a polymer is dissolved by means of a solvent in order to produce fibers with a minimum diameter of up to 50 nm by applying a high voltage.
A considerable drawback of this electrospinning process is the use of large amounts of solvents. Due to the vapors developing in this process and the high voltage which is applied at the same time, there is a significant risk of explosion. Another critical aspect is that the vapors are harmful to the environment and therefore pose health risks to the operating staff. Another drawback is that the coating of the filter material is performed in a separate step, with the result that the nanofibers are located virtually exclusively on the surface of the coating. This multitude of layers makes a pleating of the nonwoven material extremely difficult. According thereto, a foldability of the material is conventionally only achievable by means of spot bonding.
Likewise, fiberglass media are known as well which have fiber thicknesses of below 1 μm. Since this material is so brittle that it will break when subject to a mechanical load which then causes particles to be released, the material must be classified as carcinogenic. Also, fiberglass media show very high pressure differences in relation to the separation performance.
DE 10 2004 036 440 A 1 discloses a filter material in which nanofibers are distributed across a support frame. Electrospinning is mentioned to be a possible method of production. A similar filter material is also described in WO 2006/049664 A1.
JP 02-264057 A discloses a nonwoven material which is produced in the melt blowing process, wherein different materials are extruded from different spinnerets. The diameter of the first group of spinnerets amounts to approximately 8 μm while that of the second group of spinnerets amounts to 8 μm.
DE 693 22 572 T2 describes an embodiment in which spinnerets are arranged at an angle to each other.
EP 0 674 035 A2 discloses a spinning beam in which air is supplied from the side.
On this basis, it is the object of the invention to produce a pleatable non-woven material which on the one hand distinguishes itself by exceptional filter properties, in particular a low pressure difference and at the same time a high separation performance, while on the other hand being fabricable in an environmentally friendly and cost-effective way such as to achieve a high throughput performance.
According to the invention, this object is achieved in that the thinner fibers are incorporated largely homogeneously in the thicker fibers in the direction along the surface of the nonwoven material, and in that a distribution-density gradient of the thinner fibers in the direction perpendicular to the surface of the nonwoven material is such that the highest concentration of thinner fibers is in the region of the center or at one of the two outsides, wherein the thicker and the thinner fibers are bonded together by solidification from the melted condition and are made from the same material.
It is advantageously provided that the thicker fibers have a diameter >2 and the thinner fibers have a diameter <1000 nm. In particular, the thicker fibers should have a diameter of between 2 and 200 μm while the thinner fibers should have a diameter of between 50 nm and 1000 nm. Such extremely thin nanofibers enable a particularly good filter effect to be achieved.
The fibers may advantageously consist of polyamide, polypropylene, polyester or a mixture thereof.
The invention also relates to a method of producing a pleatable nonwoven fabric, wherein a polymer is melted and pressed through the spinnerets of a spinning beam, and wherein the polymer threads thus produced are laid down on a conveyor belt so as to form a nonwoven layer, wherein it is provided according to the invention that spinnerets of various diameters are used for producing and laying down higher- and lower-thickness polymer threads in a single process step, wherein spinnerets of various diameters are used while simultaneously producing and laying down higher- and lower-thickness polymer threads in a single process step, wherein the diameter of the spinnerets <0.2 mm, preferably 0.15 mm, and for the fibers of higher thickness >0.2 mm, preferably 0.3-0.4 mm, and high-viscosity polymer melts are used whose melt flow index “mfi” is well below 500.
By means of this method, the desired homogeneous distribution of the thinner fibers in the support frame formed by the thicker fibers is achieved.
Favorably, at least two spinning beams are provided which are arranged at an angle to each other, wherein the polymer threads leaving the spinnerets of each spinning beam tangle and intertwine with each other before contact with the base or at the latest at the moment of contact therewith.
In particular, two spinning beams can be used, wherein a first spinning beam comprises larger-diameter spinnerets and a second spinning beam comprises smaller-diameter spinnerets.
In order to achieve long fibers with a very small diameter, it is crucial to use a high-viscosity polymer melt whose melt flow index “mfi” is well below 500.
Another important aspect is that the air supplied to the spinning beam has a relatively slight overpressure in the order of magnitude of 500 mbar.
The invention further relates to an apparatus for implementation of the above described method, the apparatus comprising spinning beams including a plurality of spinnerets arranged next to one another, and a conveyor belt for laying down the polymer threads leaving the spinnerets, the apparatus distinguishing itself by the fact that at least two spinning beams are provided which are arranged relative to each other such that when leaving the spinnerets, the polymer threads tangle before contact with the conveyor belt or at the latest at the moment of contact therewith, wherein a first spinning beam comprises larger-diameter spinnerets and a second spinning beam comprises smaller-diameter spinnerets, and wherein the diameter of the smaller-diameter spinnerets is <0.2 mm, preferably approximately 0.15 mm, and the diameter of the larger-diameter spinnerets is >0.2 mm, preferably 0.3-0.4 mm.
It is in particular provided that the spinning beams are arranged at an angle to each other, causing the thinner and thicker fibers to tangle and intertwine with each other upon discharge.
In particular, a first spinning beam may comprise larger-diameter spinnerets and a second spinning beam may comprise smaller-diameter spinnerets.
Finally, fans can be provided in the outlet region of the spinnerets for generation of an air stream in the order of magnitude of 500 mbar.
The spinnerets are particularly advantageously produced by lasering and have a diameter of <0.20 mm. This enables a high density of small-diameter spinnerets to be produced in an economical manner.
The invention will hereinafter be described in more detail by means of photographs taken with a scanning electron microscope and the drawing.
The following illustrations 1 and 2 show the distribution of the various fiber sizes. (See illustrations 1 and 2,
Coarse fibers (diameter of approximately 15 μm) are mostly present in the form of multiple fibers. The coarse single fibers are joined together to form multiple fibers, wherein the fiber composites (up to 200 μm) are not only in loose contact with each other but the surfaces thereof are melted together for the most part.
Medium fiber diameters (approximately 1-2 μm) are mostly present in the form of single fibers, rarely in the form of fiber composites comprising a maximum of 3 fibers.
The overview photographs clearly show that a web of much thinner fibers (nanofibers <1 μm) passes through the fiber structure of the coarse and medium fiber diameters. The finest fibers are only present in the form of single fibers. (See illustration 3,
The diameters of the thin fibers amount to 733 nm or 857 nm, respectively. Fibers with diameters well below 1 μm are exclusively nanofibers. (See illustration 4,
The high magnification shows the extreme difference between a “standard” fiber with a diameter of approximately 11 μm and the surrounding nanofibers of approximately 750 nm. (See illustration 5,
The photograph was taken at an angle of 70° to illustrate the fiber structures across the material cross-section.
The lower part of the photograph shows the basic structure of thick, bonded fibers. The central part of the photograph shows a portion comprising fine fibers and nanofibers. The cover layer is formed by fibers with a medium diameter. (See illustration 6,
Nanofibers (measured value: 522 nm) next to fibers having a diameter of approximately 1-2 μm. (See illustration 7,
Upon exposure of the filter medium to NaCl particles (for approximately 15 minutes in the particle filter test bench):
There is a coarse fiber (diameter of approximately 10-15 μm) in the background. NaCl particles with a partially very small diameter (much smaller than 0.5 μm) have deposited on the surface of the fiber.
The number of particles deposited on the very thin nanofiber in the front (measured value: diameter of 426 nm) is similar to the number of particles on the thick fiber although the diameter of the finest fiber amounts to only approximately 1/25 of that of the coarse fiber.
The illustration 8 shows an overview photograph of coarse, medium and nanofibers upon exposure to NaCl particles. (See illustration 8,
The inventive apparatus will hereinafter be described in relation to
The hereinafter described
The spinning beam 1 on the left of
Number | Date | Country | Kind |
---|---|---|---|
10 2006 014 236 | Mar 2006 | DE | national |
This application is a continuation of U.S. application Ser. No. 13/438,286, filed Apr. 3, 2012, which is a divisional under 35 U.S.C. § 121 of application Ser. No. 12/295,263, filed Sep. 29, 2008, which is the National Stage of International Application No. PCT/EP2007/002650, filed Mar. 26, 2007, which claims the benefit of priority of German Application No. 10 2006 014 236.5, filed Mar. 28, 2006. The entire contents of all recited Patents and Patent Applications are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3557801 | Jamison | Jan 1971 | A |
3825380 | Harding | Jul 1974 | A |
4118531 | Hauser | Oct 1978 | A |
4173504 | Tomioka | Nov 1979 | A |
4551402 | Tamura | Nov 1985 | A |
4592815 | Nakao | Jun 1986 | A |
4714647 | Shipp, Jr. | Dec 1987 | A |
4720252 | Appel | Jan 1988 | A |
4741941 | Englebert | May 1988 | A |
4886527 | Fottinger et al. | Dec 1989 | A |
4983434 | Sassa | Jan 1991 | A |
5066400 | Rocklitz | Nov 1991 | A |
5172585 | Gleissle | Dec 1992 | A |
5283106 | Seiler | Feb 1994 | A |
5350624 | Georger | Sep 1994 | A |
5456069 | Haerle | Oct 1995 | A |
5486410 | Groeger | Jan 1996 | A |
5609947 | Kamei | Mar 1997 | A |
5670044 | Ogata | Sep 1997 | A |
5672399 | Kahlbaugh | Sep 1997 | A |
5685757 | Kirsch | Nov 1997 | A |
5817415 | Chou | Oct 1998 | A |
5877098 | Tanaka | Mar 1999 | A |
6071419 | Beier | Jun 2000 | A |
6110243 | Wnenchak | Aug 2000 | A |
6114017 | Fabbricante | Sep 2000 | A |
6123752 | Wu | Sep 2000 | A |
6146436 | Hollingsworth et al. | Nov 2000 | A |
6315805 | Strauss | Nov 2001 | B1 |
6319865 | Mikami | Nov 2001 | B1 |
6387144 | Jaroszczyk | May 2002 | B1 |
6454989 | Neely | Sep 2002 | B1 |
7527671 | Stuecker | May 2009 | B1 |
7625418 | Choi | Dec 2009 | B1 |
7625433 | Bach | Dec 2009 | B2 |
8021467 | Zimmer | Sep 2011 | B2 |
8211195 | Bass | Jul 2012 | B2 |
8308834 | Smithies | Nov 2012 | B2 |
8715391 | Wang | May 2014 | B2 |
8834762 | Jung | Sep 2014 | B2 |
9242201 | Bao | Jan 2016 | B2 |
20020037678 | Ohata | Mar 2002 | A1 |
20020037679 | Bansal | Mar 2002 | A1 |
20020095920 | Takagaki | Jul 2002 | A1 |
20030200991 | Keck | Oct 2003 | A1 |
20030201579 | Gordon | Oct 2003 | A1 |
20040245171 | Schimmel | Dec 2004 | A1 |
20050054255 | Morman | Mar 2005 | A1 |
20050129897 | Zhou | Jun 2005 | A1 |
20050139544 | Choi | Jun 2005 | A1 |
20050235619 | Heinz | Oct 2005 | A1 |
20060000196 | Beier | Jan 2006 | A1 |
20060014460 | Alexander | Jan 2006 | A1 |
20060096263 | Kahlbaugh | May 2006 | A1 |
20080026172 | Stelter | Jan 2008 | A1 |
20080120954 | Duello | May 2008 | A1 |
20080166533 | Jones | Jul 2008 | A1 |
20080314010 | Smithies | Dec 2008 | A1 |
20090044702 | Adamek | Feb 2009 | A1 |
20090076473 | Kasai | Mar 2009 | A1 |
20090117803 | Jung | May 2009 | A1 |
20090199715 | Koschak | Aug 2009 | A1 |
20100101199 | Veeser | Apr 2010 | A1 |
20100119794 | Manstein | May 2010 | A1 |
20100186595 | Huang | Jul 2010 | A1 |
20100192531 | Bao | Aug 2010 | A1 |
20100247404 | Ptak | Sep 2010 | A1 |
20100305687 | Ajji | Dec 2010 | A1 |
20100307503 | Iwamoto | Dec 2010 | A1 |
20100313757 | Crabtree | Dec 2010 | A1 |
20120031063 | Soyama | Feb 2012 | A1 |
20120171408 | Turner | Jul 2012 | A1 |
20120187593 | Jung | Jul 2012 | A1 |
20120309249 | Von Bokern | Dec 2012 | A1 |
20130197664 | Ballard | Aug 2013 | A1 |
20130269529 | Jung | Oct 2013 | A1 |
20130306548 | Kreibig | Nov 2013 | A1 |
20140014572 | Mbadinga-Mouanda | Jan 2014 | A1 |
20140202123 | Walz | Jul 2014 | A1 |
20150061175 | Jung et al. | Mar 2015 | A1 |
20150128545 | Seeberger | May 2015 | A1 |
Number | Date | Country |
---|---|---|
101757809 | Jun 2010 | CN |
101410162 | Jan 2012 | CN |
101617072 | Jul 2012 | CN |
2801211 | Jul 1978 | DE |
3916838 | Nov 1990 | DE |
291932 | Jul 1991 | DE |
4123122 | Jan 1993 | DE |
4217195 | Nov 1993 | DE |
4443158 | Jun 1996 | DE |
19618758 | Nov 1997 | DE |
69322572 | Dec 1998 | DE |
69320027 | Feb 1999 | DE |
29907699 | Aug 1999 | DE |
19920983 | Nov 2000 | DE |
69914346 | Jul 2001 | DE |
69331065 | Oct 2001 | DE |
10026281 | Dec 2001 | DE |
60100409 | Jul 2003 | DE |
69628752 | Apr 2004 | DE |
10310435 | Jun 2004 | DE |
10257833 | Jul 2004 | DE |
102004036440 | Feb 2005 | DE |
102004048291 | Apr 2006 | DE |
102004060593 | Jun 2006 | DE |
102005026156 | Dec 2006 | DE |
102005055607 | Mar 2007 | DE |
202007005847 | Aug 2007 | DE |
102006013170 | Sep 2007 | DE |
102007011365 | Sep 2008 | DE |
102009026276 | Feb 2010 | DE |
0250005 | Dec 1987 | EP |
0109619 | May 1988 | EP |
0379032 | Jul 1990 | EP |
0228512 | Jan 1991 | EP |
0382330 | Jan 1994 | EP |
0590307 | Apr 1994 | EP |
0674035 | Sep 1995 | EP |
0432586 | Jul 1996 | EP |
0537769 | Apr 1998 | EP |
0867216 | Sep 1998 | EP |
0904819 | Mar 1999 | EP |
0695383 | Oct 2001 | EP |
1198279 | Apr 2002 | EP |
1637632 | Mar 2006 | EP |
1790406 | May 2007 | EP |
1970111 | Sep 2008 | EP |
1970111 | Jul 2010 | EP |
2752231 | Jul 2014 | EP |
1866472 | Nov 2016 | EP |
941082 | Nov 1963 | GB |
2404347 | Feb 2005 | GB |
S59141173 | Aug 1984 | JP |
H02264057 | Oct 1990 | JP |
H03137909 | Jun 1991 | JP |
H0440206 | Feb 1992 | JP |
H05321115 | Dec 1993 | JP |
H06346310 | Dec 1994 | JP |
H0813309 | Jan 1996 | JP |
1997503958 | Apr 1997 | JP |
H09220427 | Aug 1997 | JP |
2002219315 | Aug 2002 | JP |
2006341220 | Dec 2006 | JP |
2007170224 | Jul 2007 | JP |
2007265778 | Oct 2007 | JP |
2009011887 | Jan 2009 | JP |
2013052321 | Mar 2013 | JP |
2014184360 | Oct 2014 | JP |
2015107482 | Jun 2015 | JP |
2188693 | Nov 2000 | RU |
2198718 | Oct 2001 | RU |
9216361 | Oct 1992 | WO |
9216361 | Oct 1992 | WO |
9517943 | Jul 1995 | WO |
9517944 | Jul 1995 | WO |
9705306 | Feb 1997 | WO |
0013765 | Mar 2000 | WO |
01086043 | Nov 2001 | WO |
03013732 | Feb 2003 | WO |
2004038078 | May 2004 | WO |
2005060811 | Jul 2005 | WO |
2006002684 | Jan 2006 | WO |
2006049664 | May 2006 | WO |
2005060696 | Jun 2006 | WO |
2007053204 | May 2007 | WO |
2007061457 | May 2007 | WO |
2007061475 | May 2007 | WO |
2007112877 | Oct 2007 | WO |
2008016771 | Feb 2008 | WO |
2007143243 | Feb 2009 | WO |
2011002878 | Jan 2011 | WO |
2012034679 | Mar 2012 | WO |
2012069172 | May 2012 | WO |
2012097973 | Jul 2012 | WO |
Entry |
---|
International Search Report for PCT/EP2013/001463 dated Jun. 25, 2014. |
International Search Report for application PCT/EP2007/002650 dated Jan. 16, 2008. |
International Search Report and Written Opinion dated Jul. 4, 2012 corresponding to PCT/EP2011/005854. |
International Preliminary Report on Patentability dated Dec. 8, 2014 corresponding to PCT/EP2013/001634. |
Examination Report dated Mar. 10, 2015 in corresponding German application No. 10 2012 011 065.0. |
International Search Report for PCT/EP2014/001290 dated Mar. 31, 2014. |
Office Action in corresponding Japanese application 362967 dated Aug. 11, 2015. |
Hutten, Irwin M., “Handbook of Nonwoven Filter Media”, 2007, 12 pages. |
Office Action in corresponding German Application 1020060142365 dated Jun. 19, 2015. |
Dahiya et al., Meltblown Technology, Apr. 2004. |
International Preliminary Report on Patentability dated Nov. 26, 2015 for Application No. PCT/EP2014/001290. |
Lewandowski, Zbigniew et al., “The Nonwovens Formation in the Melt-blown Process” Fibres & Textiles in Eastern Europe, 2007. |
Ward, Gregory, “Meltblown Nanofibres for Nonwoven Filtration Applications” Filtration+Separation, Nov. 2001. |
I. M. Hutten, Handbook of Nonwoven Filter Media, pp. 195-203, 2007. |
First Examination report from the India Intellectual Property Office, dated Mar. 13, 2015, 2 pages. |
Intemation Search Report and Written opinion for PCT/TH2015/000082 dated Mar. 12, 2016. |
Number | Date | Country | |
---|---|---|---|
20150061175 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12295263 | US | |
Child | 13438286 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13438286 | Apr 2012 | US |
Child | 14487562 | US |